1932

Abstract

Ecologists rely on a wealth of data, including field observations and light stable isotopes, to infer dietary preferences and other ecological and physiological properties in living mammals. But inferring such important traits (e.g., trophic position, metabolism, pathologies) in extinct animals, including humans, can be challenging because biological processes rarely mirror morphology as preserved in the fossil record. For instance, dietary behavior does not necessarily reflect tooth morphology. As an additional challenge, some isotopic mammal tissues commonly used in modern ecology, such as collagen in bone or dentine or keratin from hair, hoof, or horn, do not generally preserve in fossil remains older than ∼200 kyr. In contrast, major constituents of bioapatite often retain their initial isotopic composition through fossilization processes. Recent analytical developments in mass spectrometry now allow, using small samples, for assessment of isotopic variability of major and trace elements such as calcium or zinc. Here, we review the application potentials of metal (nontraditional isotopes) for (paleo)ecological, (paleo)physiological, and (paleo)mobility inferences as applied to mammalian research.

  • ▪  Mammals are key elements of modern ecosystems and possess a rich evolutionary history, yet inferences about their past ecologies and physiologies are challenging to retrieve using traditional geochemical toolkits.
  • ▪  Metal stable isotopes provide a novel and complementary approach to unveil paleoecological and paleophysiological characteristics of extinct mammal species.
  • ▪  Within a 20-year time frame, the core of metal isotopic data in mammalian research remains small compared to traditional isotopic systems (C, O, N), which is inviting for designing cost-effective instrumentation and increasing dissemination across scientific disciplines.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-040523-024549
2025-05-30
2025-06-22
Loading full text...

Full text loading...

/deliver/fulltext/earth/53/1/annurev-earth-040523-024549.html?itemId=/content/journals/10.1146/annurev-earth-040523-024549&mimeType=html&fmt=ahah

Literature Cited

  1. Albarède F. 2004.. The stable isotope geochemistry of copper and zinc. . Rev. Mineral. Geochem. 55:(1):40927
    [Crossref] [Google Scholar]
  2. Albarède F, Télouk P, Balter V. 2017.. Medical applications of isotope metallomics. . Rev. Mineral. Geochem. 82::85185
    [Crossref] [Google Scholar]
  3. Albarède F, Télouk P, Lamboux A, Jaouen K, Balter V. 2011.. Isotopic evidence of unaccounted for Fe and Cu erythropoietic pathways. . Metallomics 3::92633
    [Crossref] [Google Scholar]
  4. Aranaz M, Costas-Rodríguez M, Lobo L, García M, González-Iglesias H, et al. 2022a.. Homeostatic alterations related to total antioxidant capacity, elemental concentrations and isotopic compositions in aqueous humor of glaucoma patients. . Anal. Bioanal. Chem. 414::51524
    [Crossref] [Google Scholar]
  5. Aranaz M, Valencia-Agudo E, Lobo L, Pereiro R. 2022b.. Microsampling of biological fluids for elemental and isotopic analysis by ICP-MS: strategies and applications for disease diagnosis. . J. Anal. Atom. Spectrom. 37::5068
    [Crossref] [Google Scholar]
  6. Balter V. 2004.. Allometric constraints on Sr/Ca and Ba/Ca partitioning in terrestrial mammalian trophic chains. . Oecologia 139::8388
    [Crossref] [Google Scholar]
  7. Balter V, Braga J, Télouk P, Thackeray JF. 2012.. Evidence for dietary change but not landscape use in South African early hominins. . Nature 489::55860
    [Crossref] [Google Scholar]
  8. Balter V, Lamboux A, Zazzo A, Télouk P, Leverrier Y, et al. 2013.. Contrasting Cu, Fe, and Zn isotopic patterns in organs and body fluids of mice and sheep, with emphasis on cellular fractionation. . Metallomics 5::147082
    [Crossref] [Google Scholar]
  9. Balter V, Vigier N. 2014.. Natural variations of lithium isotopes in a mammalian model. . Metallomics 6::58286
    [Crossref] [Google Scholar]
  10. Balter V, Zazzo A, Moloney AP, Moynier F, Schmidt O, et al. 2010.. Bodily variability of zinc natural isotope abundances in sheep. . Rapid Commun. Mass Spectrom. 24::60512
    [Crossref] [Google Scholar]
  11. Bataille CP, Jaouen K, Milano S, Trost M, Steinbrenner S, et al. 2021.. Triple sulfur-oxygen-strontium isotopes probabilistic geographic assignment of archaeological remains using a novel sulfur isoscape of western Europe. . PLOS ONE 16::e0250383
    [Crossref] [Google Scholar]
  12. Bender MM. 1968.. Mass spectrometric studies of carbon 13 variations in corn and other grasses. . Radiocarbon 10::46872
    [Crossref] [Google Scholar]
  13. Bentaleb I, Martin C, Vrac M, Mate B, Mayzaud P, et al. 2011.. Foraging ecology of Mediterranean fin whales in a changing environment elucidated by satellite tracking and baleen plate stable isotopes. . Mar. Ecol. Prog. Ser. 438::285302
    [Crossref] [Google Scholar]
