1932

Abstract

Critical minerals are essential for sustaining the supply chain necessary for the transition to a carbon-free energy source for society. Copper, nickel, cobalt, lithium, and rare earth elements are particularly in demand for batteries and high-performance magnets used in low-carbon technologies. Copper, predominantly sourced from porphyry deposits, is critical for electricity generation, storage, and distribution. Nickel, which comes from laterite and magmatic sulfide deposits, and cobalt, often a by-product of nickel or copper mining, are core components of batteries that power electric vehicles. Lithium, sourced from pegmatite deposits and continental brines, is another key battery component. Rare earth elements, primarily obtained from carbonatite- and regolith-hosted ion-adsorption deposits, have unique magnetic properties that are key for motor efficiency. Future demand for these elements is expected to increase significantly over the next decades, potentially outpacing expected mine production. Therefore, to ensure a successful energy transition, efforts must prioritize addressing substantial challenges in the supply of critical minerals, particularly the delays in exploring and mining new resources to meet growing demands.

  • ▪  The energy transition relies on green technologies needing a secure, sustainable supply of critical minerals sourced from ore deposits worldwide.
  • ▪  Copper, nickel, cobalt, lithium, and rare earth elements are geologically restricted in occurrence, posing challenges for extraction and availability.
  • ▪  Future demand is expected to surge in the next decades, requiring unprecedented production rates to make the green energy transition viable.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-040523-023316
2025-05-30
2025-06-22
Loading full text...

Full text loading...

/deliver/fulltext/earth/53/1/annurev-earth-040523-023316.html?itemId=/content/journals/10.1146/annurev-earth-040523-023316&mimeType=html&fmt=ahah

Literature Cited

  1. Achzet B, Reller A, Zepf V. 2011.. Materials Critical to the Energy Industry: An Introduction. Augsburg, Germ:: Univ. Augsburg
    [Google Scholar]
  2. Alonso E, Sherman AM, Wallinton TJ, Everson MP, Field FR, et al. 2012.. Evaluating rare earth element availability: a case with revolutionary demand from clean technologies. . Environ. Sci. Technol. 46::340614
    [Crossref] [Google Scholar]
  3. Arndt NT, Fontboté L, Hedenquist JW, Kesler SE, Thomson JFH, et al. 2017.. Future global mineral resources. . Geochem. Perspect. 6::1171
    [Crossref] [Google Scholar]
  4. Arndt NT, Ganino C. 2012.. Metals and Society: An Introduction to Economic Geology. New York:: Springer. , 1st ed..
    [Google Scholar]
  5. Arndt NT, Lesher CM, Czamanske GK. 2005.. Mantle-derived magmas and magmatic Ni-Cu-(PGE) deposits. . See Hedenquist et al. 2005 , pp. 523
  6. Balaram V. 2019.. Rare earth elements: a review of applications, occurrence, exploration, analysis, recycling, and environmental impact. . Geosci. Front. 10::1285303
    [Crossref] [Google Scholar]
  7. Barnes SJ, Cruden AR, Arndt N, Saumur BM. 2016.. The mineral system approach applied to magmatic Ni-Cu-PGE sulphide deposits. . Ore Geol. Rev. 76::296316
    [Crossref] [Google Scholar]
  8. Barnes SJ, Fiorentini ML. 2012.. Komatiite magmas and sulfide nickel deposits: a comparison of variably endowed Archean terranes. . Econ. Geol. 107::75580
    [Crossref] [Google Scholar]
  9. Barnes SJ, Holwell DA, Le Vaillant M. 2017.. Magmatic sulfide ore deposits. . Elements 13::8995
    [Crossref] [Google Scholar]
  10. Barnes SJ, Lightfoot PC. 2005.. Formation of magmatic nickel sulfide deposits and processes affecting their copper and platinum-group element content. . See Hedenquist et al. 2005 , pp. 179213
  11. Barnes SJ, Yudovskaya MA, Iacono-Marziano G, Le Vaillant M, Schoeneveld LE, et al. 2023.. Role of volatiles in intrusion emplacement and sulfide deposition in the supergiant Norilsk-Talnakh Ni-Cu-PGE ore deposits. . Geology 51::102732
    [Crossref] [Google Scholar]
