1932

Abstract

The oceans contain large reservoirs of inorganic and organic carbon and play a critical role in both global carbon cycling and climate. Most of the biogeochemical transformations in the oceans are driven by marine microbes. Thus, molecular processes occurring at the scale of single cells govern global geochemical dynamics, posing a challenge of scales. Understanding the processes controlling ocean carbon cycling from the cellular to the global scale requires the integration of multiple disciplines including microbiology, ecology, biogeochemistry, and computational fields such as numerical models and bioinformatics. A shared language and foundational knowledge will facilitate these interactions. This review provides the state of knowledge on the role marine microbes play in large-scale ocean carbon cycling through the lens of observational oceanography and biogeochemical models. We conclude by outlining ways in which the field can bridge the gap between -omics datasets and ocean models to understand ocean carbon cycling across scales.

  • ▪  -Omic approaches are providing increasingly quantitative insight into the biogeochemical functions of marine microbial ecosystems.
  • ▪  Numerical models provide a tool for studying global carbon cycling by scaling from the microscale to the global scale.
  • ▪  The integration of -omics and numerical modeling generates new understanding of how microbial metabolisms and community dynamics set nutrient fluxes in the ocean.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-040523-020630
2025-05-30
2025-06-13
Loading full text...

Full text loading...

/deliver/fulltext/earth/53/1/annurev-earth-040523-020630.html?itemId=/content/journals/10.1146/annurev-earth-040523-020630&mimeType=html&fmt=ahah

Literature Cited

  1. Alexander H, Hu SK, Krinos AI, Pachiadaki M, Tully BJ, et al. 2023.. Eukaryotic genomes from a global metagenomic data set illuminate trophic modes and biogeography of ocean plankton. . mBio 14:(6):e01676-23
    [Crossref] [Google Scholar]
  2. Alexander H, Jenkins BD, Rynearson TA, Dyhrman ST. 2015.. Metatranscriptome analyses indicate resource partitioning between diatoms in the field. . PNAS 112:(17):E218290
    [Crossref] [Google Scholar]
  3. Alexander H, Rouco M, Haley ST, Dyhrman ST. 2020.. Transcriptional response of Emiliania huxleyi under changing nutrient environments in the north pacific subtropical gyre. . Environ. Microbiol. 22:(5):184760
    [Crossref] [Google Scholar]
  4. Amin SA, Hmelo L, van Tol H, Durham B, Carlson L, et al. 2015.. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. . Nature 522:(7554):98101
    [Crossref] [Google Scholar]
  5. Andújar C, Arribas P, Yu DW, Vogler AP, Emerson BC. 2018.. Why the COI barcode should be the community DNA metabarcode for the Metazoan. . Mol. Ecol. 27::396875
    [Crossref] [Google Scholar]
  6. Antonakoudis A, Barbosa R, Kotidis P, Kontoravdi C. 2020.. The era of big data: genome-scale modelling meets machine learning. . Comput. Struct. Biotechnol. J. 18::3287300
    [Crossref] [Google Scholar]
  7. Asselot R, Carracedo LI, Thierry V, Mercier H, Bajon R, Pérez FF. 2024.. Anthropogenic carbon pathways towards the North Atlantic interior revealed by Argo-O2, neural networks and back-calculations. . Nat. Commun. 15::1630
    [Crossref] [Google Scholar]
  8. Aumont O, Éthé C, Tagliabue A, Bopp L, Gehlen M. 2015.. PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies. . Geosci. Model Dev. Discuss. 8:(2):1375509
    [Google Scholar]
  9. Babele PK, Young JD. 2020.. Applications of stable isotope-based metabolomics and fluxomics toward synthetic biology of cyanobacteria. . WIREs Syst. Biol. Med. 12:(3):e1472
    [Crossref] [Google Scholar]
  10. Baird ME, Suthers IM. 2007.. A size-resolved pelagic ecosystem model. . Ecol. Model. 203:(3–4):185203
    [Crossref] [Google Scholar]
  11. Balch WM, Drapeau DT, Poulton N, Archer SD, Cartisano C, et al. 2023.. Osmotrophy of dissolved organic compounds by coccolithophore populations: fixation into particulate organic and inorganic carbon. . Sci. Adv. 9:(21):eadf6973
    [Crossref] [Google Scholar]
  12. Bannon CC, Mudge EM, Bertrand EM. 2024.. Shedding light on cobalamin photodegradation in the ocean. . Limnol. Oceanogr. Lett. 9:(2):13544
    [Crossref] [Google Scholar]
  13. Bar-On YM, Milo R. 2019.. The biomass composition of the oceans: a blueprint of our blue planet. . Cell 179:(7):145154
    [Crossref] [Google Scholar]
  14. Bergauer K, Fernandez-Guerra A, Garcia JA, Sprenger RR, Stepanauskas R, et al. 2018.. Organic matter processing by microbial communities throughout the Atlantic water column as revealed by metaproteomics. . PNAS 115:(3):E4008
    [Crossref] [Google Scholar]
  15. Berge T, Chakraborty S, Hansen PJ, Andersen KH. 2017.. Modeling succession of key resource-harvesting traits of mixotrophic plankton. . ISME J. 11:(1):21223
    [Crossref] [Google Scholar]
  16. Bertrand EM, McCrow JP, Moustafa A, Zheng H, McQuaid JB, et al. 2015.. Phytoplankton–bacterial interactions mediate micronutrient colimitation at the coastal Antarctic sea ice edge. . PNAS 112:(32):993843
    [Crossref] [Google Scholar]
  17. Berube PM, Biller SJ, Hackl T, Hogle SL, Satinsky BM, et al. 2018.. Single cell genomes of Prochlorococcus, Synechococcus, and sympatric microbes from diverse marine environments. . Sci. Data 5::180154
    [Crossref] [Google Scholar]
  18. Berube PM, Gifford S, Hurwitz B, Jenkins B, Marchetti A, Santoro A. 2022.. Roadmap towards community-wide intercalibration and standardization of ocean nucleic acids’ omics measurements. Ocean Nucleic Acids ‘Omics Intercalibration and Standardization Workshop, Univ. North Carolina, Chapel Hill, NC:
    [Google Scholar]
  19. Biller SJ, Berube PM, Dooley K, Williams M, Satinsky BM, et al. 2018.. Marine microbial metagenomes sampled across space and time. . Sci. Data 5::180176
    [Crossref] [Google Scholar]
  20. Boysen AK, Carlson LT, Durham BP, Groussman RD, Aylward FO, et al. 2021.. Particulate metabolites and transcripts reflect diel oscillations of microbial activity in the surface ocean. . mSystems 6::e00896-20