  14. Bentley RA. 2006.. Strontium isotopes from the earth to the archaeological skeleton: a review. . J. Archaeol. Method Theory 13::13587
    [Crossref] [Google Scholar]
  15. Bernard A, Tütken T, Gerdes A. 2013.. Boron isotopes in bones and teeth: a new proxy for dietary reconstructions and its resistance to diagenetic alteration. 7th International Bone Diagenesis Meeting, Lyon, Fr:., Oct . 2225
    [Google Scholar]
  16. Blichert-Toft J, Chauvel C, Albarède F. 1997.. Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS. . Contrib. Mineral. Petrol. 127::24860
    [Crossref] [Google Scholar]
  17. Bourgon N, Jaouen K, Bacon AM, Dufour E, McCormack J, et al. 2021.. Trophic ecology of a Late Pleistocene early modern human from tropical Southeast Asia inferred from zinc isotopes. . J. Hum. Evol. 161::103075
    [Crossref] [Google Scholar]
  18. Bourgon N, Jaouen K, Bacon AM, Jochum KP, Dufour E, et al. 2020.. Zinc isotopes in Late Pleistocene fossil teeth from a Southeast Asian cave setting preserve paleodietary information. . PNAS 117::467581
    [Crossref] [Google Scholar]
  19. Bourgon N, Tacail T, Jaouen K, Leichliter JN, McCormack J, et al. 2024.. Dietary and homeostatic controls of Zn isotopes in rats: a controlled feeding experiment and modeling approach. . Metallomics 16::mfae026
    [Crossref] [Google Scholar]
  20. Cerling TE, Harris JM, MacFadden BJ, Leakey MG, Quade J, et al. 1997.. Global vegetation change through the Miocene/Pliocene boundary. . Nature 389::15358
    [Crossref] [Google Scholar]
  21. Cerling TE, Manthi FK, Mbua EN, Leakey LN, Leakey MG, et al. 2013.. Stable isotope-based diet reconstructions of Turkana Basin hominins. . PNAS 110::105016
    [Crossref] [Google Scholar]
  22. Channon MB, Gordon GW, Morgan JL, Skulan JL, Smith SM, Anbar AD. 2015.. Using natural, stable calcium isotopes of human blood to detect and monitor changes in bone mineral balance. . Bone 77::6974
    [Crossref] [Google Scholar]
  23. Cherel Y, Hobson KA, Guinet C, Vanpe C. 2007.. Stable isotopes document seasonal changes in trophic niches and winter foraging individual specialization in diving predators from the Southern Ocean. . J. Anim. Ecol. 76::82636
    [Crossref] [Google Scholar]
  24. Chimento NR, Agnolín FL, García-Marsà J, Manabe M, Tsuihiji T, Novas FE. 2024.. A large therian mammal from the Late Cretaceous of South America. . Sci. Rep. 14::2854
    [Crossref] [Google Scholar]
  25. Chu NC, Henderson GM, Belshaw NS, Hedges RE. 2006.. Establishing the potential of Ca isotopes as proxy for consumption of dairy products. . Appl. Geochem. 21::165667
    [Crossref] [Google Scholar]
  26. Clementz MT. 2012.. New insight from old bones: stable isotope analysis of fossil mammals. . J. Mammal. 93::36880
    [Crossref] [Google Scholar]
  27. Clementz MT, Holden P, Koch PL. 2003.. Are calcium isotopes a reliable monitor of trophic level in marine settings?. Int. J. Osteoarchaeol. 13::2936
    [Crossref] [Google Scholar]
  28. Cloquet C, Carignan J, Lehmann MF, Vanhaecke F. 2008.. Variation in the isotopic composition of zinc in the natural environment and the use of zinc isotopes in biogeosciences: a review. . Anal. Bioanal. Chem. 390::45163
    [Crossref] [Google Scholar]
  29. Copeland SR, Sponheimer M, le Roux PJ, Grimes V, Lee-Thorp JA, et al. 2008.. Strontium isotope ratios (87Sr/86Sr) of tooth enamel: a comparison of solution and laser ablation multicollector inductively coupled plasma mass spectrometry methods. . Rapid Commun. Mass Spectrom. 22::318794
    [Crossref] [Google Scholar]
  30. Costas-Rodríguez M, Van Heghe L, Vanhaecke F. 2014.. Evidence for a possible dietary effect on the isotopic composition of Zn in blood via isotopic analysis of food products by multi-collector ICP-mass spectrometry. . Metallomics 6::13946
    [Crossref] [Google Scholar]
  31. Delile H, Keenan-Jones D, Blichert-Toft J, Goiran JP, Arnaud-Godet F, et al. 2016.. A lead isotope perspective on urban development in ancient Naples. . PNAS 113::614853
    [Crossref] [Google Scholar]
  32. DeNiro MJ, Epstein S. 1978.. Influence of diet on the distribution of carbon isotopes in animals. . Geochim. Cosmochim. Acta 42::495506
    [Crossref] [Google Scholar]
  33. Dosseto A, Lambert K, Cheikh Hassan HI, Fuller A, Borst A, et al. 2023.. Calcium isotopes as a biomarker for vascular calcification in chronic kidney disease. . Metallomics 15::mfad009
    [Crossref] [Google Scholar]
  34. Eisenhauer A, Müller M, Heuser A, Kolevica A, Glüer CC, et al. 2019.. Calcium isotope ratios in blood and urine: a new biomarker for the diagnosis of osteoporosis. . Bone Rep. 10::10020
    [Google Scholar]
  35. Evans JA, Pashley V, Mee K, Wagner D, Parker Pearson M, et al. 2022.. Applying lead (Pb) isotopes to explore mobility in humans and animals. . PLOS ONE 17::e0274831
    [Crossref] [Google Scholar]
  36. Fogel ML. 1989.. Nitrogen isotope tracers of human lactation in modern and archaeological populations. . Annual Report of the Director of the Geophysical Laboratory, Vol. 88:, pp. 11117. Washington, DC:: Carnegie Inst.
