1932

Abstract

The Hikurangi margin has been an important global focus for subduction zone research for the last decade. International Ocean Discovery Program drilling and geophysical investigations have advanced our understanding of megathrust slip behavior. Along and across the margin, detailed imaging reveals that the megathrust structure varies spatially and evolves over time. Heterogeneous properties of the plate boundary zone and overriding plate are impacted by the evolving nature of regional tectonics and inherited overriding plate structure. Along-strike variability in thickness of subducting sediment and northward increasing influence of seamount subduction strongly influence mega-thrust lithologies, fluid pressure, and permeability structure. Together, these exert strong control on spatial variations in coupling, slow slip, and seismicity distribution. Thicker incoming sediment, combined with a compressional upper plate, influences deeper coupling at southern Hikurangi, where paleoseismic investigations reveal recurring great ( > 8.0) earthquakes.

  • ▪  The Hikurangi Subduction Zone is marked by large-scale changes in the subducting Pacific Plate and the overlying plate, with varied tectonic stress, crustal thickness, and sediment cover.
  • ▪  The roughness of the lower plate influences the variability in megathrust slip behavior, particularly where seamounts enhance subduction of fluid-rich sediments.
  • ▪  Variations in sediment composition impact the strength of the subduction interface, with the southern Hikurangi Subduction Zone exhibiting a more uniform megathrust fault.
  • ▪  Properties of the upper plate influence fluid pressures and contribute to the observed along-strike variations in Hikurangi plate coupling and slip behavior.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-040523-115520
2025-05-30
2025-06-22
Loading full text...

Full text loading...

/deliver/fulltext/earth/53/1/annurev-earth-040523-115520.html?itemId=/content/journals/10.1146/annurev-earth-040523-115520&mimeType=html&fmt=ahah

Literature Cited

  1. Antriasian A, Harris RN, Tréhu AM, Henrys SA, Phrampus BJ, et al. 2019.. Thermal regime of the northern Hikurangi margin, New Zealand. . Geophys. J. Int. 216::117790
    [Google Scholar]
  2. Arai R, Kodaira S, Henrys S, Bangs N, Obana K, et al. 2020.. Three-dimensional P wave velocity structure of the northern Hikurangi margin from the NZ3D experiment: evidence for fault-bound anisotropy. . J. Geophys. Res. Solid Earth 125::e2020JB020433
    [Crossref] [Google Scholar]
  3. Arnulf AF, Biemiller J, Lavier L, Wallace LM, Bassett D, et al. 2021.. Physical conditions and frictional properties in the source region of a slow-slip event. . Nat. Geosci. 14:(5):33440
    [Crossref] [Google Scholar]
  4. Ballance PF. 1976.. Evolution of the Upper Cenozoic magmatic arc and plate boundary in northern New Zealand. . Earth Planet. Sci. Lett. 28::35670
    [Crossref] [Google Scholar]
  5. Bangs NL, Morgan JK, Bell RE, Han S, Arai R, et al. 2023.. Slow slip along the Hikurangi margin linked to fluid-rich sediments trailing subducting seamounts. . Nat. Geosci. 16::50512
    [Crossref] [Google Scholar]
  6. Barker DHN, Henrys S, Caratori Tontini F, Barnes PM, Bassett D, et al. 2018.. Geophysical constraints on the relationship between seamount subduction, slow slip and tremor at the north Hikurangi subduction zone, New Zealand. . Geophys. Res. Lett. 45::1280413
    [Crossref] [Google Scholar]
  7. Barnes JD, Cullen J, Barker S, Agostini S, Penniston-Dorland S, et al. 2019.. The role of the upper plate in controlling fluid-mobile element (Cl, Li, B) cycling through subduction zones: Hikurangi forearc, New Zealand. . Geosphere 15::64258
    [Crossref] [Google Scholar]
  8. Barnes PM, Lamarche G, Bialas J, Henrys S, Pecher I, et al. 2010.. Tectonic and geological framework for gas hydrates and cold seeps on the Hikurangi subduction margin, New Zealand. . Mar. Geol. 272::2648
    [Crossref] [Google Scholar]
  9. Barnes PM, Wallace L, Saffer D, Pecher I, Petronotis K, et al. 2019.. Site U1520. . In Hikurangi Subduction Margin Coring, Logging, and Observatories, ed. L Wallace, D Saffer, P Barnes, I Pecher, K Petronotis , et al. College Station, TX:: Int. Ocean Discov. Program
    [Google Scholar]
  10. Barnes PM, Wallace LM, Saffer DM, Bell RE, Underwood MB, et al. 2020.. Slow slip source characterized by lithological and geometric heterogeneity. . Sci. Adv. 6::eaay3314
    [Crossref] [Google Scholar]
  11. Bassett D, Arnulf A, Henrys S, Barker D, Van Avendonk H, et al. 2022.. Crustal structure of the Hikurangi margin from SHIRE seismic data and the relationship between forearc structure and shallow megathrust slip behavior. . Geophys. Res. Lett. 49::e2021GL096960
    [Crossref] [Google Scholar]