    [Crossref] [Google Scholar]
  21. Broddrick JT, Du N, Smith SR, Tsuji Y, Jallet D, et al. 2019.. Cross-compartment metabolic coupling enables flexible photoprotective mechanisms in the diatom Phaeodactylum tricornutum. . New Phytol. 222:(3):136479
    [Crossref] [Google Scholar]
  22. Brussaard CP. 2004.. Viral control of phytoplankton populations—a review. . J. Eukaryot. Microbiol. 51:(2):12538
    [Crossref] [Google Scholar]
  23. Buchanan PJ, Sun X, Weissman J, McCoy D, Bianchi D, Zakem E. 2023.. Oxygen intrusions sustain aerobic nitrite-oxidizing bacteria in anoxic marine zones. . bioRxiv 2023.02.22.529547. https://doi.org/10.1101/2023.02.22.529547
  24. Buitenhuis ET, Vogt M, Moriarty R, Bednaršek N, Doney SC, et al. 2013.. MAREDAT: towards a world atlas of MARine Ecosystem DATa. . Earth Syst. Sci. Data 5:(2):22739
    [Crossref] [Google Scholar]
  25. Bulgin CE, Merchant CJ, Ferreira D. 2020.. Tendencies, variability and persistence of sea surface temperature anomalies. . Sci. Rep. 10::7986
    [Crossref] [Google Scholar]
  26. Busecke JJ, Resplandy L, Ditkovsky SJ, John JG. 2022.. Diverging fates of the Pacific Ocean oxygen minimum zone and its core in a warming world. . AGU Adv. 3:(6):e2021AV000470
    [Crossref] [Google Scholar]
  27. Butenschön M, Clark J, Aldridge JN, Allen JI, Artioli Y, et al. 2016.. ERSEM 15.06: a generic model for marine biogeochemistry and the ecosystem dynamics of the lower trophic levels. . Geosci. Model Dev. 9:(4):129339
    [Crossref] [Google Scholar]
  28. Cael B, Bisson K, Boss E, Dutkiewicz S, Henson S. 2023.. Global climate-change trends detected in indicators of ocean ecology. . Nature 619:(7970):55154
    [Crossref] [Google Scholar]
  29. Cael B, Dutkiewicz S, Henson S. 2021.. Abrupt shifts in 21st-century plankton communities. . Sci. Adv. 7:(44):eabf8593
    [Crossref] [Google Scholar]
  30. Callahan BJ, McMurdie PJ, Holmes SP. 2017.. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. . ISME J. 11:(12):263943
    [Crossref] [Google Scholar]
  31. Caron DA, Hu SK. 2019.. Are we overestimating protistan diversity in nature?. Trends Microbiol. 27:(3):197205
    [Crossref] [Google Scholar]
  32. Carradec Q, Pelletier E, Da Silva C, Alberti A, Seeleuthner Y, et al. 2018.. A global ocean atlas of eukaryotic genes. . Nat. Commun. 9::373
    [Crossref] [Google Scholar]
  33. Casey JR, Boiteau RM, Engqvist MK, Finkel ZV, Li G, et al. 2022.. Basin-scale biogeography of marine phytoplankton reflects cellular-scale optimization of metabolism and physiology. . Sci. Adv. 8:(3):eabl4930
    [Crossref] [Google Scholar]
  34. Chakraborty S, Nielsen LT, Andersen KH. 2017.. Trophic strategies of unicellular plankton. . Am. Nat. 189:(4):E7790
    [Crossref] [Google Scholar]
  35. Chen J, Deng L, Pang M, Li Y, Xu Z, et al. 2024.. Transcriptomic insights into the shift of trophic strategies in mixotrophic dinoflagellate Lepidodinium in the warming ocean. . ISME Commun. 4:(1):ycae087
    [Crossref] [Google Scholar]
  36. Chenillat F, Rivière P, Ohman MD. 2021.. On the sensitivity of plankton ecosystem models to the formulation of zooplankton grazing. . PLOS ONE 16:(5):e0252033
    [Crossref] [Google Scholar]
  37. Clark JR, Lenton TM, Williams HT, Daines SJ. 2013.. Environmental selection and resource allocation determine spatial patterns in picophytoplankton cell size. . Limnol. Oceanogr. 58:(3):100822
    [Crossref] [Google Scholar]
  38. Clayton S, Alexander H, Graff JR, Poulton NJ, Thompson LR, et al. 2022.. Bio-GO-SHIP: The time is right to establish global repeat sections of ocean biology. . Front. Mar. Sci. 8::767443
    [Crossref] [Google Scholar]
  39. Clayton S, Dutkiewicz S, Jahn O, Follows MJ. 2013.. Dispersal, eddies, and the diversity of marine phytoplankton. . Limnol. Oceanogr. 3:(1):18297
    [Crossref] [Google Scholar]
  40. Cohen NR, Alexander H, Krinos AI, Hu SK, Lampe RH. 2022.. Marine microeukaryote metatranscriptomics: sample processing and bioinformatic workflow recommendations for ecological applications. . Front. Mar. Sci. 9::867007
    [Crossref] [Google Scholar]
  41. Cohen NR, McIlvin MR, Moran DM, Held NA, Saunders JK, et al. 2021.. Dinoflagellates alter their carbon and nutrient metabolic strategies across environmental gradients in the central Pacific Ocean. . Nat. Microbiol. 6:(2):17386
    [Crossref] [Google Scholar]
  42. Coleman ML, Chisholm SW. 2010.. Ecosystem-specific selection pressures revealed through comparative population genomics. . PNAS 107:(43):1863439
    [Crossref] [Google Scholar]
  43. Coles V, Hood R. 2007.. Modeling the impact of iron and phosphorus limitations on nitrogen fixation in the Atlantic Ocean. . Biogeosciences 4:(4):45579
    [Crossref] [Google Scholar]
  44. Coles VJ, Hood RR. 2016.. Approaches and challenges for linking marine biogeochemical models with the “omics” revolution. . In Aquatic Microbial Ecology and Biogeochemistry: A Dual Perspective, ed. P Gilbert, T Kana , pp. 4563. Cham, Switz:.: Springer
    [Google Scholar]
  45. Coles VJ, Stukel M, Brooks M, Burd A, Crump B, et al. 2017.. Ocean biogeochemistry modeled with emergent trait-based genomics. . Science 358:(6367):114954
    [Crossref] [Google Scholar]
  46. Coy SR, Utama B, Spurlin JW, Kim JG, Deshmukh H, et al. 2023.. Visualization of RNA virus infection in a marine protist with a universal biomarker. . Sci. Rep. 13::5813
    [Crossref] [Google Scholar]
  47. Damien P, Bianchi D, Kessouri F, McWilliams JC. 2023.. Modulation of phytoplankton uptake by mesoscale and submesoscale eddies in the California Current System. . Geophys. Res. Lett. 50:(16):e2023GL104853
    [Crossref] [Google Scholar]
  48. De Vargas C, Audic S, Henry N, Decelle J, Mahé F, et al. 2015.. Eukaryotic plankton diversity in the sunlit ocean. . Science 348:(6237):1261605
    [Crossref] [Google Scholar]
  49. Debeljak P, Bayer B, Sun Y, Herndl GJ, Obernosterer I. 2023.. Seasonal patterns in microbial carbon and iron transporter expression in the Southern Ocean. . Microbiome 11:(1):187