    [Google Scholar]
  37. Funston GF, dePolo PE, Sliwinski JT, Dumont M, Shelley SL, et al. 2022.. The origin of placental mammal life histories. . Nature 610::10711
    [Crossref] [Google Scholar]
  38. Garçon M, Sauzéat L, Carlson RW, Shirey SB, Simon M, et al. 2017.. Nitrile, latex, neoprene and vinyl gloves: a primary source of contamination for trace element and Zn isotopic analyses in geological and biological samples. . Geostand. Geoanal. Res. 41::36780
    [Crossref] [Google Scholar]
  39. Goedert J, Amiot R, Berthet D, Fourel F, Simon L, Lécuyer C. 2020.. Combined oxygen and sulphur isotope analysis—a new tool to unravel vertebrate (paleo)-ecology. . Sci. Nat. 107::10
    [Crossref] [Google Scholar]
  40. Green DR, Smith TM, Green GM, Bidlack FB, Tafforeau P, Colman AS. 2018.. Quantitative reconstruction of seasonality from stable isotopes in teeth. . Geochim. Cosmochim. Acta 235::483504
    [Crossref] [Google Scholar]
  41. Guiserix D, Albalat E, Ueckermann H, Davechand P, Iaccheri LM, et al. 2022.. Simultaneous analysis of stable and radiogenic strontium isotopes in reference materials, plants and modern tooth enamel. . Chem. Geol. 606::121000
    [Crossref] [Google Scholar]
  42. Guiserix D, Dodat PJ, Jaouen K, Albalat E, Cardoso JM, et al. 2024.. Stable isotope composition and concentration systematics of Ca and trace elements (Zn, Sr) in single aliquots of fossil bone and enamel. . Geochim. Cosmochim. Acta 367::12332
    [Crossref] [Google Scholar]
  43. Hajdas I, Ascough P, Garnett MH, Fallon SJ, Pearson CL, et al. 2021.. Radiocarbon dating. . Nat. Rev. Methods Primers 1::62
    [Crossref] [Google Scholar]
  44. Hall RL. 1967.. Those late corn dates: isotopic fractionation as a source of error in carbon-14 dates. . Mich. Archaeol. 13::17180
    [Google Scholar]
  45. Hassler A, Martin JE, Merceron G, Garel M, Balter V. 2021a.. Calcium isotopic variability of cervid bioapatite and implications for mammalian physiology and diet. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 573::110418
    [Crossref] [Google Scholar]
  46. Hassler A, Martin JE, Ferchaud S, Grivault D, Le Goff S, et al. 2021b.. Lactation and gestation controls on calcium isotopic compositions in a mammalian model. . Metallomics 13::mfab019
    [Crossref] [Google Scholar]
  47. Heuser A, Eisenhauer A. 2010.. A pilot study on the use of natural calcium isotope (44Ca/40Ca) fractionation in urine as a proxy for the human body calcium balance. . Bone 46::88996
    [Crossref] [Google Scholar]
  48. Heuser A, Eisenhauer A, Scholz-Ahrens KE, Schrezenmeir J. 2016.. Biological fractionation of stable Ca isotopes in Göttingen minipigs as a physiological model for Ca homeostasis in humans. . Isotopes Environ. Health Stud. 52::63348
    [Crossref] [Google Scholar]
  49. Heuser A, Tütken T, Gussone N, Galer SJ. 2011.. Calcium isotopes in fossil bones and teeth—diagenetic versus biogenic origin. . Geochim. Cosmochim. Acta 75::341933
    [Crossref] [Google Scholar]
  50. Hirata T, Tanoshima M, Suga A, Tanaka YK, Nagata Y, et al. 2008.. Isotopic analysis of calcium in blood plasma and bone from mouse samples by multiple collector-ICP-mass spectrometry. . Anal. Sci. 24::15017
    [Crossref] [Google Scholar]
  51. Hobin K, Costas Rodríguez M, Vanhaecke F. 2021.. Robust potassium isotopic analysis of geological and biological samples via multicollector ICP-mass spectrometry using the “extra-high resolution mode. .” Anal. Chem. 93::888188
    [Crossref] [Google Scholar]
  52. Hobson KA, Barnett-Johnson R, Cerling T. 2010.. Using isoscapes to track animal migration. . In Isoscapes: Understanding Movement, Pattern, and Processes on Earth Through Isotope Mapping, ed. J West, G Bowen, T Dawson, K Tu , pp. 27398. Dordrecht, Neth:.: Springer
    [Google Scholar]
  53. Hoffmann R, Riechelmann S, Liebetrau V, Eisenhauer A, Immenhauser A. 2021.. Calcium isotope values of modern and fossil cephalopod shells—trophic level or proxy for seawater geochemistry?. Chem. Geol. 583::120466
    [Crossref] [Google Scholar]