  12. Barton MD. 2014.. Iron oxide(-Cu-Au-REE-P-Ag-U-Co) systems. . Treatise Geochem. 13:51541
    [Google Scholar]
  13. Bazilian MD. 2018.. The mineral foundation of the energy transition. . Extr. Ind. Soc. 5::9397
    [Google Scholar]
  14. Beard CD, Goodenough KM, Borst AM, Wall F, Siegfried PR, et al. 2023.. Alkaline-silicate REE-HFSE systems. . Econ. Geol. 118::117208
    [Crossref] [Google Scholar]
  15. Begg GC, Hronsky JAM, Arndt N, Griffin WL, O'Reilly SY. 2010.. Lithospheric, cratonic, and geodynamic setting of Ni-Cu-PGE sulfide deposits. . Econ. Geol. 105::105770
    [Crossref] [Google Scholar]
  16. Benson TR, Coble MA, Dilles JH. 2023.. Hydrothermal enrichment of lithium in intracaldera illite-bearing claystones. . Sci. Adv. 9::eadh8183
    [Crossref] [Google Scholar]
  17. Bhuwalka K, Field FR, De Kleine R, Kim HC, Wallington TJ, et al. 2021.. Characterizing the changes in material use due to vehicle electrification. . Environ. Sci. Technol. 55::10097107
    [Crossref] [Google Scholar]
  18. Bookhagen B, Bastian D, Buchholz P, Faulstich M, Opper C, et al. 2020.. Metallic resources in smartphones. . Resour. Policy 68::101750
    [Crossref] [Google Scholar]
  19. Borst A, Smith MP, Finch AA, Estrade G, Villanova-de-Benavent C, et al. 2020.. Adsorption of rare earth elements in regolith-hosted clay deposits. . Nat. Commun. 11::4386
    [Crossref] [Google Scholar]
  20. Bradley DC, McCauley AD, Stillings LM. 2017.. Mineral-deposit model for lithium-cesium-tantalum pegmatites. USGS Sci. Investig. Rep. 2010-5070-O, US Geol. Surv., Reston, VA:
    [Google Scholar]
  21. Bradley DC, Munk LA, Jochens H, Hynek S, Labay KA. 2013.. A preliminary deposit model for lithium brines. USGS Open-File Rep. 2013-1006, US Geol. Surv., Reston, VA:
    [Google Scholar]
  22. Broughton DW. 2014.. Geology and ore deposits of the Central African Copperbelt. PhD Diss. Colo. Sch. Mines, Golden, CO:
    [Google Scholar]
  23. Brune S, Silliams S, Müller D. 2017.. Potential links between continental rifting, CO2 degassing and climate change through time. . Nat. Geosci. 10::94146
    [Crossref] [Google Scholar]
  24. Butt CRM, Cluzel D. 2013.. Nickel laterite ore deposits: weathered serpentinites. . Elements 9::12328
    [Crossref] [Google Scholar]
  25. Calderon JL, Smith NM, Bazilian MD, Holley E. 2024.. Critical mineral demand estimates for low-carbon technologies: What do they tell us and how can they evolve?. Renew. Sust. Energy Rev. 189::113938
    [Crossref] [Google Scholar]
  26. Castor SB. 2008.. Rare earth deposits in North America. . Resour. Geol. 58::33747
    [Crossref] [Google Scholar]
  27. Cathles LM, Simon AC. 2024.. Copper mining and vehicle electrification. Rep., Int. Energy Forum, Riyadh, Saudi Arab.
    [Google Scholar]
  28. Cawood PA, Hawkesworth CJ. 2015.. Temporal relations between mineral deposits and global tectonic cycles. . Geol. Soc. Spec. Publ. 393::921
    [Crossref] [Google Scholar]
  29. Černý P. 1991.. Rare-element granitic pegmatites. Part II: regional to global environments and petrogenesis. . Geosci. Can. 18::6881
    [Google Scholar]
  30. Chakhmouradian AR, Wall F. 2012.. Rare earth elements: minerals, mines, magnets (and more). . Elements 8::33340
    [Crossref] [Google Scholar]
  31. Chávez WX Jr. 2021.. Weathering of copper deposits and copper mobility: mineralogy, geochemical stratigraphy, and exploration implications. . SEG Discov. 126::1627
    [Crossref] [Google Scholar]
  32. Chen K, Barai P, Kahvecioglu O, Wu L, Pupek KZ, et al. 2024.. Cobalt-free composite-structured cathodes with lithium-stoichiometry control for sustainable lithium-ion batteries. . Nat. Commun. 15::430
    [Crossref] [Google Scholar]
  33. Chen W, Liu H-Y, Lu J, Jiang S-Y, Simonetti A, et al. 2020.. The formation of the ore-bearing dolomite marble from the giant Bayan Obo REE-Nb-Fe deposit, Inner Mongolia: insights from micron-scale geochemical data. . Miner. Depos. 55::13146
    [Crossref] [Google Scholar]
  34. Connelly NG, Damhus T, Hartshorn RM, Hutton AT. 2005.. Nomenclature of Inorganic Chemistry IUPAC Recommendations 2005. Cambridge, UK:: R. Soc. Chem.