    [Crossref] [Google Scholar]
  50. Delmont TO, Gaia M, Hinsinger DD, Fremont P, Vanni C, et al. 2022.. Functional repertoire convergence of distantly related eukaryotic plankton lineages abundant in the sunlit ocean. . Cell Genom. 2:(5):100123
    [Crossref] [Google Scholar]
  51. Delmont TO, Quince C, Shaiber A, Esen ÖC, Lee ST, et al. 2018.. Nitrogen-fixing populations of planctomycetes and proteobacteria are abundant in surface ocean metagenomes. . Nat. Microbiol. 3:(7):80413
    [Crossref] [Google Scholar]
  52. Deutsch C, Ferrel A, Seibel B, Pörtner HO, Huey RB. 2015.. Climate change tightens a metabolic constraint on marine habitats. . Science 348:(6239):113235
    [Crossref] [Google Scholar]
  53. Doblin MA, Van Sebille E. 2016.. Drift in ocean currents impacts intergenerational microbial exposure to temperature. . PNAS 113:(20):57005
    [Crossref] [Google Scholar]
  54. Durham BP, Sharma S, Luo H, Smith CB, Amin SA, et al. 2015.. Cryptic carbon and sulfur cycling between surface ocean plankton. . PNAS 112:(2):45357
    [Crossref] [Google Scholar]
  55. Dutkiewicz S, Boyd PW, Riebesell U. 2021.. Exploring biogeochemical and ecological redundancy in phytoplankton communities in the global ocean. . Glob. Change Biol. 27:(6):1196213
    [Crossref] [Google Scholar]
  56. Dutkiewicz S, Cermeno P, Jahn O, Follows MJ, Hickman AE, et al. 2020.. Dimensions of marine phytoplankton diversity. . Biogeosciences 17:(3):60934
    [Crossref] [Google Scholar]
  57. Dutkiewicz S, Follett CL, Follows MJ, Henderikx-Freitas F, Ribalet F, et al. 2024.. Multiple biotic interactions establish phytoplankton community structure across environmental gradients. . Limnol. Oceanogr. 69:(5):1086100
    [Crossref] [Google Scholar]
  58. Dutkiewicz S, Follows MJ, Bragg JG. 2009.. Modeling the coupling of ocean ecology and biogeochemistry. . Glob. Biogeochem. Cycles 23:(4):GB4017
    [Crossref] [Google Scholar]
  59. Elferink S, Neuhaus S, Wohlrab S, Toebe K, Voss D, et al. 2017.. Molecular diversity patterns among various phytoplankton size-fractions in West Greenland in late summer. . Deep Sea Res. I 121::5469
    [Crossref] [Google Scholar]
  60. Ershova E, Wangensteen OS, Descoteaux R, Barth-Jensen C, Præbel K. 2021.. Metabarcoding as a quantitative tool for estimating biodiversity and relative biomass of marine zooplankton. . ICES J. Mar. Sci. 78:(9):334255
    [Crossref] [Google Scholar]
  61. Fadeev E, Wietz M, von Appen WJ, Iversen MH, Nöthig EM, et al. 2021.. Submesoscale physicochemical dynamics directly shape bacterioplankton community structure in space and time. . Limnol. Oceanogr. 66:(7):290113
    [Crossref] [Google Scholar]
  62. Fasham MJ, Ducklow HW, McKelvie SM. 1990.. A nitrogen-based model of plankton dynamics in the oceanic mixed layer. . J. Mar. Res. 48:(3):591639
    [Crossref] [Google Scholar]
  63. Follett CL, Dutkiewicz S, Ribalet F, Zakem E, Caron D, et al. 2022.. Trophic interactions with heterotrophic bacteria limit the range of Prochlorococcus. . PNAS 119:(2):e2110993118
    [Crossref] [Google Scholar]
  64. Follows MJ, Dutkiewicz S, Ward B, Follett CN. 2018.. Theoretical interpretations of subtropical plankton biogeography. . In Microbial Ecology of the Oceans, ed. JM Gasol, DL Kirchman , pp. 46794. Hoboken, NJ:: Wiley & Sons
    [Google Scholar]
  65. Fuhrman JA. 2009.. Microbial community structure and its functional implications. . Nature 459:(7244):19399
    [Crossref] [Google Scholar]
  66. Gao Y, Wu M. 2023.. Accounting for 16S rRNA copy number prediction uncertainty and its implications in bacterial diversity analyses. . ISME Commun. 3::59
    [Crossref] [Google Scholar]
  67. Gardner JJ, Boyle NR. 2017.. The use of genome-scale metabolic network reconstruction to predict fluxes and equilibrium composition of N-fixing versus C-fixing cells in a diazotrophic cyanobacterium, Trichodesmium erythraeum. . BMC Syst. Biol. 11::4
    [Crossref] [Google Scholar]
  68. Geider RJ, La Roche J. 2002.. Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis. . Eur. J. Phycol. 37:(1):117
    [Crossref] [Google Scholar]
  69. Gentleman W, Leising A, Frost B, Strom S, Murray J. 2003.. Functional responses for zooplankton feeding on multiple resources: a review of assumptions and biological dynamics. . Deep Sea Res. II 50:(22–26):284775
    [Crossref] [Google Scholar]
  70. Gifford SM, Sharma S, Rinta-Kanto JM, Moran MA. 2011.. Quantitative analysis of a deeply sequenced marine microbial metatranscriptome. . ISME J. 5:(3):46172
    [Crossref] [Google Scholar]
  71. Giordano N, Gaudin M, Trottier C, Delage E, Nef C, et al. 2024.. Genome-scale community modelling reveals conserved metabolic cross-feedings in epipelagic bacterioplankton communities. . Nat. Commun. 15::272
    [Crossref] [Google Scholar]
  72. Giovannoni SJ, Britschgi TB, Moyer CL, Field KG. 1990.. Genetic diversity in Sargasso Sea bacterioplankton. . Nature 345:(6270):6063
    [Crossref] [Google Scholar]
  73. Giovannoni SJ, Stingl U. 2005.. Molecular diversity and ecology of microbial plankton. . Nature 437:(7057):34348
    [Crossref] [Google Scholar]
  74. Goldford JE, Lu N, Bajíc D, Estrela S, Tikhonov M, et al. 2018.. Emergent simplicity in microbial community assembly. . Science 361:(6401):46974
    [Crossref] [Google Scholar]
  75. Gong L, Shi W, Yang M, Luo H. 2021.. Variations in the conserved 18S and 5.8S reveal the putative pseudogenes in 18S-ITS1-5.8S rDNA of Cynoglossus melampetalus (Pleuronectiformes: Cynoglossidae). . Biochem. Biophys. Res. Commun. 534::23339
    [Crossref] [Google Scholar]
  76. Gong W, Marchetti A. 2019.. Estimation of 18S gene copy number in marine eukaryotic plankton using a next-generation sequencing approach. . Front. Mar. Sci. 6::219
    [Crossref] [Google Scholar]
  77. Groussman RD, Coesel SN, Durham BP, Armbrust EV. 2021.. Diel-regulated transcriptional cascades of microbial eukaryotes in the North Pacific Subtropical Gyre. . Front. Microbiol. 12::682651
    [Crossref] [Google Scholar]
  78. Guillou L, Bachar D, Audic S, Bass D, Berney C, et al. 2012.. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. . Nucleic Acids Res. 41:(D1):D597604