  12. Bassett D, Fujie G, Kodaira S, Arai R, Yamamoto Y, et al. 2023.. Heterogeneous crustal structure of the Hikurangi Plateau revealed by SHIRE seismic data: origin and implications for plate boundary tectonics. . Geophys. Res. Lett. 50::e2023GL105674
    [Crossref] [Google Scholar]
  13. Bassett D, Kopp H, Sutherland R, Henrys S, Watts AB, et al. 2016.. Crustal structure of the Kermadec arc from MANGO seismic refraction profiles. . J. Geophys. Res. Solid Earth 121::751446
    [Crossref] [Google Scholar]
  14. Bassett D, Shillington DJ, Wallace LM, Elliott J. 2025.. Variation in slip behaviour along megathrusts controlled by multiple physical properties. . Nat. Geosci. 18::2031
    [Crossref] [Google Scholar]
  15. Bassett D, Sutherland R, Henrys S. 2014.. Slow wavespeeds and fluid overpressure in a region of shallow geodetic locking and slow slip, Hikurangi subduction margin, New Zealand. . Earth Planet. Sci. Lett. 389::113
    [Crossref] [Google Scholar]
  16. Bassett D, Sutherland R, Henrys S, Stern T, Scherwath M, et al. 2010.. Three-dimensional velocity structure of the northern Hikurangi margin, Raukumara, New Zealand: implications for the growth of continental crust by subduction erosion and tectonic underplating. . Geochem. Geophys. Geosyst. 11::Q10013
    [Crossref] [Google Scholar]
  17. Beavan J, Tregoning P, Bevis M, Kato T, Meertens C. 2002.. Motion and rigidity of the Pacific Plate and implications for plate boundary deformation. . J. Geophys. Res. 107:(B10):ETG 191ETG 19-15
    [Google Scholar]
  18. Behboudi E, McNamara D, Lokmer I. 2023.. Shallow tectonic stress magnitudes at the Hikurangi subduction margin, New Zealand. . Geochem. Geophys. Geosyst. 24::e2022GC010836
    [Crossref] [Google Scholar]
  19. Behboudi E, McNamara D, Lokmer I, Wallace L, Saffer D. 2022.. Spatial variation of shallow stress orientation along the Hikurangi Subduction Margin: insights from in-situ borehole image logging. . J. Geophys. Res. Solid Earth 127::e2021JB023641
    [Crossref] [Google Scholar]
  20. Bell RE, Gray M, Morgan J, Warner M, Fagereng Å, et al. 2019.. New Zealand 3D full waveform inversion (NZ3D-FWI) 20172018 field acquisition report. Rep. 9781988569987 , GNS Sci., Lower Hutt, N.Z.:
    [Google Scholar]
  21. Bell RE, Holden C, Power W, Wang X, Downes G. 2014.. Hikurangi margin tsunami earthquake generated by slow seismic rupture over a subducted seamount. . Earth Planet. Sci. Lett. 397::19
    [Crossref] [Google Scholar]
  22. Bell RE, Sutherland R, Barker DHN, Henrys S, Bannister S, et al. 2010.. Seismic reflection character of the Hikurangi subduction interface, New Zealand, in the region of repeated Gisborne slow slip events. . Geophys. J. Int. 180::3448
    [Crossref] [Google Scholar]
  23. Bland KJ, Uruski CI, Isaac MJ. 2015.. Pegasus Basin, eastern New Zealand: a stratigraphic record of subsidence and subduction, ancient and modern. . N.Z. J. Geol. Geophys. 58::31943
    [Crossref] [Google Scholar]
  24. Boulton C, Mizera M, Niemeijer AR, Little TA, Müller IA, et al. 2022.. Observational and theoretical evidence for frictional-viscous flow at shallow crustal levels. . Lithos 428::106831
    [Crossref] [Google Scholar]
  25. Boulton C, Niemeijer AR, Hollis CJ, Townend J, Raven MD, et al. 2019.. Temperature-dependent frictional properties of heterogeneous Hikurangi Subduction Zone input sediments, ODP Site 1124. . Tectonophysics 757::12339
    [Crossref] [Google Scholar]
  26. Carter RM, McCave IN, Richter C, Carter L. 1999.. Southwest Pacific Gateways. . In Proceedings of the Ocean Drilling Program, Initial Report, Vol. 181. College Station, TX:: Ocean Drill. Program
    [Google Scholar]
  27. Chesley C, Naif S, Key K. 2023.. Characterizing the porosity structure and gas hydrate distribution at the southern Hikurangi Margin, New Zealand from offshore electromagnetic data. . Geophys. J. Int. 234::241128
    [Crossref] [Google Scholar]
  28. Chesley C, Naif S, Key K, Bassett D. 2021.. Fluid-rich subducting topography generates anomalous forearc porosity. . Nature 595::25560
    [Crossref] [Google Scholar]
  29. Chow B, Kaneko Y, Townend J. 2022.. Evidence for deeply-subducted lower-plate seamounts at the Hikurangi subduction margin: implications for seismic and aseismic behavior. . J. Geophys. Res. Solid Earth 127::e2021JB022866
    [Crossref] [Google Scholar]
  30. Clark KJ, Hayward BW, Cochran UA, Wallace LM, Power WL, Sabaa AT. 2015.. Evidence for past subduction earthquakes at a plate boundary with widespread upper plate faulting: southern Hikurangi margin, New Zealand. . Bull. Seismol. Soc. Am. 105::166190
    [Crossref] [Google Scholar]
  31. Clark KJ, Howarth J, Litchfield N, Cochran U, Turnbull J, et al. 2019.. Geological evidence for past large earthquakes and tsunamis along the Hikurangi subduction margin, New Zealand. . Mar. Geol. 412::13972