  54. Holmden C, Papanastassiou DA, Blanchon P, Evans S. 2012.. δ44/40Ca variability in shallow water carbonates and the impact of submarine groundwater discharge on Ca-cycling in marine environments. . Geochim. Cosmochim. Acta 83::17994
    [Crossref] [Google Scholar]
  55. Hu Y, Meng J, Wang Y, Li C. 2005.. Large Mesozoic mammals fed on young dinosaurs. . Nature 433::14952
    [Crossref] [Google Scholar]
  56. Jaouen K, Balter V, Herrscher E, Lamboux A, Télouk P, Albarède F. 2012.. Fe and Cu stable isotopes in archeological human bones and their relationship to sex. . Am. J. Phys. Anthropol. 148::33440
    [Crossref] [Google Scholar]
  57. Jaouen K, Beasley M, Schoeninger M, Hublin JJ, Richards MP. 2016a.. Zinc isotope ratios of bones and teeth as new dietary indicators: results from a modern food web (Koobi Fora, Kenya). . Sci. Rep. 6::26281
    [Crossref] [Google Scholar]
  58. Jaouen K, Pons ML, Balter V. 2013.. Iron, copper and zinc isotopic fractionation up mammal trophic chains. . Earth Planet. Sci. Lett. 374::16472
    [Crossref] [Google Scholar]
  59. Jaouen K, Pouilloux L, Balter V, Pons ML, Hublin JJ, Albarède F. 2019a.. Dynamic homeostasis modeling of Zn isotope ratios in the human body. . Metallomics 11::104959
    [Crossref] [Google Scholar]
  60. Jaouen K, Richards MP, Le Cabec A, Welker F, Rendu W, et al. 2019b.. Exceptionally high δ15N values in collagen single amino acids confirm Neandertals as high-trophic level carnivores. . PNAS 116::492833
    [Crossref] [Google Scholar]
  61. Jaouen K, Szpak P, Richards M. 2016b.. Zinc isotope ratios as indicators of diet and trophic level in arctic marine mammals. . PLOS ONE 11:(3):e0152299
    [Crossref] [Google Scholar]
  62. Jaouen K, Trost M, Bourgon N, Colleter R, Le Cabec A, et al. 2020.. Zinc isotope variations in archeological human teeth (Lapa do Santo, Brazil) reveal dietary transitions in childhood and no contamination from gloves. . PLOS ONE 15::e0232379
    [Crossref] [Google Scholar]
  63. Jaouen K, Villalba-Mouco V, Smith GM, Trost M, Leichliter J, et al. 2022.. A Neandertal dietary conundrum: insights provided by tooth enamel Zn isotopes from Gabasa, Spain. . PNAS 119::e2109315119
    [Crossref] [Google Scholar]
  64. Johnson CM, Beard BL, Albarède F. 2004.. Overview and general concepts. . Rev. Mineral. Geochem. 55::124
    [Crossref] [Google Scholar]
  65. Kennedy BP, Klaue A, Blum JD, Folt CL, Nislow KH. 2002.. Reconstructing the lives of fish using Sr isotopes in otoliths. . Can. J. Fish. Aquat. Sci. 59::92529
    [Crossref] [Google Scholar]
  66. Knudson KJ, Williams HM, Buikstra JE, Tomczak PD, Gordon GW, Anbar AD. 2010.. Introducing δ88/86Sr analysis in archaeology: a demonstration of the utility of strontium isotope fractionation in paleodietary studies. . J. Archaeol. Sci. 37::235264
    [Crossref] [Google Scholar]
  67. Koch PL. 2007.. Isotopic study of the biology of modern and fossil vertebrates. . In Stable Isotopes in Ecology and Environmental Science, ed. R Michener, K Lajth a, pp. 99154. Malden, MA:: Blackwell
    [Google Scholar]
  68. Kowalik N, Anczkiewicz R, Müller W, Spötl C, Bondioli L, et al. 2023.. Revealing seasonal woolly mammoth migration with spatially-resolved trace element, Sr and O isotopic records of molar enamel. . Q. Sci. Rev. 306::108036
    [Crossref] [Google Scholar]
  69. Laffont L, Sonke JE, Maurice L, Hintelmann H, Puilly M, et al. 2009.. Anomalous mercury isotopic compositions of fish and human hair in the Bolivian Amazon. . Environ. Sci. Technol. 43::898590
    [Crossref] [Google Scholar]
  70. Laffont L, Sonke JE, Maurice L, Monrroy SL, Chincheros J, et al. 2011.. Hg speciation and stable isotope signatures in human hair as a tracer for dietary and occupational exposure to mercury. . Environ. Sci. Technol. 45::991016
    [Crossref] [Google Scholar]
  71. Leichliter JN, Lüdecke T, Foreman AD, Bourgon N, Duprey NN, et al. 2023.. Tooth enamel nitrogen isotope composition records trophic position: a tool for reconstructing food webs. . Commun. Biol. 6::373
    [Crossref] [Google Scholar]
  72. Leichliter JN, Lüdecke T, Foreman AD, Duprey NN, Winkler DE, et al. 2021.. Nitrogen isotopes in tooth enamel record diet and trophic level enrichment: results from a controlled feeding experiment. . Chem. Geol. 563::120047