    [Crossref] [Google Scholar]
  79. Hansen PJ, Bjørnsen PK, Hansen BW. 1997.. Zooplankton grazing and growth: scaling within the 2–2,000-μm body size range. . Limnol. Oceanogr. 42:(4):687704
    [Crossref] [Google Scholar]
  80. Hao C, Elias JE, Lee PK, Lam H. 2023.. metaSpectraST: an unsupervised and database-independent analysis workflow for metaproteomic MS/MS data using spectrum clustering. . Microbiome 11:(1):176
    [Crossref] [Google Scholar]
  81. Hatton IA, Heneghan RF, Bar-On YM, Galbraith ED. 2021.. The global ocean size spectrum from bacteria to whales. . Sci. Adv. 7:(46):eabh3732
    [Crossref] [Google Scholar]
  82. Hawkes JA, d'Andrilli J, Agar JN, Barrow MP, Berg SM, et al. 2020.. An international laboratory comparison of dissolved organic matter composition by high resolution mass spectrometry: Are we getting the same answer?. Limnol. Oceanogr. 18:(6):23558
    [Crossref] [Google Scholar]
  83. Heal KR, Durham BP, Boysen AK, Carlson LT, Qin W, et al. 2021.. Marine community metabolomes carry fingerprints of phytoplankton community composition. . mSystems 6::e01334-20
    [Crossref] [Google Scholar]
  84. Heneghan RF, Everett JD, Sykes P, Batten SD, Edwards M, et al. 2020.. A functional size-spectrum model of the global marine ecosystem that resolves zooplankton composition. . Ecol. Model. 435::109265
    [Crossref] [Google Scholar]
  85. Henry CS, DeJongh M, Best AA, Frybarger PM, Linsay B, Stevens RL. 2010.. High-throughput generation, optimization and analysis of genome-scale metabolic models. . Nat. Biotechnol. 28:(9):97782
    [Crossref] [Google Scholar]
  86. Holt RD. 1977.. Predation, apparent competition, and the structure of prey communities. . Theor. Popul. Biol. 12:(2):197229
    [Crossref] [Google Scholar]
  87. Holt RD, Bonsall MB. 2017.. Apparent competition. . Annu. Rev. Ecol. Evol. Syst. 48::44771
    [Crossref] [Google Scholar]
  88. Hood RR, Bates NR, Capone DG, Olson DB. 2001.. Modeling the effect of nitrogen fixation on carbon and nitrogen fluxes at BATS. . Deep Sea Res. II 48:(8–9):160948
    [Crossref] [Google Scholar]
  89. Hood RR, Coles VJ, Capone DG. 2004.. Modeling the distribution of Trichodesmium and nitrogen fixation in the Atlantic Ocean. . J. Geophys. Res. 109:(C6):C06006
    [Google Scholar]
  90. Inomura K, Deutsch C, Jahn O, Dutkiewicz S, Follows MJ. 2022.. Global patterns in marine organic matter stoichiometry driven by phytoplankton ecophysiology. . Nat. Geosci. 15:(12):103440
    [Crossref] [Google Scholar]
  91. Izett RW, Fennel K, Stoer AC, Nicholson DP. 2024.. Reviews and syntheses: expanding the global coverage of gross primary production and net community production measurements using Biogeochemical-Argo floats. . Biogeosciences 21:(1):1347
    [Crossref] [Google Scholar]
  92. Jabre LJ, Allen AE, McCain JSP, McCrow JP, Tenenbaum N, et al. 2021.. Molecular underpinnings and biogeochemical consequences of enhanced diatom growth in a warming Southern Ocean. . PNAS 118:(30):e2107238118
    [Crossref] [Google Scholar]
  93. Ji R, Ashjian CJ, Campbell RG, Chen C, Gao G, et al. 2012.. Life history and biogeography of Calanus copepods in the Arctic Ocean: an individual-based modeling study. . Prog. Oceanogr. 96:(1):4056
    [Crossref] [Google Scholar]
  94. Johnson WM, Kido Soule MC, Longnecker K, Bhatia MP, Hallam SJ, et al. 2023.. Particulate and dissolved metabolite distributions along a latitudinal transect of the western Atlantic Ocean. . Limnol. Oceanogr. 68:(2):37793
    [Crossref] [Google Scholar]
  95. Jones-Kellett AE, McNichol JC, Raut Y, Cain KR, Ribalet F, et al. 2024.. Amplicon sequencing with internal standards yields accurate picocyanobacteria cell abundances as validated with flow cytometry. . ISME Commun. 4:(1):ycae115
    [Crossref] [Google Scholar]
  96. Jönsson BF, Watson JR. 2016.. The timescales of global surface-ocean connectivity. . Nat. Commun. 7::11239
    [Crossref] [Google Scholar]
  97. Kaur U, Meng H, Lui F, Ma R, Ogburn RN, et al. 2018.. Proteome-wide structural biology: an emerging field for the structural analysis of proteins on the proteomic scale. . J. Proteome Res. 17:(11):361427
    [Crossref] [Google Scholar]
  98. Kirshtein JD, Paerl H, Zehr J. 1991.. Amplification, cloning, and sequencing of a nifH segment from aquatic microorganisms and natural communities. . Appl. Environ. Microbiol. 57:(9):264550
    [Crossref] [Google Scholar]
  99. Kleikamp HB, Pronk M, Tugui C, da Silva LG, Abbas B, et al. 2021.. Database independent de novo metaproteomics of complex microbial communities. . Cell Syst. 12:(5):37583
    [Crossref] [Google Scholar]
  100. Kolody BC, McCrow J, Allen LZ, Aylward F, Fontanez K, et al. 2019.. Diel transcriptional response of a California current plankton microbiome to light, low iron, and enduring viral infection. . ISME J. 13:(11):281733
    [Crossref] [Google Scholar]
  101. Krinos AI, Bowers RM, Rohwer RR, McMahon KD, Woyke T, Schulz F. 2024.. Time-series metagenomics reveals changing protistan ecology of a temperate dimictic lake. . Microbiome 12:(1):133
    [Crossref] [Google Scholar]
  102. Kujawinski EB. 2011.. The impact of microbial metabolism on marine dissolved organic matter. . Annu. Rev. Mar. Sci. 3::56799
    [Crossref] [Google Scholar]
  103. Kumar M, Tibocha-Bonilla JD, Füssy Z, Lieng C, Schwenck SM, et al. 2024.. Mixotrophic growth of a ubiquitous marine diatom. . Sci. Adv. 10:(29):eado2623
    [Crossref] [Google Scholar]
  104. Labarre A, Obiol A, Wilken S, Forn I, Massana R. 2020.. Expression of genes involved in phagocytosis in uncultured heterotrophic flagellates. . Limnol. Oceanogr. 65::S14960
    [Crossref] [Google Scholar]
  105. Lambert BS, Groussman RD, Schatz MJ, Coesel SN, Durham BP, et al. 2022.. The dynamic trophic architecture of open-ocean protist communities revealed through machine-guided metatranscriptomics. . PNAS 119:(7):e2100916119
    [Crossref] [Google Scholar]
  106. Lampe RH, Cohen NR, Ellis KA, Bruland KW, Maldonado MT, et al. 2018.. Divergent gene expression among phytoplankton taxa in response to upwelling. . Environ. Microbiol. 20:(8):306982