    [Crossref] [Google Scholar]
  32. Cochran U, Berryman K, Zachariasen J, Mildenhall D, Hayward B, et al. 2006.. Paleoecological insights into subduction zone earthquake occurrence, eastern North Island, New Zealand. . Geol. Soc. Am. Bull. 118::105174
    [Crossref] [Google Scholar]
  33. Collot JY, Delteil J, Lewis KB, Davy B, Lamarche G, et al. 1996.. From subduction to intra-continental transpression: structures of the southern Kermadec-Hikurangi margin from multibeam bathymetry, side-scan sonar, and seismic reflection. . Mar. Geophys. Res. 18::35781
    [Crossref] [Google Scholar]
  34. Collot JY, Lewis K, Lamarche G, Lallemand S. 2001.. The giant Ruatoria debris avalanche on the northern Hikurangi margin, New Zealand: result of oblique seamount subduction. . J. Geophys. Res. 106:(B9):1927197
    [Crossref] [Google Scholar]
  35. Crutchley GJ, Gorman AR, Pecher IA, Toulmin S, Henrys SA. 2011.. Geological controls on focused fluid flow through the gas hydrate stability zone on the southern Hikurangi Margin of New Zealand, evidenced from multi-channel seismic data. . Mar. Pet. Geol. 28::191531
    [Crossref] [Google Scholar]
  36. Crutchley GJ, Klaeschen D, Henrys S, Pecher I, Mountjoy J, Woelz S. 2020.. Subducted sediments, upper-plate deformation and dewatering at New Zealand's southern Hikurangi subduction margin. . Earth Planet. Sci. Lett. 530::115945
    [Crossref] [Google Scholar]
  37. Davy BR, Hoernle K, Werner R. 2008.. The Hikurangi Plateau—crustal structure, rifted formation and Gonwana subduction history. . Geochem. Geophys. Geosyst. 9::Q07004
    [Crossref] [Google Scholar]
  38. Davy RG, Frahm L, Bell R, Arai R, Barker DHN, et al. 2021.. Generating high-fidelity reflection images directly from full-waveform inversion: Hikurangi subduction zone case study. . Geophys. Res. Lett. 48::e2021GL094981
    [Crossref] [Google Scholar]
  39. Delano J, Howell A, Clark K, Stahl T. 2023.. Upper plate faults may contribute to the paleoseismic subsidence record along the central Hikurangi subduction zone, Aotearoa New Zealand. . Geochem. Geophys. Geosyst. 24::e2023GC011060
    [Crossref] [Google Scholar]
  40. Eberhart-Phillips D, Bannister S, Reyners M. 2017.. Deciphering the 3-D distribution of fluid along the shallow Hikurangi subduction zone using P- and S-wave attenuation. . Geophys. J. Int. 211::105467
    [Crossref] [Google Scholar]
  41. Eberhart-Phillips D, Bannister S, Reyners M. 2020.. Attenuation in the mantle wedge beneath super-volcanoes of the Taupo Volcanic Zone, New Zealand. . Geophys. J. Int. 220::70323
    [Crossref] [Google Scholar]
  42. Eberhart-Phillips D, Ellis S, Lanza F, Bannister S. 2021.. Heterogeneous material properties—as inferred from seismic attenuation—influenced multiple fault rupture and ductile creep of the Kaikoura Mw 7.8 earthquake, New Zealand. . Geophys. J. Int. 227::120427
    [Crossref] [Google Scholar]
  43. Eijsink A, Ikari MJ. 2022.. Plate-rate frictional behavior of sediment inputs to the Hikurangi subduction margin: How does lithology control slow slip events?. Geochem. Geophys. Geosyst. 23::e2022GC010369
    [Crossref] [Google Scholar]
  44. Ellis S, Fagereng Å, Barker D, Henrys S, Saffer D, et al. 2015.. Fluid budgets along the northern Hikurangi subduction margin, New Zealand: the effect of a subducting seamount on fluid pressure. . Geophys. J. Int. 202::27797
    [Crossref] [Google Scholar]
  45. Ellis S, Ghisetti F, Barnes PM, Boulton C, Fagereng Å, Buiter S. 2019.. The contemporary force balance in a wide accretionary wedge: numerical models of the southcentral Hikurangi margin of New Zealand. . Geophys. J. Int. 219::77695
    [Crossref] [Google Scholar]
  46. Erickson SN, Jarrard RD. 1998.. Velocity-porosity relationships for water-saturated siliciclastic sediments. . J. Geophys. Res. 103:(B12):30385406
    [Crossref] [Google Scholar]
  47. Evanzia D, Wilson T, Savage MK, Lamb S, Hirschberg H. 2017.. Stress orientations in a locked subduction zone at the southern Hikurangi margin, New Zealand. . J. Geophys. Res. Solid Earth 122::7895911
    [Crossref] [Google Scholar]
  48. Fagereng Å. 2011.. Wedge geometry, mechanical strength, and interseismic coupling of the Hikurangi subduction thrust, New Zealand. . Tectonophysics 507::2630
    [Crossref] [Google Scholar]
  49. Fagereng Å, Den Hartog SA. 2017.. Subduction megathrust creep governed by pressure solution and frictional–viscous flow. . Nat. Geosci. 10::5157
    [Crossref] [Google Scholar]
  50. Fagereng Å, Ellis S. 2009.. On factors controlling the depth of interseismic coupling on the Hikurangi subduction interface, New Zealand. . Earth Planet. Sci. Lett. 278::12030
    [Crossref] [Google Scholar]
  51. Fagereng Å, Savage H, Morgan J, Wang M, Meneghini F, et al. 2019.. Mixed deformation styles observed on a shallow subduction thrust, Hikurangi margin, New Zealand. . Geology 47::87276