    [Crossref] [Google Scholar]
  73. Lewis J, Pike AW, Coath CD, Evershed RP. 2017.. Strontium concentration, radiogenic (87Sr/86Sr) and stable (δ88Sr) strontium isotope systematics in a controlled feeding study. . STAR Sci. Technol. Archaeol. Res. 3::4557
    [Google Scholar]
  74. Li Q, Nava A, Reynard LM, Thirlwall M, Bondioli L, Müller W. 2022.. Spatially-resolved Ca isotopic and trace element variations in human deciduous teeth record diet and physiological change. . Environ. Archaeol. 27::47483
    [Crossref] [Google Scholar]
  75. Li Z, Miao HW, Li BK, Lu H. 2021.. Comparative study of B content and δ11B in the enamel of isolated teeth from brothers in the same family. . Rapid Commun. Mass Spectrom. 35::e9171
    [Crossref] [Google Scholar]
  76. López-Costas O, Kylander M, Mattielli N, Álvarez-Fernández N, Pérez-Rodríguez M, et al. 2020.. Human bones tell the story of atmospheric mercury and lead exposure at the edge of Roman World. . Sci. Total Environ. 710::136319
    [Crossref] [Google Scholar]
  77. Lüdecke T, Leichliter JN, Aldeias V, Bamford MK, Biro D, et al. 2022.. Carbon, nitrogen, and oxygen stable isotopes in modern tooth enamel: a case study from Gorongosa National Park, central Mozambique. . Front. Ecol. Evol. 10::958032
    [Crossref] [Google Scholar]
  78. MacFadden BJ, Solounias N, Cerling TE. 1999.. Ancient diets, ecology, and extinction of 5-million-year-old horses from Florida. . Science 283::82427
    [Crossref] [Google Scholar]
  79. Mahan B, Antonelli MA, Burckel P, Turner S, Chung R, et al. 2020.. Longitudinal biometal accumulation and Ca isotope composition of the Göttingen minipig brain. . Metallomics 12::158598
    [Crossref] [Google Scholar]
  80. Mahan B, Moynier F, Jørgensen AL, Habekost M, Siebert J. 2018.. Examining the homeostatic distribution of metals and Zn isotopes in Göttingen minipigs. . Metallomics 10::126481
    [Crossref] [Google Scholar]
  81. Mahan B, Tacail T, Lewis J, Elliott T, Habekost M, et al. 2022.. Exploring the K isotope composition of Göttingen minipig brain regions, and implications for Alzheimer's disease. . Metallomics 14::mfac090
    [Crossref] [Google Scholar]
  82. Maréchal CN, Télouk P, Albarède F. 1999.. Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry. . Chem. Geol. 156::25173
    [Crossref] [Google Scholar]
  83. Martin JE, Deesri U, Liard R, Wattanapituksakul A, Suteethorn S, et al. 2016.. Strontium isotopes and the long-term residency of thalattosuchians in the freshwater environment. . Paleobiology 42::14356
    [Crossref] [Google Scholar]
  84. Martin JE, Tacail T, Balter V. 2017.. Non-traditional isotope perspectives in vertebrate palaeobiology. . Palaeontology 60::485502
    [Crossref] [Google Scholar]
  85. Martin JE, Tacail T, Cerling TE, Balter V. 2018.. Calcium isotopes in enamel of modern and Plio-Pleistocene East African mammals. . Earth Planet. Sci. Lett. 503::22735
    [Crossref] [Google Scholar]
  86. Martin JE, Tacail T, Simon L, Hassler A, Télouk P, Balter V. 2023.. Inferring odontocete life history traits in dentine using a multiproxy approach (δ15N, δ44/42Ca and trace elements). . Rapid Commun. Mass Spectrom. 37::e9612
    [Crossref] [Google Scholar]
  87. Martin JE, Vance D, Balter V. 2014.. Natural variation of magnesium isotopes in mammal bones and teeth from two South African trophic chains. . Geochim. Cosmochim. Acta 130::1220
    [Crossref] [Google Scholar]
  88. Martin JE, Vance D, Balter V. 2015.. Magnesium stable isotope ecology using mammal tooth enamel. . PNAS 112::43035
    [Crossref] [Google Scholar]
  89. Masbou J, Sonke JE, Amouroux D, Guillou G, Becker PR, Point D. 2018.. Hg-stable isotope variations in marine top predators of the Western Arctic Ocean. . ACS Earth Space Chem. 2::47990
    [Crossref] [Google Scholar]
  90. McCormack J, Bourgon N, Sinet-Mathiot V, Rezek Z, Smith GM, et al. 2022.. Combining collagen extraction with mineral Zn isotope analyses from a single sample for robust palaeoecological investigations. . Archaeol. Anthropol. Sci. 14::137