    [Crossref] [Google Scholar]
  107. Larkin AA, Garcia CA, Garcia N, Brock ML, Lee JA, et al. 2021.. High spatial resolution global ocean metagenomes from Bio-GO-SHIP repeat hydrography transects. . Sci. Data 8::107
    [Crossref] [Google Scholar]
  108. Le Quéré CL, Harrison SP, Prentice IC, Buitenhuis ET, Aumont O, et al. 2005.. Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models. . Glob. Change Biol. 11:(11):201640
    [Crossref] [Google Scholar]
  109. Leles SG, Levine NM. 2023.. Mechanistic constraints on the trade-off between photosynthesis and respiration in response to warming. . Sci. Adv. 9:(35):eadh8043
    [Crossref] [Google Scholar]
  110. Leray M, Knowlton N. 2016.. Censusing marine eukaryotic diversity in the twenty-first century. . Philos. Trans. R. Soc. B 371:(1702):20150331
    [Crossref] [Google Scholar]
  111. Levering J, Broddrick J, Dupont CL, Peers G, Beeri K, et al. 2016.. Genome scale model reveals metabolic basis of biomass partitioning in a model diatom. . PLOS ONE 11:(5):e0155038
    [Crossref] [Google Scholar]
  112. Lévy M, Franks PJ, Smith KS. 2018.. The role of submesoscale currents in structuring marine ecosystems. . Nat. Commun. 9::4758
    [Crossref] [Google Scholar]
  113. Lévy M, Jahn O, Dutkiewicz S, Follows MJ. 2014.. Phytoplankton diversity and community structure affected by oceanic dispersal and mesoscale turbulence. . Limnol. Oceanogr. 4:(1):6784
    [Crossref] [Google Scholar]
  114. Li H. 2015.. Microbiome, metagenomics, and high-dimensional compositional data analysis. . Annu. Rev. Stat. Appl. 2::7394
    [Crossref] [Google Scholar]
  115. Liefer JD, Garg A, Fyfe MH, Irwin AJ, Benner I, et al. 2019.. The macromolecular basis of phytoplankton C:N:P under nitrogen starvation. . Front. Microbiol. 10::763
    [Crossref] [Google Scholar]
  116. Litchman E, Klausmeier CA, Schofield OM, Falkowski PG. 2007.. The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level. . Ecol. Lett. 10:(12):117081
    [Crossref] [Google Scholar]
  117. Lloyd KG, Steen AD, Ladau J, Yin J, Crosby L. 2018.. Phylogenetically novel uncultured microbial cells dominate Earth microbiomes. . mSystems 3::e00055-18
    [Crossref] [Google Scholar]
  118. Logares R, Haverkamp TH, Kumar S, Lanzén A, Nederbragt AJ, et al. 2012.. Environmental microbiology through the lens of high-throughput DNA sequencing: synopsis of current platforms and bioinformatics approaches. . J. Microbiol. Methods 91:(1):10613
    [Crossref] [Google Scholar]
  119. Longnecker K, Futrelle J, Coburn E, Soule MCK, Kujawinski EB. 2015.. Environmental metabolomics: databases and tools for data analysis. . Mar. Chem. 177::36673
    [Crossref] [Google Scholar]
  120. Louca S, Jacques SM, Pires AP, Leal JS, Srivastava DS, et al. 2016.. High taxonomic variability despite stable functional structure across microbial communities. . Nat. Ecol. Evol. 1::0015
    [Crossref] [Google Scholar]
  121. Machado D, Andrejev S, Tramontano M, Patil KR. 2018.. Fast automated re-construction of genome-scale metabolic models for microbial species and communities. . Nucleic Acids Res. 46:(15):754253
    [Crossref] [Google Scholar]
  122. Machado D, Herrgård M. 2014.. Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism. . PLOS Comput. Biol. 10:(4):e1003580
    [Crossref] [Google Scholar]
  123. Magnúsdóttir S, Heinken A, Kutt L, Ravcheev DA, Bauer E, et al. 2017.. Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. . Nat. Biotechnol. 35:(1):8189
    [Crossref] [Google Scholar]
  124. Mahadevan A. 2016.. The impact of submesoscale physics on primary productivity of plankton. . Annu. Rev. Mar. Sci. 8::16184
    [Crossref] [Google Scholar]
  125. Mangolte I, Lévy M, Dutkiewicz S, Clayton S, Jahn O. 2022.. Plankton community response to fronts: winners and losers. . J. Plankton Res. 44:(2):24158
    [Crossref] [Google Scholar]
  126. Marchetti A, Schruth DM, Durkin CA, Parker MS, Kodner RB, et al. 2012.. Comparative metatranscriptomics identifies molecular bases for the physiological responses of phytoplankton to varying iron availability. . PNAS 109:(6):E31725
    [Crossref] [Google Scholar]
  127. Marguerat S, Schmidt A, Codlin S, Chen W, Aebersold R, Bähler J. 2012.. Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells. . Cell 151:(3):67183
    [Crossref] [Google Scholar]
  128. MarineMetagenomeDB. 2021.. MarineMetagenomeDB. https://web.app.ufz.de/marmdb/
    [Google Scholar]
  129. Martin JL, Santi I, Pitta P, John U, Gypens N. 2022.. Towards quantitative metabarcoding of eukaryotic plankton: an approach to improve 18S rRNA gene copy number bias. . Metabarcoding Metagenom. 6::e85794
    [Crossref] [Google Scholar]
  130. McCain JSP, Allen AE, Bertrand EM. 2022.. Proteomic traits vary across taxa in a coastal Antarctic phytoplankton bloom. . ISME J. 16:(2):56979
    [Crossref] [Google Scholar]
  131. McCain JSP, Tagliabue A, Susko E, Achterberg EP, Allen AE, Bertrand EM. 2021.. Cellular costs underpin micronutrient limitation in phytoplankton. . Sci. Adv. 7:(32):eabg6501
    [Crossref] [Google Scholar]
  132. McCoy D, Damien P, Clements D, Yang S, Bianchi D. 2023.. Pathways of nitrous oxide production in the Eastern Tropical South Pacific oxygen minimum zone. . Glob. Biogeochem. Cycles 37:(7):e2022GB007670
    [Crossref] [Google Scholar]
  133. Meiler S, Britten GL, Dutkiewicz S, Moisander PH, Follows MJ. 2023.. Challenges and opportunities in connecting gene count observations with ocean biogeochemical models: reply to Zehr and Riemann 2023. . Limnol. Oceanogr. 68:(6):141316
    [Crossref] [Google Scholar]
  134. Messié M, Chavez F. 2011.. Global modes of sea surface temperature variability in relation to regional climate indices. . J. Clim. 24:(16):431431
    [Crossref] [Google Scholar]
  135. Milke F, Meyerjürgens J, Simon M. 2023.. Ecological mechanisms and current systems shape the modular structure of the global oceans’ prokaryotic seascape. . Nat. Commun. 14::6141
    [Crossref] [Google Scholar]