    [Crossref] [Google Scholar]
  52. Gale N, Gledhill K, Chadwick M, Wallace L. 2015.. The Hikurangi margin continuous GNSS and seismograph network of New Zealand. . Seismol. Res. Lett. 86::1018
    [Crossref] [Google Scholar]
  53. Gao X, Wang K. 2014.. Strength of stick-slip and creeping subduction megathrusts from heat flow observations. . Science 345::103841
    [Crossref] [Google Scholar]
  54. Gase AC, Bangs NL, Saffer DM, Han S, Miller PK, et al. 2023.. Subducting volcaniclastic-rich upper crust supplies fluids for shallow megathrust and slow slip. . Sci. Adv. 9::eadh0150
    [Crossref] [Google Scholar]
  55. Gase AC, Bangs NL, Van Avendonk HJA, Bassett D, Henrys SA. 2022.. Hikurangi megathrust slip behavior influenced by lateral variability in sediment subduction. . Geology 50::114549
    [Crossref] [Google Scholar]
  56. Gase AC, Bangs NL, Van Avendonk HJA, Bassett D, Henrys SA, et al. 2024.. Volcanic crustal structure of the western Hikurangi Plateau (New Zealand) from marine seismic reflection imaging. . Geosphere 20:(3):93564
    [Crossref] [Google Scholar]
  57. Gase AC, Van Avendonk HJA, Bangs NL, Bassett D, Henrys SA, et al. 2021.. Crustal structure of the northern Hikurangi margin, New Zealand: variable accretion and overthrusting plate strength influenced by rough subduction. . J. Geophys. Res. Solid Earth 126::e2020JB021176
    [Crossref] [Google Scholar]
  58. Gase AC, Van Avendonk HJA, Bangs NL, Luckie TW, Barker DHN, et al. 2019.. Seismic evidence of magmatic rifting in the offshore Taupo Volcanic Zone, New Zealand. . Geophys. Res. Lett. 46:(22):1294957
    [Crossref] [Google Scholar]
  59. Ghisetti F, Barnes P, Ellis S, Plaza-Faverola A, Barker DHN. 2016.. The last 2 Myr of accretionary wedge construction in the central Hikurangi margin (North Island, New Zealand): insights from structural modeling. . Geochem. Geophys. Geosyst. 17:(7):266186
    [Crossref] [Google Scholar]
  60. Giacomel P, Ruggieri R, Scuderi MM, Spagnuolo E, Di Toro G, Collettini C. 2021.. Frictional properties of basalt experimental faults and implications for volcano-tectonic settings and geo-energy sites. . Tectonophysics 811::228883
    [Crossref] [Google Scholar]
  61. Gray M, Bell RE, Morgan JV, Henrys S, Barker DHN, et al. 2019.. Imaging the shallow subsurface structure of the North Hikurangi Subduction Zone, New Zealand, using 2-D full-waveform inversion. . J. Geophys. Res. Solid Earth 124::904974
    [Crossref] [Google Scholar]
  62. Hamling IJ, Hreinsdóttir S, Clark K, Elliott J, Liang C, et al. 2017.. Complex multifault rupture during the 2016 Mw 7.8 Kaikōura earthquake, New Zealand. . Science 356::eaam7194
    [Crossref] [Google Scholar]
  63. Hayward BW, Grenfell HR, Sabaa AT, Cochran UA, Clark KJ, et al. 2016.. Salt-marsh foraminiferal record of 10 large Holocene (last 7500 yr) earthquakes on a subducting plate margin, Hawkes Bay, New Zealand. . Bulletin 128::896915
    [Google Scholar]
  64. Heise W, Bertrand EA, Caldwell TG, Ogawa Y, Bannister S, et al. 2023.. An electrical resistivity image of the Hikurangi subduction margin. . Geophys. J. Int. 235::155264
    [Crossref] [Google Scholar]
  65. Henrys S, Eberhart-Phillips D, Bassett D, Sutherland R, Okaya D, et al. 2020.. Upper plate heterogeneity along the southern Hikurangi Margin, New Zealand. . Geophys. Res. Lett. 47:(4):e2019GL085511
    [Crossref] [Google Scholar]
  66. Henrys S, Reyners M, Bibby H. 2003.. Exploring the plate boundary structure of the North Island of New Zealand. . Eos 84::2899495
    [Crossref] [Google Scholar]
  67. Henrys S, Wech A, Sutherland R, Stern T, Savage M, et al. 2013.. SAHKE geophysical transect reveals crustal and subduction zone structure at the southern Hikurangi margin, New Zealand. . Geochem. Geophys. Geosyst. 14::206383
    [Crossref] [Google Scholar]
  68. Hines B, Kulhanek D, Hollis C, Atkins C, Morgans H. 2013.. Paleocene–Eocene stratigraphy and paleoenvironment at Tora, Southeast Wairarapa, New Zealand. . N.Z. J. Geol. Geophys. 56::24362
    [Crossref] [Google Scholar]
  69. Hoernle K, Hauff F, Van den Bogaard P, Werner R, Mortimer N, et al. 2010.. Age and geochemistry of volcanic rocks from the Hikurangi and Manihiki oceanic Plateaus. . Geochim. Cosmochim. Acta 74::7196219
    [Crossref] [Google Scholar]
  70. Ikari MJ, Wallace LM, Rabinowitz HS, Savage HM, Hamling IJ, Kopf AJ. 2020.. Observations of laboratory and natural slow slip events: Hikurangi subduction zone, New Zealand. . Geochem. Geophys. Geosyst. 21::e2019GC008717
    [Crossref] [Google Scholar]
  71. Jacobs K, Henrys S, Okaya D, Van Avendonk H, Black J, et al. 2020.. Seismogenesis Hikurangi Integrated Research Experiment (SHIRE): onshore seismic acquisition field report. Rep. , GNS Sci., Lower Hutt, N.Z:.