    [Google Scholar]
  35. Ehrig K, McPhie J, Kamenetsky V. 2012.. Geology and mineralogical zonation of the Olympic Dam iron oxide Cu-U-Au-Ag deposit, South Australia. . In Geology and Genesis of Major Copper Deposits and Districts of the World: A Tribute to Richard H. Sillitoe, ed. JW Hedenquist, M Harris, F Camus , pp. 23767. Littleton, CO:: Soc. Econ. Geol.
    [Google Scholar]
  36. Einaudi MT. 1996.. The future of economic geology in academia. . In Brimhall GH and Gustafson LB, eds., Maintaining Compatibility of Mining and the Environment: Proceedings of a Symposium in Honor of Charles Meyer (1915–1987), ed. GH Brimhall, LB Gustafson , pp. 4659. Littleton, CO:: Soc. Econ. Geol.
    [Google Scholar]
  37. Emproto C, Benson TR, Gagnon CA, Baek W, Ibarra D, Simon AC. In press.. Clay chemistry of the Thacker Pass Deposit, Nevada: implications for the formation of high-grade volcano-sedimentary lithium resources. . Econ. Geol.
    [Google Scholar]
  38. Ernst RE, Jowitt SM. 2013.. Large igneous provinces (LIPs) and metallogeny. . In Metals, Minerals, and Society, ed. M Colpron, T Bissig, BG Rusk , JFH Thompson, pp. 1751. Littleton, CO:: Soc. Econ. Geol.
    [Google Scholar]
  39. Finn BA, Simon AC. 2024.. Decarbonization and social justice: making the case for artisanal and small-scale mining. . Energy Res. Soc. Sci. 117::103733
    [Crossref] [Google Scholar]
  40. Fortier SM, Nassar NT, Day WC, Hammastrom JM, Seal RR II. 2023.. USGS critical minerals review. . Min. Eng. 75::3044
    [Google Scholar]
  41. Fouquet R. 2016.. Historical energy transitions: speed, prices and system transformation. . Energy Res. Soc. Sci. 22::712
    [Crossref] [Google Scholar]
  42. Franklin JM, Gibson HL, Jonasson IR, Galley AG. 2005.. Volcanogenic massive sulfide deposits. . See Hedenquist et al. 2005 , pp. 52360
  43. Franks DM, Davis R, Bebbington AJ, Ali SH, Kemp D, et al. 2014.. Conflict translates environmental and social risk into business costs. . PNAS 111::757681
    [Crossref] [Google Scholar]
  44. Franks DM, Keenan J, Hailu D. 2023.. Mineral security essential to achieving the Sustainable Development Goals. . Nat. Sustain. 6::2127
    [Crossref] [Google Scholar]
  45. Frenzel M, Kullik J, Reuter MA, Gutzmer J. 2017.. Raw material “criticality”—sense or nonsense?. J. Phys. D Appl. Phys. 50::123002
    [Crossref] [Google Scholar]
  46. Freyssinet P, Butt CRM, Morris RC, Piantone P. 2005.. Ore-forming processes related to lateritic weathering. . See Hedenquist et al. 2005 , pp. 681722
  47. Gardiner NJ, Jowitt SM, Sykes JP. 2024.. Lithium: critical, or not so critical?. Geoenergy 2::202345
    [Crossref] [Google Scholar]
  48. Geol. Soc. Am. (GSA). 2023.. Critical mineral resources. GSA Position Statement, Geol. Soc. Am., Boulder, CO:. https://rock.geosociety.org/net/documents/gsa/positions/pos23_CriticalMinerals.pdf
    [Google Scholar]
  49. Gielen D, Boshell F, Saygin D, Bazilian M, Wagner N, et al. 2019.. The role of renewable energy in the global energy transformation. . Energy Strateg. Rev. 24::3850
    [Crossref] [Google Scholar]
  50. Gielen D, Lyons M. 2022.. Critical materials for the energy transition: lithium. Tech. Pap. 1/2022, Int. Renew. Energy Agency, Abu Dhabi, UAE:
    [Google Scholar]
  51. Gleeson S, Reich M, Perez-Fodich A. 2025.. Ore deposits formed in the Critical Zone: laterite Ni, Co, REE, Nb and supergene Cu. . In Treatise on Geochemistry, Vol. 2, ed. AD Anbar, D Weis , pp. 80336. Amsterdam:: Elsevier. , 3rd ed..