  136. Millette NC, Gast RJ, Luo JY, Moeller HV, Stamieszkin K, et al. 2023.. Mixoplankton and mixotrophy: future research priorities. . J. Plankton Res. 45:(4):57696
    [Crossref] [Google Scholar]
  137. Millette NC, Leles SG, Johnson MD, Maloney AE, Brownlee EF, et al. 2024.. Recommendations for advancing mixoplankton research through empirical-model integration. . Front. Mar. Sci. 11::1392673
    [Crossref] [Google Scholar]
  138. Mitra A, Flynn KJ, Burkholder JM, Berge T, Calbet A, et al. 2014.. The role of mixotrophic protists in the biological carbon pump. . Biogeosciences 11:(4):9951005
    [Crossref] [Google Scholar]
  139. Moeller H, Archibald K, Pfab F, Leles S. 2024.. Predicting optimal mixotrophic metabolic strategies in the global ocean. . Sci. Adv. 10:(50):eadr0664
    [Crossref] [Google Scholar]
  140. Moon-van der Staay SY, De Wachter R, Vaulot D. 2001.. Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. . Nature 409:(6820):60710
    [Crossref] [Google Scholar]
  141. Moore C, Mills M, Arrigo K, Berman-Frank I, Bopp L, et al. 2013.. Processes and patterns of oceanic nutrient limitation. . Nat. Geosci. 6:(9):70110
    [Crossref] [Google Scholar]
  142. Moran MA, Ferrer-González FX, Fu H, Nowinski B, Olofsson M, et al. 2022a.. The ocean's labile DOC supply chain. . Limnol. Oceanogr. 67:(5):100721
    [Crossref] [Google Scholar]
  143. Moran MA, Kujawinski EB, Schroer WF, Amin SA, Bates NR, et al. 2022b.. Microbial metabolites in the marine carbon cycle. . Nat. Microbiol. 7:(4):50823
    [Crossref] [Google Scholar]
  144. Moran MA, Kujawinski EB, Stubbins A, Fatland R, Aluwihare LI, et al. 2016.. Deciphering ocean carbon in a changing world. . PNAS 113:(12):314351
    [Crossref] [Google Scholar]
  145. Moreno CM, Bernish M, Meyer MG, Li Z, Waite N, et al. 2024.. Molecular physiology of Antarctic diatom natural assemblages and bloom event reveal insights into strategies contributing to their ecological success. . mSystems 9:(3):e01306-23
    [Crossref] [Google Scholar]
  146. Motone K, Kontogiorgos-Heintz D, Wee J, Kurihara K, Yang S, et al. 2024.. Multi-pass, single-molecule nanopore reading of long protein strands. . Nature 633::66269
    [Crossref] [Google Scholar]
  147. Mruwat N, Carlson MC, Goldin S, Ribalet F, Kirzner S, et al. 2021.. A single-cell polony method reveals low levels of infected Prochlorococcus in oligotrophic waters despite high cyanophage abundances. . ISME J. 15:(1):4154
    [Crossref] [Google Scholar]
  148. NASA Goddard Space Flight Cent., Ocean Ecol. Lab., Ocean Biol. Process. Group. 2022.. Moderate-resolution Imaging Spectroradiometer (MODIS) Aqua Chlorophyll Data. NASA OB.DAAC, Greenbelt, MD:, accessed July 30, 2024. https://oceancolor.gsfc.nasa.gov/data/10.5067/AQUA/MODIS/L3M/CHL/2022/. Accessed on 7/30/2024
    [Google Scholar]
  149. Negrete-García G, Luo JY, Long MC, Lindsay K, Levy M, Barton AD. 2022.. Plankton energy flows using a global size-structured and trait-based model. . Prog. Oceanogr. 209::102898
    [Crossref] [Google Scholar]
  150. Nguyen TT, Zakem EJ, Ebrahimi A, Schwartzman J, Caglar T, et al. 2022.. Microbes contribute to setting the ocean carbon flux by altering the fate of sinking particulates. . Nat. Commun. 13::1657
    [Crossref] [Google Scholar]
  151. Nicholson DP, Stanley RHR, Doney SC. 2018.. A phytoplankton model for the allocation of gross photosynthetic energy including the trade-offs of diazotrophy. . J. Geophys. Res. Biogeosci. 123:(6):1796816
    [Crossref] [Google Scholar]
  152. Nishimura Y, Yoshizawa S. 2022.. The OceanDNA MAG catalog contains over 50,000 prokaryotic genomes originated from various marine environments. . Sci. Data 9::305
    [Crossref] [Google Scholar]
  153. Nissimov JI, Talmy D, Haramaty L, Fredricks HF, Zelzion E, et al. 2019.. Biochemical diversity of glycosphingolipid biosynthesis as a driver of coccolithovirus competitive ecology. . Environ. Microbiol. 21:(6):218297
    [Crossref] [Google Scholar]
  154. Norris N, Levine NM, Fernandez VI, Stocker R. 2021.. Mechanistic model of nutrient uptake explains dichotomy between marine oligotrophic and copiotrophic bacteria. . PLOS Comput. Biol. 17:(5):e1009023
    [Crossref] [Google Scholar]
  155. Palazzo AF, Lee ES. 2015.. Non-coding RNA: What is functional and what is junk?. Front. Genet. 6::2
    [Crossref] [Google Scholar]
  156. Pascoal F, Tomasino MP, Piredda R, Quero GM, Torgo L, et al. 2023.. Intercomparison of marine microbiome sampling protocols. . ISME Commun. 3:(1):84
    [Crossref] [Google Scholar]
  157. Passi A, Tibocha-Bonilla JD, Kumar M, Tec-Campos D, Zengler K, Zuniga C. 2021.. Genome-scale metabolic modeling enables in-depth understanding of big data. . Metabolites 12:(1):14
    [Crossref] [Google Scholar]
  158. Pierella Karlusich JJ, Pelletier E, Zinger L, Lombard F, Zingone A, et al. 2022.. A robust approach to estimate relative phytoplankton cell abundances from metagenomes. . Mol. Ecol. Resour. 23:(1):1640
    [Crossref] [Google Scholar]
  159. Pomeroy LR. 1974.. The ocean's food web, a changing paradigm. . Bioscience 24:(9):499504
    [Crossref] [Google Scholar]
  160. Rappé MS, Giovannoni SJ. 2003.. The uncultured microbial majority. . Annu. Rev. Microbiol. 57::36994
    [Crossref] [Google Scholar]
  161. Rappé MS, Kemp PF, Giovannoni SJ. 1997.. Phylogenetic diversity of marine coastal picoplankton 16s rRNA genes cloned from the continental shelf off Cape Hatteras, North Carolina. . Limnol. Oceanogr. 42:(5):81126
    [Crossref] [Google Scholar]
  162. Reed DC, Algar CK, Huber JA, Dick GJ. 2014.. Gene-centric approach to integrating environmental genomics and biogeochemical models. . PNAS 111:(5):187984
    [Crossref] [Google Scholar]
  163. Régimbeau A, Aumont O, Bowler C, Guidi L, Jackson GA, et al. 2023.. Towards modeling genome-scale knowledge in the global ocean. . bioRxiv 2023.11.23.568447. https://doi.org/10.1101/2023.11.23.568447
  164. Régimbeau A, Budinich M, Larhlimi A, Pierella Karlusich JJ, Aumont O, et al. 2022.. Contribution of genome-scale metabolic modelling to niche theory. . Ecol. Lett. 25:(6):135264