    [Google Scholar]
  72. Kameda J, Hina S, Kobayashi K, Yamaguchi A, Hamada Y, et al. 2012.. Silica diagenesis and its effect on interplate seismicity in cold subduction zones. . Earth Planet. Sci. Lett. 317::13644
    [Crossref] [Google Scholar]
  73. Kaneko Y, Ito Y, Chow B, Wallace LM, Tape C, et al. 2019.. Ultra-long duration of seismic ground motion arising from a thick, low-velocity sedimentary wedge. . J. Geophys. Res. Solid Earth 124::1034759
    [Crossref] [Google Scholar]
  74. Leah H, Fagereng Å, Meneghini F, Morgan JK, Savage HM, et al. 2020.. Mixed brittle and viscous strain localization in pelagic sediments seaward of the Hikurangi Margin, New Zealand. . Tectonics 39::e2019TC005965
    [Crossref] [Google Scholar]
  75. Lewis KB, Lallemand SE, Carter L. 2004.. Collapse in a Quaternary shelf basin off East Cape, New Zealand: evidence for passage of a subducted seamount inboard of the Ruatoria giant avalanche. . N.Z. J. Geol. Geophys. 47::41529
    [Crossref] [Google Scholar]
  76. Litchfield N, Ellis S, Berryman K, Nicol A. 2007.. Insights into subduction-related uplift along the Hikurangi Margin, New Zealand, using numerical modeling. . J. Geophys. Res. 112:(F2):F02021
    [Google Scholar]
  77. Marone C. 1998.. Laboratory-derived friction laws and their application to seismic faulting. . Annu. Rev. Earth Planet. Sci. 26::64396
    [Crossref] [Google Scholar]
  78. Mazengarb C, Speden IG. 2000.. Geology of the Raukumara area: scale 1:250,000. . In Institute of Geological & Nuclear Sciences 1:250,000 geological map. Map, GNS Sci., Lower Hutt, N.Z:.
    [Google Scholar]
  79. McArthur AD, Claussmann B, Bailleul J, Clare A, McCaffrey W. 2019.. Variation in syn-subduction sedimentation patterns from inner to outer portions of deep-water fold and thrust belts: examples from the Hikurangi subduction margin of New Zealand. . Geol. Soc. Lond. Spec. Publ. 490:(1):285310
    [Crossref] [Google Scholar]
  80. McCaffrey R, Wallace L, Beavan J. 2008.. Slow slip events and the frictional transition zone observed at low temperature beneath the Hikurangi subduction zone, New Zealand. . Nat. Geosci. 1:(5):31620
    [Crossref] [Google Scholar]
  81. McNamara D, Behboudi E, Wallace L, Saffer D, Cook A, et al. 2021.. Variable in situ stress orientations across the northern Hikurangi subduction margin. . Geophys. Res. Lett. 48::e2020GL091707
    [Crossref] [Google Scholar]
  82. Morgan JK, Bangs NL. 2017.. Recognizing seamount-forearc collisions at accretionary margins: insights from discrete numerical simulations. . Geology 45::63538
    [Crossref] [Google Scholar]
  83. Mortimer B, Smith Lyttle B, Black J. 2020.. Tectonic map of Te Riu-a-Māui/Zealandia. Scale 1:8 500 000. Map, GNS Sci. , Lower Hutt, N.Z:.
    [Google Scholar]
  84. Mortimer N, Parkinson D. 1996.. Hikurangi Plateau: a Cretaceous large igneous province in the southwest Pacific Ocean. . J. Geophys. Res. 101:(B1):68796
    [Crossref] [Google Scholar]
  85. Nicol A, Mazengarb C, Chanier F, Rait G, Uruski C, Wallace L. 2007.. Tectonic evolution of the active Hikurangi subduction margin, New Zealand, since the Oligocene. . Tectonics 26:(4):TC4002
    [Crossref] [Google Scholar]
  86. Nicol A, Wallace LM. 2007.. Temporal stability of deformation rates: comparison of geological and geodetic observations, Hikurangi subduction margin, New Zealand. . Earth Planet. Sci. Lett. 258::397413
    [Crossref] [Google Scholar]
  87. Pecher IA, Gorman AR, Henrys SA, Stagpoole VM, Fohrman M, Toulmin SJ. 2010.. Gas hydrates exploration on the Hikurangi Margin, New Zealand, 2010. Rep., GNS Sci., Lower Hutt, N.Z:.