    [Google Scholar]
  52. Graedel TE, Barr R, Chandler C, Chase T, Choi J, et al. 2012.. Methodology of metal criticality determination. . Environ. Sci. Technol. 46::106370
    [Crossref] [Google Scholar]
  53. Graedel TE, Harper EM, Nassar NT, Nuss P, Reck BK. 2015a.. Criticality of metals and metalloids. . PNAS 112::425762
    [Crossref] [Google Scholar]
  54. Graedel TE, Harper EM, Nassar NT, Reck BK. 2015b.. On the materials basis of modern society. . PNAS 112::6295300
    [Crossref] [Google Scholar]
  55. Griffin WL, Begg GC, O'Reilly YO. 2013.. Continental-root control on the genesis of magmatic ore deposits. . Nat. Geosci. 6::90510
    [Crossref] [Google Scholar]
  56. Groves DI, Bierlein FP, Meinert LD, Hitzman MW. 2010.. Iron oxide copper-gold (IOCG) deposits through Earth history: implications for origin, lithospheric setting, and distinction from other epigenetic iron oxide deposits. . Econ. Geol. 105::64154
    [Crossref] [Google Scholar]
  57. Groves DI, Condie KC, Goldfarb RJ, Hronsky JMA, Vielreicher RM. 2005.. Secular changes in global tectonic processes and their influence on the temporal distribution of gold-bearing mineral deposits. . Econ. Geol. 100:(2):20324
    [Crossref] [Google Scholar]
  58. Groves DI, Santosh M. 2021.. Craton and thick lithosphere margins: the sites of giant mineral deposits and mineral provinces. . Gondwana Res. 100::195222
    [Crossref] [Google Scholar]
  59. Han S, Meng Z, Li M, Yang X, Wang X. 2023.. Global supply sustainability assessment of critical metals for clean energy technology. . Resour. Policy 85::103994
    [Crossref] [Google Scholar]
  60. Hayes SM, McCullough EA. 2018.. Critical minerals: a review of elemental trends in comprehensive criticality studies. . Resour. Policy 59::19299
    [Crossref] [Google Scholar]
  61. Hayes TS, Cox DP, Piatak N, Seal RR II. 2015.. Sediment-hosted stratabound copper deposit model. USGS Sci. Investig. Rep. 2010-5070-M, US Geol. Surv., Reston, VA:
    [Google Scholar]
  62. Hedenquist JW, Lowenstern JB. 1994.. The role of magmas in the formation of hydrothermal ore deposits. . Nature 370::51927
    [Crossref] [Google Scholar]
  63. Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP, eds. 2005.. Economic Geology One Hundredth Anniversary Volume. Littleton, CO:: Soc. Econ. Geol.
    [Google Scholar]
  64. Heinrich CA. 2024.. The chain of processes forming porphyry copper deposits—an invited paper. . Econ. Geol. 119::74169
    [Crossref] [Google Scholar]
  65. Heinrich CA, Candela PA. 2014.. Fluids and ore formation in the Earth's crust. . In Treatise on Geochemistry, ed. HD Holland, KK Turekian , pp. 128. Amsterdam:: Elsevier. , 2nd ed..
    [Google Scholar]
  66. Hitzman MW, Barton M, Dilles J, Boland M. 2009.. Mineral resource geology in academia: an impending crisis?. GSA Today 19::2628
    [Crossref] [Google Scholar]
  67. Hitzman MW, Bookstrom AA, Slack JF, Zientek ML. 2017.. Cobalt—styles of deposits and the search for primary deposits. USGS Open-File Rep. 2017-1155, US Geol. Surv., Reston, VA:
    [Google Scholar]
  68. Hitzman MW, Broughton DW. 2017.. Discussion: age of the Zambian Copperbelt. . Miner. Depos. 52::127375
    [Crossref] [Google Scholar]
  69. Hitzman MW, Broughton DW, Selley D, Woodhead J, Wood D, et al. 2012.. The Central African Copperbelt: diverse stratigraphic, structural and temporal settings in the world's largest sedimentary copper district. . In Geology and Genesis of Major Copper Deposits and Districts of the World: A Tribute to Richard H. Sillitoe, ed. JW Hedenquist, M Harris, F Camus , pp. 487514. Littleton, CO:: Soc. Econ. Geol.