    [Crossref] [Google Scholar]
  165. Reynolds R, Hyun S, Tully B, Bien J, Levine NM. 2023.. Identification of microbial metabolic functional guilds from large genomic datasets. . Front. Microbiol. 14::1197329
    [Crossref] [Google Scholar]
  166. Reynolds R, Weiss AC, James CC, Kojima CY, Weissman JL, et al. 2024.. Emergent metabolic niches for marine heterotrophs. . bioRxiv 2024.05.29.596556. https://doi.org/10.1101/2024.05.29.596556
  167. Riley GA. 1946.. Factors controlling phytoplankton populations on Georges Bank. . J. Mar. Res. 6::5473
    [Google Scholar]
  168. Roberts ME, Bhatia MP, Rowland E, White PL, Waterman S, et al. 2024.. Rubisco in high arctic tidewater glacier-marine systems: a new window into phytoplankton dynamics. . Limnol. Oceanogr. 69:(4):80217
    [Crossref] [Google Scholar]
  169. Rocca JD, Hall EK, Lennon JT, Evans SE, Waldrop MP, et al. 2015.. Relationships between protein-encoding gene abundance and corresponding process are commonly assumed yet rarely observed. . ISME J. 9:(8):169399
    [Crossref] [Google Scholar]
  170. Rohr T, Richardson A, Lenton A, Chamberlain MA, Shadwick EH. 2024.. The global distribution of grazing dynamics estimated from inverse modeling. . Geophys. Res. Lett. 51:(8):e2023GL107732
    [Crossref] [Google Scholar]
  171. Rosset R, Julien J, Monier R. 1966.. Ribonucleic acid composition of bacteria as a function of growth rate. . J. Mol. Biol. 18:(2):30820
    [Crossref] [Google Scholar]
  172. Sader JE, Gomez A, Neumann AP, Nunn A, Roukes ML. 2024.. Data-driven fingerprint nanoelectromechanical mass spectrometry. . Nat. Commun. 15::8800
    [Crossref] [Google Scholar]
  173. Saito MA, Alexander H, Benway HM, Boyd PW, Gledhill M, et al. 2024a.. The dawn of the BioGeoSCAPES program: ocean metabolism and nutrient cycles on a changing planet. . Oceanography 37:(2):16266
    [Crossref] [Google Scholar]
  174. Saito MA, Bertrand EM, Duffy ME, Gaylord DA, Held NA, et al. 2019.. Progress and challenges in ocean metaproteomics and proposed best practices for data sharing. . J. Proteome Res. 18:(4):146176
    [Crossref] [Google Scholar]
  175. Saito MA, McIlvin MR, Moran DM, Goepfert TJ, DiTullio GR, et al. 2014.. Multiple nutrient stresses at intersecting Pacific Ocean biomes detected by protein biomarkers. . Science 345:(6201):117377
    [Crossref] [Google Scholar]
  176. Saito MA, Saunders JK, McIlvin MR, Bertrand EM, Breier JA, et al. 2024b.. Results from a multi-laboratory ocean metaproteomic intercomparison: effects of LC-MS acquisition and data analysis procedures. . Biogeosciences 21::4889908
    [Crossref] [Google Scholar]
  177. Santi I, Kasapidis P, Karakassis I, Pitta P. 2021.. A comparison of DNA metabarcoding and microscopy methodologies for the study of aquatic microbial eukaryotes. . Diversity 13:(5):180
    [Crossref] [Google Scholar]
  178. Saunders JK, McIlvin MR, Dupont CL, Kaul D, Moran DM, et al. 2022.. Microbial functional diversity across biogeochemical provinces in the central Pacific Ocean. . PNAS 119:(37):e2200014119
    [Crossref] [Google Scholar]
  179. Schmidt TM, DeLong EF, Pace NR. 1991.. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. . J. Bacteriol. 173:(14):437178
    [Crossref] [Google Scholar]
  180. Scott M, Gunderson CW, Mateescu EM, Zhang Z, Hwa T. 2010.. Interdependence of cell growth and gene expression: origins and consequences. . Science 330:(6007):1099102
    [Crossref] [Google Scholar]
  181. Séférian R, Berthet S, Yool A, Palmiéri J, Bopp L, et al. 2020.. Tracking improvement in simulated marine biogeochemistry between cmip5 and cmip6. . Curr. Clim. Change Rep. 6:(3):95119
    [Crossref] [Google Scholar]
  182. Serra-Pompei C, Soudijn F, Visser AW, Kiørboe T, Andersen KH. 2020.. A general size- and trait-based model of plankton communities. . Prog. Oceanogr. 189::102473
    [Crossref] [Google Scholar]
  183. Serra-Pompei C, Ward BA, Pinti J, Visser AW, Kiørboe T, Andersen KH. 2022.. Linking plankton size spectra and community composition to carbon export and its efficiency. . Glob. Biogeochem. Cycles 36:(5):e2021GB007275
    [Crossref] [Google Scholar]
  184. Seyler LM, Trembath-Reichert E, Tully BJ, Huber JA. 2021.. Time-series transcriptomics from cold, oxic subseafloor crustal fluids reveals a motile, mixotrophic microbial community. . ISME J. 15:(4):1192206
    [Crossref] [Google Scholar]
  185. Shuter B. 1979.. A model of physiological adaptation in unicellular algae. . J. Theor. Biol. 78:(4):51952
    [Crossref] [Google Scholar]
  186. Soule MCK, Longnecker K, Johnson WM, Kujawinski EB. 2015.. Environmental metabolomics: analytical strategies. . Mar. Chem. 177::37487
    [Crossref] [Google Scholar]
  187. Stephens BM, Durkin CA, Sharpe G, Nguyen TT, Albers J, et al. 2024.. Direct observations of microbial community succession on sinking marine particles. . ISME J. 18:(1):wrad010
    [Crossref] [Google Scholar]
  188. Stock CA, Dunne JP, John JG. 2014.. Global-scale carbon and energy flows through the marine planktonic food web: an analysis with a coupled physical–biological model. . Prog. Oceanogr. 120::128
    [Crossref] [Google Scholar]
  189. Sunagawa S, Acinas SG, Bork P, Bowler C, Eveillard D, et al. 2020.. Tara Oceans: towards global ocean ecosystems biology. . Nat. Rev. Microbiol. 18:(8):42845
    [Crossref] [Google Scholar]
  190. Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, et al. 2015.. Structure and function of the global ocean microbiome. . Science 348:(6237):1261359
    [Crossref] [Google Scholar]
  191. Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, et al. 2017.. A communal catalogue reveals Earth's multiscale microbial diversity. . Nature 551:(7681):45763
    [Crossref] [Google Scholar]
  192. Thukral M, Allen AE, Petras D. 2023.. Progress and challenges in exploring aquatic microbial communities using non-targeted metabolomics. . ISME J. 17:(12):214759
    [Crossref] [Google Scholar]
  193. Tringe SG, Hugenholtz P. 2008.. A renaissance for the pioneering 16S rRNA gene. . Curr. Opin. Microbiol. 11:(5):44246
    [Crossref] [Google Scholar]