    [Google Scholar]
  88. Pedley KL, Barnes PM, Pettinga JR, Lewis KB. 2010.. Seafloor structural geomorphic evolution of the accretionary frontal wedge in response to seamount subduction, Poverty Indentation, New Zealand. . Mar. Geol. 270::11938
    [Crossref] [Google Scholar]
  89. Perez-Silva A, Kaneko Y, Savage M, Wallace L, Warren-Smith E. 2023.. Characteristics of slow slip events explained by rate-strengthening faults subject to periodic pore fluid pressure changes. . J. Geophys. Res. Solid Earth 128::e2022JB026332
    [Crossref] [Google Scholar]
  90. Pettinga JR. 1982.. Upper Cenozoic structural history, coastal southern Hawkes Bay, New Zealand. . N.Z. J. Geol. Geophys. 25::14991
    [Crossref] [Google Scholar]
  91. Pizer C, Clark K, Howarth J, Garrett E, Wang X, et al. 2021.. Paleotsunamis on the southern Hikurangi subduction zone, New Zealand, show regular recurrence of large subduction earthquakes. . Seism. Rec. 1::7584
    [Crossref] [Google Scholar]
  92. Pizer C, Clark K, Howarth J, Howell A, Delano J, et al. 2023.. A 5000 yr record of coastal uplift and subsidence reveals multiple source faults for past earthquakes on the central Hikurangi margin, New Zealand. . Geol. Soc. Am. Bull. 136:(7–8):270222
    [Google Scholar]
  93. Plaza-Faverola A, Henrys SA, Pecher IA, Wallace LM, Klaeschen D. 2016.. Splay fault branching from the Hikurangi subduction shear zone: implications for slow slip and fluid flow. . Geochem. Geophys. Geosyst. 17:(12):500923
    [Crossref] [Google Scholar]
  94. Plaza-Faverola A, Klaeschen D, Barnes P, Pecher IA, Henrys S, Mountjoy J. 2012.. Evolution of fluid expulsion and concentrated hydrate zones across the southern Hikurangi subduction margin, New Zealand: an analysis from depth migrated seismic data. . Geochem. Geophys. Geosyst. 13::Q08018
    [Crossref] [Google Scholar]
  95. Pytte A, Reynolds R. 1989.. The thermal transformation of smectite to illite. . In Thermal History of Sedimentary Basins: Methods and Case Histories, ed. ND Naeser, TH McCulloh , pp. 13340. New York:: Springer
    [Google Scholar]
  96. Rabinowitz H, Savage H, Skarbek R, Ikari MJ, Carpenter BM, Collettini C. 2018.. Frictional behavior of input sediments to the Hikurangi Trench, New Zealand. . Geochem. Geophys. Geosyst. 19::297390
    [Crossref] [Google Scholar]
  97. Reyes AG, Ellis SM, Christenson BW, Henrys S. 2022.. Fluid flowrates and compositions and water–rock interaction in the Hikurangi margin forearc, New Zealand. . Chem. Geol. 614::121169
    [Crossref] [Google Scholar]
  98. Reyners M, Eberhart-Phillips D. 2009.. Small earthquakes provide insight into plate coupling and fluid distribution in the Hikurangi subduction zone, New Zealand. . Earth Planet. Sci. Lett. 282::299305
    [Crossref] [Google Scholar]
  99. Reyners M, Eberhart-Phillips D, Bannister S. 2011.. Tracking repeated subduction of the Hikurangi Plateau beneath New Zealand. . Earth Planet. Sci. Lett. 311::16571
    [Crossref] [Google Scholar]
  100. Rowe CD, Moore JC, Remitti F, IODP Exped. 343/343T Sci. 2013.. The thickness of subduction plate boundary faults from the seafloor into the seismogenic zone. . Geology 41::99194
    [Crossref] [Google Scholar]
  101. Rubin AM. 2008.. Episodic slow slip events and rate-and-state friction. . J. Geophys. Res. Solid Earth 113:(B11):B11414
    [Crossref] [Google Scholar]
  102. Ruh JB, Sallàres V, Ranero CR, Taras G. 2016.. Crustal deformation dynamics and stress evolution during seamount subduction: high-resolution 3D numerical modelling. . J. Geophys. Res. Solid Earth 121:(9):6880902
    [Crossref] [Google Scholar]
  103. Saffer DM, Tobin HJ. 2011.. Hydrogeology and mechanics of subduction zone forearcs: fluid flow and pore pressure. . Annu. Rev. Earth Planet. Sci. 39::15786
    [Crossref] [Google Scholar]
  104. Saffer DM, Wallace LM. 2015.. The frictional, hydrologic, metamorphic and thermal habitat of shallow slow earthquakes. . Nat. Geosci. 8::594600
    [Crossref] [Google Scholar]
  105. Saffer DM, Wallace LM, Barnes PM, Pecher IA, Petronotis KE, et al. 2019.. Expedition 372B/375 summary. . In Hikurangi Subduction Margin Coring, Logging, and Observatories, ed. LM Wallace, DM Saffer, PM Barnes, IA Pecher, KE Petronotis, et al . College Station, TX:: Int. Ocean Discov. Program
    [Google Scholar]
  106. Scherwath M, Kopp H, Flueh ER, Henrys SA, Sutherland R, et al. 2010.. Forearc deformation and underplating at the northern Hikurangi Margin, New Zealand. . J. Geophys. Res. 115:(B6):B06408