    [Google Scholar]
  70. Hitzman MW, Kirkham R, Broughton D, Thorson J, Selley D. 2005.. The sediment-hosted stratiform copper ore system. . See Hedenquist et al. 2005 , pp. 60942
  71. Hitzman MW, Selley D, Bull S. 2010.. Formation of sedimentary rock-hosted stratiform copper deposits through Earth history. . Econ. Geol. 105::62739
    [Crossref] [Google Scholar]
  72. Howells M, Hermann S, Welsch M, Bazilian M, Segerström R, et al. 2013.. Integrated analysis of climate change, land-use, energy and water strategies. . Nat. Clim. Change 3::62126
    [Crossref] [Google Scholar]
  73. Int. Energy Agency. 2021.. The Role of Critical Minerals in Clean Energy Transitions. Paris:: Int. Energy Agency
    [Google Scholar]
  74. Int. Energy Agency. 2024.. Global Critical Minerals Outlook 2024. Paris:: Int. Energy Agency
    [Google Scholar]
  75. Intergov. Panel Clim. Change (IPCC). 2022.. Climate change 2022: impacts, adaptation, and vulnerability. . In Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, ed. H-O Pörtner, DC Roberts, M Tignor, ES Poloczanska, K Mintenbeck , et al. New York:: Cambridge Univ. Press
    [Google Scholar]
  76. John DA, Ayuso RA, Barton MD, Blakely RJ, Bodnar RJ, et al. 2010.. Porphyry copper deposit model. USGS Sci. Investig. Rep. 2010-5070-B, US Geol. Surv., Reston, VA:
    [Google Scholar]
  77. Jowitt SM, McNulty BA. 2021.. Battery and energy metals: future drivers of the minerals industry?. SEG Discov. 127::1118
    [Crossref] [Google Scholar]
  78. Jowitt SM, Mudd GM, Thompson JFH. 2020.. Future availability of non-renewable metal resources and the influence of environmental, social, and governance conflicts on metal production. . Commun. Earth Environ. 1::13
    [Crossref] [Google Scholar]
  79. Jowitt SM, Mudd GM, Werner TT, Weng Z, Barkoff DW, McCaffrey D. 2018.. The critical metals: an overview and opportunities and concerns for the future. . In Metals, Minerals, and Society, ed. AM Arribas, JL Mauk , pp. 2538. Lawrence, KS:: Soc. Econ. Geol.
    [Google Scholar]
  80. Kamran M, Raugei M, Hutchinson A. 2023.. Critical elements for a successful energy transition: a systematic review. . Renew. Sustain. Energy Trans. 4::100068
    [Google Scholar]
  81. Kesler SE, Gruber PW, Medina PM, Keoleian GA, Everson MP, et al. 2012.. Global lithium resources: relative importance of pegmatite, brine and other deposits. . Ore Geol. Rev. 48::5569
    [Crossref] [Google Scholar]
  82. Kesler SE, Simon AC. 2015.. Mineral Resources, Economics and the Environment. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  83. Kesler SE, Wilkinson BH. 2006.. The role of exhumation in the temporal distribution of ore deposits. . Econ. Geol. 101::91922
    [Crossref] [Google Scholar]
  84. Knapik E, Rotko G, Marszałek M. 2023.. Recovery of lithium from oilfield brines—current achievements and future perspectives: a mini review. . Energies 16::6628
    [Crossref] [Google Scholar]
  85. Koopmans L, Martins T, Linnen R, Gardiner NJ, Breasley CM, et al. 2024.. The formation of lithium-rich pegmatites through multi-stage melting. . Geology 52::711
    [Crossref] [Google Scholar]
  86. Lee J, Bazilian M, Sovacool B, Hund K, Jowitt SM, et al. 2020.. Reviewing the material and metal security of low-carbon transitions. . Renew. Sustain. Energy Rev. 124::109789
    [Crossref] [Google Scholar]
  87. Li X-C, Fan H-R, Su J-H, Groves DI, Yang K-F, et al. 2024.. Giant rare earth element accumulation related to voluminous, highly evolved carbonatite: a microanalytical study of carbonate minerals from the Bayan Obo deposit, China. . Econ. Geol. 119::37393
    [Crossref] [Google Scholar]
  88. Liang Y, Kleijn R, Tukker A, van der Voet E. 2022.. Material requirements for low-carbon energy technologies: a quantitative review. . Renew. Sustain. Energy Rev. 161::112334
    [Crossref] [Google Scholar]
  89. Lightfoot PC, Keays RR. 2005.. Siderophile and chalcophile metal variations in flood basalts from the Siberian trap, Noril'sk region: implications for the origin of the Ni-Cu-PGE sulfide ores. . Econ. Geol. 100:(3):43962
    [Crossref] [Google Scholar]
  90. Liu Y-L, Ling M-X, William IS, Yang X-Y, Wang CY, et al. 2018.. The formation of the giant Bayan Obo REE-Nb-Fe deposit, North China, Mesoproterozoic carbonatite and overprinted Paleozoic dolomitization. . Ore Geol. Rev. 92::7383