    [Crossref] [Google Scholar]
  91. McCormack J, Jaouen K, Bourgon N, Sisma-Ventura G, Tacail TJ, et al. 2024.. Zinc isotope composition of enameloid, bone and muscle of gilt-head seabreams (Sparus aurata) raised in pisciculture and their relation to diet. . Mar. Biol. 171::65
    [Crossref] [Google Scholar]
  92. McCormack J, Szpak P, Bourgon N, Richards M, Hyland C, et al. 2021.. Zinc isotopes from archaeological bones provide reliable trophic level information for marine mammals. . Commun. Biol. 4::683
    [Crossref] [Google Scholar]
  93. Mehl ACSB, Ishida LY, de Faria RA. 2019.. Analysis of carbon, oxygen, strontium and lead isotopes in human teeth: inferences for forensic investigation. . In XXVI Brazilian Congress on Biomedical Engineering. IFMBE Proceedings, Vol. 70/71:, ed. R Costa-Felix, J Machado, A Alvarenga , pp. 7177. Singapore:: Springer
    [Crossref] [Google Scholar]
  94. Melin AD, Crowley BE, Brown ST, Wheatley PV, Moritz GL, et al. 2014.. Calcium and carbon stable isotope ratios as paleodietary indicators. . Am. J. Phys. Anthropol. 154::63343
    [Crossref] [Google Scholar]
  95. Messa CM, Sims KW, Scott SR, Clementz MT. 2022.. Stable Ca isotope fractionation in Cenozoic marine mammals: beyond biomineralization and trophic positioning. . In Isotopic Constraints on Earth System Processes, ed. KW Sims, K Maher, DP Schrag , pp. 30128. Hoboken, NJ:: Am. Geophys. Union
    [Google Scholar]
  96. Morgan JL, Skulan JL, Gordon GW, Romaniello SJ, Smith SM, Anbar AD. 2012.. Rapidly assessing changes in bone mineral balance using natural stable calcium isotopes. . PNAS 109::998994
    [Crossref] [Google Scholar]
  97. Moubtahij Z, McCormack J, Bourgon N, Trost M, Sinet-Mathiot V, et al. 2024.. Isotopic evidence of high reliance on plant food among Later Stone Age hunter-gatherers at Taforalt, Morocco. . Nat. Ecol. Evol. 8::103545
    [Crossref] [Google Scholar]
  98. Moynier F, Foriel J, Shaw AS, Le Borgne M. 2017.. Distribution of Zn isotopes during Alzheimer's disease. . Geochem. Perspect. Lett. 3::14250
    [Crossref] [Google Scholar]
  99. Moynier F, Fujii T, Shaw AS, Le Borgne M. 2013.. Heterogeneous distribution of natural zinc isotopes in mice. . Metallomics 5::69399
    [Crossref] [Google Scholar]
  100. Moynier F, Hu Y, Wang K, Zhao Y, Gérard Y, et al. 2021.. Potassium isotopic composition of various samples using a dual-path collision cell-capable multiple-collector inductively coupled plasma mass spectrometer, Nu instruments Sapphire. . Chem. Geol. 571::120144
    [Crossref] [Google Scholar]
  101. Newsome SD, Clementz MT, Koch PL. 2010.. Using stable isotope biogeochemistry to study marine mammal ecology. . Mar. Mammal Sci. 26::50972
    [Google Scholar]
  102. Newsome SD, Etnier MA, Monson DH, Fogel ML. 2009.. Retrospective characterization of ontogenetic shifts in killer whale diets via δ13C and δ15N analysis of teeth. . Mar. Ecol. Progr. Ser. 374::22942
    [Crossref] [Google Scholar]
  103. Oftedal OT. 2002.. The mammary gland and its origin during synapsid evolution. . J. Mammary Gland Biol. Neoplasia 7::22552
    [Crossref] [Google Scholar]
  104. O'Leary MA, Bloch JI, Flynn JJ, Gaudin TJ, Giallombardo A, et al. 2013.. The placental mammal ancestor and the post–K-Pg radiation of placentals. . Science 339::66267
    [Crossref] [Google Scholar]
  105. Passey BH, Cerling TE. 2002.. Tooth enamel mineralization in ungulates: implications for recovering a primary isotopic time-series. . Geochim. Cosmochim. Acta 66::322534
    [Crossref] [Google Scholar]
  106. Passey BH, Cerling TE, Schuster GT, Robinson TF, Roeder BL, Krueger SK. 2005.. Inverse methods for estimating primary input signals from time-averaged isotope profiles. . Geochim. Cosmochim. Acta 69::410116
    [Crossref] [Google Scholar]
  107. Pederzani S, Britton K, Trost M, Fewlass H, Bourgon N, et al. 2024.. Stable isotopes show Homo sapiens dispersed into cold steppes ∼45,000 years ago at Ilsenhöhle in Ranis, Germany. . Nat. Ecol. Evol. 8::57888
    [Crossref] [Google Scholar]