    [Google Scholar]
  107. Scholz CH. 1998.. Earthquakes and friction laws. . Nature 391::3742
    [Crossref] [Google Scholar]
  108. Seebeck H, Dissen RV, Litchfield N, Barnes PM, Nicol A, et al. 2023.. The New Zealand Community Fault Model–version 1.0: an improved geological foundation for seismic hazard modelling. . N.Z. J. Geol. Geophys. 67:(2):20929
    [Crossref] [Google Scholar]
  109. Shaddox HR, Schwartz SY. 2019.. Subducted seamount diverts shallow slow slip to the forearc of the northern Hikurangi subduction zone, New Zealand. . Geology 47::41518
    [Crossref] [Google Scholar]
  110. Shibazaki B, Shimamoto T. 2007.. Modelling of short-interval silent slip events in deeper subduction interfaces considering the frictional properties at the unstable–stable transition regime. . Geophys. J. Int. 171::191205
    [Crossref] [Google Scholar]
  111. Shreedharan S, Ikari M, Wood C, Saffer D, Wallace L, Marone C. 2022.. Frictional and lithological controls on shallow slow slip at the northern Hikurangi margin. . Geochem. Geophys. Geosyst. 23::e2021GC010107
    [Crossref] [Google Scholar]
  112. Shreedharan S, Saffer D, Wallace LM, Williams C. 2023.. Ultralow frictional healing explains recurring slow slip events. . Science 379::71217
    [Crossref] [Google Scholar]
  113. Stevens DE, McNeill YLC, Henstock TJ, Barnes PM, Crutchley G, et al. 2024.. Structural variation along the southern Hikurangi subduction zone, Aotearoa New Zealand, from seismic reflection and retro-deformation analysis. . Tectonics 43::e2023TC008212
    [Crossref] [Google Scholar]
  114. Sun T, Ellis S, Saffer D. 2020a.. Coupled evolution of deformation, pore fluid pressure, and fluid flow in shallow subduction forearcs. . J. Geophys. Res. Solid Earth 125::e2019JB019101
    [Crossref] [Google Scholar]
  115. Sun T, Saffer DE, Ellis S. 2020b.. Mechanical and hydrological effects of seamount subduction on megathrust stress and slip. . Nat. Geosci. 13::24955
    [Crossref] [Google Scholar]
  116. Sutherland R, Stagpoole V, Uruski CI, Kennedy C, Bassett D, et al. 2009.. Reactivation of tectonics, crustal underplating and uplift after 60 Myr of passive subsidence, Raukumara Basin, Hikurangi-Kermadec plate boundary, northeastern New Zealand: implications for global growth and recycling of continents. . Tectonics 28::TC5017
    [Crossref] [Google Scholar]
  117. Timm C, Hoernle K, Werner R, Hauff F, van den Bogaard P, et al. 2010.. Temporal and geochemical evolution of the Cenozoic intraplate volcanism of Zealandia. . Earth-Sci. Rev. 98::3864
    [Crossref] [Google Scholar]
  118. Todd EK, Schwartz SY, Mochizuki K, Wallace LM, Sheehan AF, et al. 2018.. Earthquakes and tremor linked to seamount subduction during shallow slow slip at the Hikurangi margin, New Zealand. . J. Geophys. Res. Solid Earth 123:(8):676983
    [Crossref] [Google Scholar]
  119. Underwood M. 2007.. Sediment inputs to subduction zones: why lithostratigraphy and clay mineralogy matter. . In The Seismogenic Zone of Subduction Thrust Faults, ed. HD Timothy, M Casey , pp. 4285. New York:: Columbia Univ. Press
    [Google Scholar]
  120. Underwood M. 2021.. Data report: clay mineral assemblages within trench-floor and accreted trench-floor deposits, IODP Expedition 372B/375 Sites U1518 and U1520, offshore New Zealand. . In Hikurangi Subduction Margin Coring, Logging, and Observatories, Vol. 372B/375, ed. LM Wallace, DM Saffer, PM Barnes, IA Pecher, KE Petronotis, et al . College Station, TX:: Int. Ocean Discov. Program
    [Google Scholar]
  121. Van Rijsingen E, Funiciello F, Corbi F, Lallemand S. 2019.. Rough subducting seafloor reduces interseismic coupling and mega-earthquake occurrence: insights from analogue models. . Geophys. Res. Lett. 46::312432
    [Crossref] [Google Scholar]
  122. Wallace LM. 2020.. Slow slip events in New Zealand. . Annu. Rev. Earth Planet. Sci. 48::175203
    [Crossref] [Google Scholar]
  123. Wallace LM, Barnes P, Beavan J, Van Dissen R, Litchfield N, et al. 2012a.. The kinematics of a transition from subduction to strike-slip: an example from the central New Zealand plate boundary. . J. Geophys. Res. 117:(B2):B02405
    [Google Scholar]
  124. Wallace LM, Beavan J. 2010.. Diverse slow slip behavior at the Hikurangi subduction margin, New Zealand. . J. Geophys. Res. 115:(B12):B12402
    [Google Scholar]
  125. Wallace LM, Beavan J, McCaffrey R, Darby D. 2004.. Subduction zone coupling and tectonic block rotations in the North Island, New Zealand. . J. Geophys. Res. 109:(B12):B12406