    [Crossref] [Google Scholar]
  91. Månberger A, Johansson B. 2019.. The geopolitics of metals and metalloids used for the renewable energy transition. . Energy Strateg. Rev. 26::100394
    [Crossref] [Google Scholar]
  92. McCaffrey DM, Jowitt SM. 2023.. The crystallization temperature of granitic pegmatites: the important relationship between undercooling and critical metal prospectivity. . Earth-Sci. Rev. 244::104541
    [Crossref] [Google Scholar]
  93. Muchez P, André-Mayer AS, Dewaele S, Large R. 2017.. Discussion: age of the Zambian Copperbelt. . Miner. Depos. 52::126971
    [Crossref] [Google Scholar]
  94. Mudd GM, Jowitt SM. 2018.. Global resource assessments of primary metals: an optimistic reality check. . Nat. Resour. Res. 27::22940
    [Crossref] [Google Scholar]
  95. Mudd GM, Jowitt SM. 2022.. The new century for nickel resources, reserves, and mining: reassessing the sustainability of the devil's metal. . Econ. Geol. 117::196183
    [Crossref] [Google Scholar]
  96. Mudd GM, Jowitt SM, Werner TT. 2017.. The world's by-product and critical metal resources part I: uncertainties, implications and grounds for optimism. . Ore Geol. Rev. 86::92438
    [Crossref] [Google Scholar]
  97. Mungall JE, Ames DE, Hanley JJ. 2004.. Geochemical evidence from the Sudbury structure for crustal redistribution by large bolide impacts. . Nature 429::54648
    [Crossref] [Google Scholar]
  98. Munk LA, Hynek SA, Bradley D, Boutt DF, Labay K, et al. 2016.. Lithium brines: a global perspective. . Rev. Econ. Geol. 18::33965
    [Google Scholar]
  99. Myung S-T, Maglia F, Park K-J, Yoon CS, Lamp P, et al. 2017.. Nickel-rich layered cathode materials for automotive lithium-ion batteries: achievements and perspectives. . ACS Energy Lett. 2::196223
    [Crossref] [Google Scholar]
  100. Naldrett AJ. 2011.. Fundamentals of magmatic sulfide deposits. . Rev. Econ. Geol. 17::150
    [Google Scholar]
  101. Nassar NT, Graedel TE, Harper EM. 2015.. By-product metals are technologically essential but have problematic supply. . Sci. Adv. 1::e1400180
    [Crossref] [Google Scholar]
  102. Nguyen RT, Eggert RG, Severson MH, Anderson CG. 2021.. Global electrification of vehicles and intertwined material supply chains of cobalt, copper and nickel. . Resour. Conserv. Recycl. 167::105198
    [Crossref] [Google Scholar]
  103. Park JW, Campbell IH, Chiaradia M, Hao H, Lee C-T. 2021.. Crustal magmatic controls on the formation of porphyry copper deposits. . Nat. Rev. Earth Environ. 2::54257
    [Crossref] [Google Scholar]
  104. Partington GA, McNaughton NJ, Williams IS. 1995.. A review of the geology, mineralization, and geochronology of the Greenbushes Pegmatite, Western Australia. . Econ. Geol. 90::61635
    [Crossref] [Google Scholar]
  105. Pell R, Tijsseling L, Goodenough K, Wall F, Dehaine Q, et al. 2021.. Towards sustainable extraction of technology materials through integrated approaches. . Nat. Rev. Earth Environ. 2::66579
    [Crossref] [Google Scholar]
  106. Piercey SJ. 2011.. The setting, style, and role of magmatism in the formation of volcanogenic massive sulfide deposits. . Miner. Depos. 46::44971
    [Crossref] [Google Scholar]
  107. Pirajno F. 2009.. Hydrothermal Processes and Mineral Systems. Berlin:: Springer
    [Google Scholar]
  108. Pirajno F, Yu H-C. 2022.. The carbonatite story once more and associated REE mineral systems. . Gondwana Res. 107::28195
    [Crossref] [Google Scholar]
  109. Pommeret A, Ricci F, Schubert K. 2022.. Critical raw materials for the energy transition. . Eur. Econ. Rev. 141::103991
    [Crossref] [Google Scholar]
  110. Reich M. 2018.. Supergene. . In Encyclopedia of Geochemistry, ed. WM White , pp. 140910. Cham, Switz:.: Springer
    [Google Scholar]
  111. Reich M, Kesler SE, Utsunomiya S, Palenik CS, Chryssoulis S, et al. 2005.. Solubility of gold in arsenian pyrite. . Geochim. Cosmochim. Acta 69::278196
    [Crossref] [Google Scholar]
  112. Reich M, Simon AC, Barra F, Palma G, Hou T, et al. 2022.. Formation of iron oxide-apatite deposits. . Nat. Rev. Earth Environ. 3::75875
    [Crossref] [Google Scholar]
  113. Reich M, Vasconcelos PM. 2015.. Geological and economic significance of supergene metal deposits. . Elements 11::30510
    [Crossref] [Google Scholar]
  114. Ridley J. 2013.. Ore Deposits. New York:: Cambridge Univ. Press
    [Google Scholar]