  108. Peek S, Clementz MT. 2012.. Sr/Ca and Ba/Ca variations in environmental and biological sources: a survey of marine and terrestrial systems. . Geochim. Cosmochim. Acta 95::3652
    [Crossref] [Google Scholar]
  109. Perrot V, Pastukhov MV, Epov VN, Husted S, Donard OF, Amouroux D. 2012.. Higher mass-independent isotope fractionation of methylmercury in the pelagic food web of Lake Baikal (Russia). . Environ. Sci. Technol. 46::590211
    [Crossref] [Google Scholar]
  110. Plomp E, von Holstein IC, Koornneef JM, Smeets RJ, Baart JA, et al. 2019.. Evaluation of neodymium isotope analysis of human dental enamel as a provenance indicator using 1013 Ω amplifiers (TIMS). . Sci. Just. 59::32231
    [Crossref] [Google Scholar]
  111. Reynard B, Balter V. 2014.. Trace elements and their isotopes in bones and teeth: diet, environments, diagenesis, and dating of archeological and paleontological samples. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 416::416
    [Crossref] [Google Scholar]
  112. Schoeninger MJ. 2014.. Stable isotope analyses and the evolution of human diets. . Annu. Rev. Anthropol. 43::41330
    [Crossref] [Google Scholar]
  113. Shroff R, Lalayiannis AD, Fewtrell M, Schmitt CP, Bayazit A, et al. 2022.. Naturally occurring stable calcium isotope ratios are a novel biomarker of bone calcium balance in chronic kidney disease. . Kidney Int. 102::61323
    [Crossref] [Google Scholar]
  114. Sillen A. 1986.. Biogenic and diagenetic Sr/Ca in Plio-Pleistocene fossils of the Omo Shungura Formation. . Paleobiology 12::31123
    [Crossref] [Google Scholar]
  115. Simmons NB, Seymour KL, Habersetzer J, Gunnell GF. 2008.. Primitive Early Eocene bat from Wyoming and the evolution of flight and echolocation. . Nature 451::81821
    [Crossref] [Google Scholar]
  116. Skulan J, DePaolo DJ. 1999.. Calcium isotope fractionation between soft and mineralized tissues as a monitor of calcium use in vertebrates. . PNAS 96::1370913
    [Crossref] [Google Scholar]
  117. Skulan J, DePaolo DJ, Owens TL. 1997.. Biological control of calcium isotopic abundances in the global calcium cycle. . Geochim. Cosmochim. Acta 61::250510
    [Crossref] [Google Scholar]
  118. Smuts GL, Anderson JL, Austin JC. 1978.. Age determination of the African lion (Pantheraleo). . J. Zool. 185::11546
    [Crossref] [Google Scholar]
  119. Suga S, Gustafson G. 1962.. Studies on the development of rat enamel by means of histochemistry, microradiography and polarized light microscopy. . Arch. Oral Biol. 7::223244
    [Crossref] [Google Scholar]
  120. Sullivan KV, Moore RE, Vanhaecke F. 2023.. The influence of physiological and lifestyle factors on essential mineral element isotopic compositions in the human body: implications for the design of isotope metallomics research. . Metallomics 15::mfad012
    [Crossref] [Google Scholar]
  121. Tacail T, Albalat E, Télouk P, Balter V. 2014.. A simplified protocol for measurement of Ca isotopes in biological samples. . J. Anal. Atom. Spectrom. 29::52935
    [Crossref] [Google Scholar]
  122. Tacail T, Le Houedec S, Skulan JL. 2020.. New frontiers in calcium stable isotope geochemistry: perspectives in present and past vertebrate biology. . Chem. Geol. 537::119471
    [Crossref] [Google Scholar]
  123. Tacail T, Lewis J, Clauss M, Coath CD, Evershed R, et al. 2023.. Diet, cellular, and systemic homeostasis control the cycling of potassium stable isotopes in endothermic vertebrates. . Metallomics 15::mfad065
    [Crossref] [Google Scholar]
  124. Tacail T, Martin JE, Arnaud-Godet F, Thackeray JF, Cerling TE, et al. 2019.. Calcium isotopic patterns in enamel reflect different nursing behaviors among South African early hominins. . Sci. Adv. 5::eaax3250
    [Crossref] [Google Scholar]
  125. Tacail T, Télouk P, Balter V. 2016.. Precise analysis of calcium stable isotope variations in biological apatites using laser ablation MC-ICPMS. . J. Anal. Atom. Spectrom. 31::15262
    [Crossref] [Google Scholar]
  126. Tacail T, Thivichon-Prince B, Martin JE, Charles C, Viriot L, Balter V. 2017.. Assessing human weaning practices with calcium isotopes in tooth enamel. . PNAS 114::626873