    [Google Scholar]
  126. Wallace LM, Cochran UA, Power WL, Clark KJ. 2014.. Earthquake and tsunami potential of the Hikurangi subduction thrust, New Zealand: insights from paleoseismology, GPS, and tsunami modeling. . Oceanography 27::10417
    [Crossref] [Google Scholar]
  127. Wallace LM, Eberhart-Phillips D. 2013.. Newly observed, deep slow slip events at the central Hikurangi margin, New Zealand: implications for downdip variability of slow slip and tremor, and relationship to seismic structure. . Geophys. Res. Lett. 40::539398
    [Crossref] [Google Scholar]
  128. Wallace LM, Ellis S, Miyao K, Miura S, Beavan J, Goto J. 2009a.. Enigmatic, highly active left-lateral shear zone in southwest Japan explained by aseismic ridge collision. . Geology 37::14346
    [Crossref] [Google Scholar]
  129. Wallace LM, Fagereng Å, Ellis S. 2012b.. Upper plate tectonic stress state may influence interseismic coupling on subduction megathrusts. . Geology 40::89598
    [Crossref] [Google Scholar]
  130. Wallace LM, Hreinsdóttir S, Ellis S, Hamling I, D'Anastasio E, Denys P. 2018.. Triggered slow slip and afterslip on the southern Hikurangi subduction zone following the Kaikōura earthquake. . Geophys. Res. Lett. 45::471018
    [Crossref] [Google Scholar]
  131. Wallace LM, Reyners M, Cochran U, Bannister S, Barnes PM, et al. 2009b.. Characterizing the seismogenic zone of a major plate boundary subduction thrust: Hikurangi Margin, New Zealand. . Geochem. Geophys. Geosyst. 10::Q10006
    [Google Scholar]
  132. Wallace LM, Webb SC, Ito Y, Mochizuki K, Hino R, et al. 2016.. Slow slip near the trench at the Hikurangi subduction zone, New Zealand. . Science 352::7014
    [Crossref] [Google Scholar]
  133. Wang K, Bilek SL. 2011.. Do subducting seamounts generate or stop large earthquakes?. Geology 39::81922
    [Crossref] [Google Scholar]
  134. Wang M, Barnes PM, Morgan JK, Bell RE, Moore GF, et al. 2023.. Compactive deformation of incoming calcareous pelagic sediments, northern Hikurangi subduction margin, New Zealand: implications for subduction processes. . Earth Planet. Sci. Lett. 605::118022
    [Crossref] [Google Scholar]
  135. Warren-Smith E, Fry B, Wallace L, Chon E, Henrys S, et al. 2019.. Episodic stress and fluid pressure cycling in subducting oceanic crust during slow slip. . Nat. Geosci. 12::47581
    [Crossref] [Google Scholar]
  136. Watson SJ, Mountjoy JJ, Barnes PM, Crutchley GJ, Lamarche G, et al. 2020.. Focused fluid seepage related to variations in accretionary wedge structure, Hikurangi margin, New Zealand. . Geology 48::5661
    [Crossref] [Google Scholar]
  137. Wei M, Kaneko Y, Shi P, Liu Y. 2018.. Numerical modeling of dynamically triggered shallow slow slip events in New Zealand by the 2016 Mw 7.8 Kaikoura earthquake. . Geophys. Res. Lett. 45::476472
    [Crossref] [Google Scholar]
  138. Williams C, Eberhart-Phillips D, Bannister S, Barker DHN, Henrys S, et al. 2013.. Revised interface geometry for the Hikurangi subduction zone, New Zealand. . Seismol. Res. Lett. 84::106673
    [Crossref] [Google Scholar]
  139. Wood R, Davy B. 1994.. The Hikurangi Plateau. . Mar. Geol. 118::15373
    [Crossref] [Google Scholar]
  140. Woodhouse A, Barnes PM, Shorrock A, Strachan LJ, Crundwell M, et al. 2022.. Trench floor depositional response to glacio-eustatic changes over the last 45 ka, northern Hikurangi subduction margin, New Zealand. . N.Z. J. Geol. Geophys. 67:(3):31235
    [Crossref] [Google Scholar]
  141. Woods K, Webb S, Wallace L, Ito Y, Collins C, et al. 2022.. Using seafloor geodesy to detect vertical deformation at the Hikurangi subduction zone: insights from self-calibrating pressure sensors and ocean general circulation models. . J. Geophys. Res. Solid Earth 127::e2022JB023989
    [Crossref] [Google Scholar]
  142. Yabe S, Ide S, Yoshioka S. 2014.. Along-strike variations in temperature and tectonic tremor activity along the Hikurangi subduction zone, New Zealand. . Earth Planets Space 66::142
    [Crossref] [Google Scholar]
  143. Yarce J, Sheehan A, Nakai J, Schwartz S, Mochizuki K, et al. 2019.. Seismicity at the northern Hikurangi Margin, New Zealand, and investigation of the potential spatial and temporal relationships with a shallow slow slip event. . J. Geophys. Res. Solid Earth 124::475166
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-earth-040523-115520
Loading
/content/journals/10.1146/annurev-earth-040523-115520
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error