  115. Robb L. 2020.. Introduction to Ore-Forming Processes. Hoboken, NJ:: Wiley-Blackwell. , 2nd ed..
    [Google Scholar]
  116. Rudnick RL. 2018.. Earth's continental crust. . In Encyclopedia of Geochemistry, ed. WM White , pp. 392418. Cham, Switz:.: Springer
    [Google Scholar]
  117. Rudnick RL, Gao S. 2003.. The composition of the continental crust. . In The Crust, Vol. 3, ed. RL Rudnick , pp. 164. Amsterdam:: Elsevier
    [Google Scholar]
  118. Rudnick RL, Gao S. 2014.. Composition of the continental crust. . In Treatise on Geochemistry, ed. HD Holland, KK Turekian , pp. 151. Amsterdam:: Elsevier. , 2nd ed..
    [Google Scholar]
  119. Saintilan NJ, Selby D, Creaser RA, Dewaele S. 2018.. Sulphide Re-Os geochronology links orogenesis, salt and Cu-Co ores in the Central African Copperbelt. . Sci. Rep. 8::14946
    [Crossref] [Google Scholar]
  120. Santosh M, Groves DI. 2022.. Global metallogeny in relation to secular evolution of the Earth and supercontinent cycles. . Gondwana Res. 107::395422
    [Crossref] [Google Scholar]
  121. Schmuch R, Wagner R, Hörpel G, Placke T, Winter M. 2018.. Performance and cost of materials for lithium-based rechargeable automotive batteries. . Nat. Energy 3::26778
    [Crossref] [Google Scholar]
  122. Schrijvers D, Hool A, Blengini GA, Chen WQ, Dewulf J, et al. 2020.. A review of methods and data to determine raw material criticality. . Resour. Conserv. Recycl. 155::104617
    [Crossref] [Google Scholar]
  123. Schulz KJ, Woodruff LG, Nicholson SW, Seal RR II, Piatak NM. 2014.. Occurrence model for magmatic sulfide-rich nickel-copper-(platinum-group element) deposits related to mafic and ultramafic dike-sill complexes. USGS Sci. Investig. Rep. 2010-5070-I, US Geol. Surv., Reston, VA:
    [Google Scholar]
  124. Şengör AM, Lom N, Polat A. 2022.. The nature and origin of cratons constrained by their surface geology. . GSA Bull. 134::1485505
    [Crossref] [Google Scholar]
  125. Sillitoe RH. 2010.. Porphyry copper systems. . Econ. Geol. 105::341
    [Crossref] [Google Scholar]
  126. Sillitoe RH. 2012.. Copper provinces. . In Geology and Genesis of Major Copper Deposits and Districts of the World: A Tribute to Richard H. Sillitoe, ed. JW Hedenquist, M Harris, F Camus, pp. 118. Littleton, CO:: Soc. Econ. Geol.
    [Google Scholar]
  127. Sillitoe RH, Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP. 2005.. Supergene oxidized and enriched porphyry copper and related deposits. . See Hedenquist et al. 2005 , pp. 72368
  128. Sillitoe RH, Perelló J, Creaser RA, Wilson AJ, Dawborn T. 2017.. Age of the Zambian Copperbelt. . Miner. Depos. 52::124568
    [Crossref] [Google Scholar]
  129. Simandl GJ, Paradis S. 2018.. Carbonatites: related ore deposits, resources, footprint, and exploration methods. . Appl. Earth Sci. 127::12352
    [Crossref] [Google Scholar]
  130. Simandl L, Simandl GJ, Paradis S. 2021.. Economic geology models 5. Specialty, critical, battery, magnet and photovoltaic materials: market facts, projections and implications for exploration and development. . Geosci. Can. 48::7391
    [Google Scholar]
  131. Singer DA. 2017.. Future copper resources. . Ore Geol. Rev. 86::27179
    [Crossref] [Google Scholar]
  132. Slack JF, Kimball BE, Shedd KB. 2017.. Cobalt. . In Critical Mineral Resources of the United States—Economic and Environmental Geology and Prospects for Future Supply, ed. KJ Schulz, JH DeYoung Jr., RR Seal II, D Bradley , pp. F14. Reston, VA:: US Geol. Surv.