    [Crossref] [Google Scholar]
  127. Tanaka YK, Yajima N, Higuchi Y, Yamato H, Hirata T. 2017.. Calcium isotope signature: new proxy for net change in bone volume for chronic kidney disease and diabetic rats. . Metallomics 9::174555
    [Crossref] [Google Scholar]
  128. Thibon F, Goedert J, Séon N, Weppe L, Martin JE, et al. 2022.. The ecology of modern and fossil vertebrates revisited by lithium isotopes. . Earth Planet. Sci. Lett. 599::117840
    [Crossref] [Google Scholar]
  129. Trayler RB, Kohn MJ. 2017.. Tooth enamel maturation reequilibrates oxygen isotope compositions and supports simple sampling methods. . Geochim. Cosmochim. Acta 198::3247
    [Crossref] [Google Scholar]
  130. Tsutaya T, Yoneda M. 2015.. Reconstruction of breastfeeding and weaning practices using stable isotope and trace element analyses: a review. . Am. J. Phys. Anthropol. 156::221
    [Crossref] [Google Scholar]
  131. Tütken T. 2014.. Isotope compositions (C, O, Sr, Nd) of vertebrate fossils from the Middle Eocene oil shale of Messel, Germany: implications for their taphonomy and palaeoenvironment. . Palaeogeogr. Palaeoclimatol. Palaeoecol. 416::92109
    [Crossref] [Google Scholar]
  132. Uhen MD. 2010.. The origin (s) of whales. . Annu. Rev. Earth Planet. Sci. 38::189219
    [Crossref] [Google Scholar]
  133. Van der Merwe NJ. 1982.. Carbon isotopes, photosynthesis, and archaeology: Different pathways of photosynthesis cause characteristic changes in carbon isotope ratios that make possible the study of prehistoric human diets. . Am. Sci. 70::596606
    [Google Scholar]
  134. Van der Merwe NJ, Thackeray JF, Lee-Thorp JA, Luyt J. 2003.. The carbon isotope ecology and diet of Australopithecus africanus at Sterkfontein, South Africa. . J. Hum. Evol. 44::58197
    [Crossref] [Google Scholar]
  135. Van Heghe L, Engström E, Rodushkin I, Cloquet C, Vanhaecke F. 2012.. Isotopic analysis of the metabolically relevant transition metals Cu, Fe and Zn in human blood from vegetarians and omnivores using multi-collector ICP-mass spectrometry. . J. Anal. Atom. Spectrom. 27::132734
    [Crossref] [Google Scholar]
  136. Vitòria L, Otero N, Soler A, Canals A. 2004.. Fertilizer characterization: isotopic data (N, S, O, C, and Sr). . Environ. Sci. Technol. 38::325462
    [Crossref] [Google Scholar]
  137. Vogel JC. 1978.. Isotopic assessment of the dietary habits of ungulates. . S. Afr. J. Sci. 74::298
    [Google Scholar]
  138. Walczyk T. 2004.. TIMS versus multicollector-ICP-MS: coexistence or struggle for survival?. Anal. Bioanal. Chem. 378::22931
    [Crossref] [Google Scholar]
  139. Weber K, Weber M, Menneken M, Kral AG, Mertz-Kraus R, et al. 2021.. Diagenetic stability of non-traditional stable isotope systems (Ca, Sr, Mg, Zn) in teeth—an in-vitro alteration experiment of biogenic apatite in isotopically enriched tracer solution. . Chem. Geol. 572::120196
    [Crossref] [Google Scholar]
  140. Willmes M, Bataille CP, James HF, Moffat I, McMorrow L, et al. 2018.. Mapping of bioavailable strontium isotope ratios in France for archaeological provenance studies. . Appl. Geochem. 90::7586
    [Crossref] [Google Scholar]
  141. Wooller MJ, Bataille C, Druckenmiller P, Erickson GM, Groves P, et al. 2021.. Lifetime mobility of an Arctic woolly mammoth. . Science 373::8068
    [Crossref] [Google Scholar]
  142. Yang D, Bowen GJ, Uno KT, Podkovyroff K, Carpenter NA, et al. 2023.. BITS: a Bayesian Isotope Turnover and Sampling model for strontium isotopes in proboscideans and its potential utility in movement ecology. . Methods Ecol. Evol. 14::280013
    [Crossref] [Google Scholar]
  143. Ziegler S, Merker S, Streit B, Boner M, Jacob DE. 2016.. Towards understanding isotope variability in elephant ivory to establish isotopic profiling and source-area determination. . Biol. Conserv. 197::15463
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-earth-040523-024549
Loading
/content/journals/10.1146/annurev-earth-040523-024549
Loading

Data & Media loading...

Supplemental Materials

Supplemental Materials

Supplemental Materials

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error