  194. Tully BJ, Graham ED, Heidelberg JF. 2018.. The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. . Sci. Data 5::170203
    [Crossref] [Google Scholar]
  195. Turk KA, Rees AP, Zehr JP, Pereira N, Swift P, et al. 2011.. Nitrogen fixation and nitrogenase (nifH) expression in tropical waters of the eastern North Atlantic. . ISME J. 5:(7):120112
    [Crossref] [Google Scholar]
  196. Ulloa O, Canfield DE, DeLong EF, Letelier RM, Stewart FJ. 2012.. Microbial oceanography of anoxic oxygen minimum zones. . PNAS 109:(40):159966003
    [Crossref] [Google Scholar]
  197. Ustick LJ, Larkin AA, Garcia CA, Garcia NS, Brock ML, et al. 2021.. Metagenomic analysis reveals global-scale patterns of ocean nutrient limitation. . Science 372:(6539):28791
    [Crossref] [Google Scholar]
  198. Vallina S, Ward B, Dutkiewicz S, Follows M. 2014.. Maximal foraging with active prey-switching: a new “kill the winner” functional response and its effect on global species richness and biogeography. . Prog. Oceanogr. 120::93109
    [Crossref] [Google Scholar]
  199. Van Den Bossche T, Kunath BJ, Schallert K, Schäpe SS, Abraham PE, et al. 2021.. Critical assessment of metaproteome investigation (campi): a multi-laboratory comparison of established workflows. . Nat. Commun. 12::7305
    [Crossref] [Google Scholar]
  200. Van Dijk EL, Jaszczyszyn Y, Naquin D, Thermes C. 2018.. The third revolution in sequencing technology. . Trends Genet. 34:(9):66681
    [Crossref] [Google Scholar]
  201. van Tol HM, Armbrust EV. 2021.. Genome-scale metabolic model of the diatom Thalassiosira pseudonana highlights the importance of nitrogen and sulfur metabolism in redox balance. . PLOS ONE 16:(3):e0241960
    [Crossref] [Google Scholar]
  202. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, et al. 2004.. Environmental genome shotgun sequencing of the Sargasso Sea. . Science 304:(5667):6674
    [Crossref] [Google Scholar]
  203. Wahl A, Huptas C, Neuhaus K. 2022.. Comparison of rRNA depletion methods for efficient bacterial mRNA sequencing. . Sci. Rep. 12::5765
    [Crossref] [Google Scholar]
  204. Wang XW, Sun Z, Jia H, Michel-Mata S, Angulo MT, et al. 2024.. Identifying keystone species in microbial communities using deep learning. . Nat. Ecol. Evol. 8::2231
    [Crossref] [Google Scholar]
  205. Ward BA, Collins S, Dutkiewicz S, Gibbs S, Bown P, et al. 2019.. Considering the role of adaptive evolution in models of the ocean and climate system. . J. Adv. Model. Earth Syst. 11::334361
    [Crossref] [Google Scholar]
  206. Ward BA, Dutkiewicz S, Jahn O, Follows MJ. 2012.. A size-structured food-web model for the global ocean. . Limnol. Oceanogr. 57:(6):187791
    [Crossref] [Google Scholar]
  207. Ward BA, Follows MJ. 2016.. Marine mixotrophy increases trophic transfer efficiency, mean organism size, and vertical carbon flux. . PNAS 113:(11):295863
    [Crossref] [Google Scholar]
  208. Ward BB. 2013.. How nitrogen is lost. . Science 341:(6144):35253
    [Crossref] [Google Scholar]
  209. Wieczynski DJ, Moeller HV, Gibert JP. 2023.. Mixotrophic microbes create carbon tipping points under warming. . Funct. Ecol. 37:(7):177486
    [Crossref] [Google Scholar]
  210. Wilken S, Huisman J, Naus-Wiezer S, Van Donk E. 2013.. Mixotrophic organisms become more heterotrophic with rising temperature. . Ecol. Lett. 16:(2):22533
    [Crossref] [Google Scholar]
  211. Yeh YC, McNichol J, Needham DM, Fichot EB, Berdjeb L, Fuhrman JA. 2021.. Comprehensive single-PCR 16S and 18S rRNA community analysis validated with mock communities, and estimation of sequencing bias against 18S. . Environ. Microbiol. 23:(6):324050
    [Crossref] [Google Scholar]
  212. Yool A, Popova E, Anderson T. 2010.. Medusa: a new intermediate complexity plankton ecosystem model for the global domain. . Geosci. Model Dev. Discuss. 3:(4):19392019
    [Google Scholar]
  213. Young JN, Rundell S, Cooper ZS, Dawson HM, Carpenter SD, et al. 2024.. Photosynthetic processes in Antarctic Sea ice during the spring melt. . Limnol. Oceanogr. 69:(7):156276
    [Crossref] [Google Scholar]
  214. Zakem EJ, Al-Haj A, Church MJ, van Dijken GL, Dutkiewicz S, et al. 2018.. Ecological control of nitrite in the upper ocean. . Nature Commun. 23::9:1206
    [Crossref] [Google Scholar]
  215. Zakem EJ, Cael B, Levine NM. 2021.. A unified theory for organic matter accumulation. . PNAS 118:(6):e2016896118
    [Crossref] [Google Scholar]
  216. Zakem EJ, Mahadevan A, Lauderdale JM, Follows MJ. 2020a.. Stable aerobic and anaerobic coexistence in anoxic marine zones. . ISME J. 14:(1):288301
    [Crossref] [Google Scholar]
  217. Zakem EJ, McNichol J, Weissman J, Raut Y, Xu L, et al. 2024.. Predictable functional biogeography of marine microbial heterotrophs. . bioRxiv 2024.02.14.580411. https://doi.org/10.1101/2024.02.14.580411
  218. Zakem EJ, Polz MF, Follows MJ. 2020b.. Redox-informed models of global biogeochemical cycles. . Nat. Commun. 11::5680
    [Crossref] [Google Scholar]
  219. Zhang H, Gu B, Zhou Y, Ma X, Liu T, et al. 2022.. Multi-omics profiling reveals resource allocation and acclimation strategies to temperature changes in a marine dinoflagellate. . Appl. Environ. Microbiol. 88:(17):e01213-22
    [Google Scholar]
  220. Zhao J, Yang Y, Xu H, Zheng J, Shen C, et al. 2023.. Data-independent acquisition boosts quantitative metaproteomics for deep characterization of gut microbiota. . npj Biofilms Microbiomes 9:(1):4
    [Crossref] [Google Scholar]
  221. Zhao Z, Baltar F, Herndl GJ. 2024.. Decoupling between the genetic potential and the metabolic regulation and expression in microbial organic matter cleavage across microbiomes. . Microbiol. Spectr. 12:(5):e03036-23
    [Google Scholar]
  222. Zimmerman AE, Podowski JC, Gallagher GE, Coleman ML, Waldbauer JR. 2023.. Tracking nitrogen allocation to proteome biosynthesis in a marine microbial community. . Nat. Microbiol. 8:(3):498509
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-earth-040523-020630
Loading
/content/journals/10.1146/annurev-earth-040523-020630
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error