    [Google Scholar]
  133. Smil V. 2016.. Examining energy transitions: a dozen insights based on performance. . Energy Res. Soc. Sci. 22::19497
    [Crossref] [Google Scholar]
  134. Smith MP, Moore K, Kavecsánszki D, Finch AA, Kynicky J, et al. 2016.. From mantle to critical zone: a review of large and giant sized deposits of the rare earth elements. . Geosci. Front. 7::31534
    [Crossref] [Google Scholar]
  135. Soares A. 2021.. Copper project pipeline—Project shortage to see supply lag demand post 2025. . S&P Global Market Intelligence blog. https://www.spglobal.com/market-intelligence/en/news-insights/research/copper-project-pipeline-project-shortage-to-see-supply-lag-demand-post-2025
    [Google Scholar]
  136. Sovacool BK, Ali SH, Bazilian M, Radley B, Nemery B. 2020.. Sustainable minerals and metals for a low-carbon future. . Science 367::3033
    [Crossref] [Google Scholar]
  137. Tabelin CB, Park I, Phengsaart T, Jeon S, Villacorte-Tabelin M, et al. 2021.. Copper and critical metals production from porphyry ores and E-wastes: a review of resource availability, processing/recycling challenges, socio-environmental aspects, and sustainability issues. . Resour. Conserv. Recycl. 170::105610
    [Crossref] [Google Scholar]
  138. United Nations. 2015.. Paris agreement to the United Nations framework convention on climate change. T.I.A.S. No. 16-1104, United Nations, NY, Dec. 12
    [Google Scholar]
  139. US Dep. Energy (DOE). 2023.. Critical Materials Assessment. Washington, DC:: US Dep. Energy
    [Google Scholar]
  140. US Geol. Surv. (USGS). 2024.. Mineral Commodity Summaries 2024. Reston, VA:: US Geol. Surv.
    [Google Scholar]
  141. US Natl. Res. Counc. 2008.. Minerals, Critical Minerals, and the U.S. Economy. Washington, DC:: Natl. Acad. Press
    [Google Scholar]
  142. Vasconcelos PM, Reich M, Shuster DL. 2015.. The paleoclimatic signatures of supergene metal deposits. . Elements 11::31722
    [Crossref] [Google Scholar]
  143. Verplanck PL, Hitzman MW, eds. 2016.. Rare Earth and Critical Elements in Ore Deposits. Littleton, CO:: Soc. Econ. Geol.
    [Google Scholar]
  144. Verplanck PL, Mariano AN, Mariano AH Jr. 2016.. Rare earth element ore geology of carbonatites. . Rev. Econ. Geol. 18::532
    [Google Scholar]
  145. Verplanck PL, Van Gosen BS, Seal RR, McCafferty AE. 2014.. A deposit model for carbonatite and peralkaline intrusion-related rare earth element deposits. USGS Sci. Investig. Rep. 2010-5070-J, US Geol. Surv., Reston, VA:
    [Google Scholar]
  146. Victor DG, Roche J, Saraiva J. 2024.. Energy transition and geopolitics: Are critical minerals the new oil? White Pap., World Econ. Forum, Geneva:. https://www.weforum.org/publications/energy-transition-and-geopolitics-are-critical-minerals-the-new-oil/
    [Google Scholar]
  147. Watari T, Nansai K, Nakajima K. 2020.. Review of critical metal dynamics to 2050 for 48 elements. . Resour. Conserv. Recycl. 155::104669
    [Crossref] [Google Scholar]
  148. Watari T, Nansai K, Nakajima K. 2021.. Major metals demand, supply, and environmental impacts to 2100: a critical review. . Resour. Conserv. Recycl. 164::105107
    [Crossref] [Google Scholar]
  149. Williams PJ, Barton MD, Johnson DA, Fontboté L, de Haller A, et al. 2005.. Iron oxide copper-gold deposits: geology, space-time distribution, and possible modes of origin. . See Hedenquist et al. 2005 , pp. 371405
  150. Xu B, Hou Z-Q, Griffin WL, Zheng Y-C, Wang T, et al. 2021.. Cenozoic lithospheric architecture and metallogenesis in Southeastern Tibet. . Earth-Sci. Rev. 214::103472
    [Crossref] [Google Scholar]
  151. Yaxley GM, Anenburg M, Tappe S, Decree S, Guzmics T. 2022.. Carbonatites: classification, sources, evolution, and emplacement. . Annu. Rev. Earth Planet. Sci. 50::26196
    [Crossref] [Google Scholar]
  152. Zhou B, Li Z, Chen C. 2017.. Global potential of rare earth resources and rare earth demand from clean technologies. . Minerals 7::203
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-earth-040523-023316
Loading
/content/journals/10.1146/annurev-earth-040523-023316
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error