1932

Abstract

Readers will be led down a random path from continental dynamics to paleoclimate. A key to understanding continental dynamics is recognizing that differences in gravitational potential energy per unit area between high and low terrain govern much of large-scale continental deformation. Removal of mantle lithosphere, not just crustal thickening, plays a crucial, but difficult-to-test, role in changes in surface elevation. Although measuring past surface heights remains a challenge, indications of such processes suggest that surface uplift associated with such removal can affect relative plate motion. Climate change, from a warmer to cooler climate, and associated changes in erosion and sedimentation introduce further complications to determining past elevations. The phenomena that led to such cooling include a number of possibilities, but I favor the emergence of islands in the Maritime continent, which transformed the Pacific Ocean from one with a warm eastern tropical Pacific, as during El Niño events, to the present-day La Niña–like background state. Teleconnections from the eastern tropical Pacific to Canada affect the duration of summers and the potential of high-latitude ice to accumulate.

  • ▪  Lateral gradients in gravitational potential energy per unit area (GPE), a force per unit length, govern large-scale continental dynamics.
  • ▪  Removal of mantle lithosphere and thickening of crust raise GPE; knowledge of mean surface elevations provides a test of these processes.
  • ▪  Climate change from a warmer to cooler climate and from one with less to more erosion can give the false impression of elevation change.
  • ▪  Emergence of Indonesian islands, more rain over them, a stronger Walker Circulation, and cooler eastern Pacific may have led to ice ages.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-040722-111915
2024-07-23
2025-06-13
Loading full text...

Full text loading...

/deliver/fulltext/earth/52/1/annurev-earth-040722-111915.html?itemId=/content/journals/10.1146/annurev-earth-040722-111915&mimeType=html&fmt=ahah

Literature Cited

  1. Artyushkov EV. 1973.. Stresses in the lithosphere caused by crustal thickness inhomogeneities. . J. Geophys. Res. 78:(32):7675708
    [Google Scholar]
  2. As-syakur AR, Tanaka T, Osawa T, Mahendra MS. 2013.. Indonesian rainfall variability observation using TRMM multi-satellite data. . Int. J. Remote Sensing 34::772338
    [Google Scholar]
  3. Bacon CD, Molnar P, Antonelli A, Crawford AJ, Montes C, Vallejo-Pareja MC. 2016.. Quaternary glaciation and the Great American Biotic Interchange. . Geology 44::37578
    [Google Scholar]
  4. Barazangi M, Ni J. 1982.. Velocities and propagation characteristics of Pn and Sn beneath the Himalayan arc and Tibetan Plateau: possible evidence for underthrusting of the Indian continental lithosphere beneath Tibet. . Geology 10::17985
    [Google Scholar]
  5. Beghoul N, Barazangi M, Isacks BL. 1993.. Lithospheric structure of Tibet and western North America: mechanisms of uplift and a comparative study. . J. Geophys. Res. 98:(B2):19972016
    [Google Scholar]
  6. Bird P. 1979.. Continental delamination and the Colorado Plateau. . J. Geophys. Res. 84:(B13):756171
    [Google Scholar]
  7. Bird P, Piper K. 1980.. Plane-stress finite-element models of tectonic flow in southern California. . Phys. Earth Planet. Int. 21::58175
    [Google Scholar]
  8. Bjerknes J. 1969.. Atmospheric teleconnections from the equatorial Pacific. . Mon. Weather Rev. 97::16372
    [Google Scholar]
  9. Boos WR, Emanuel KA. 2008.. Wind–evaporation feedback and abrupt seasonal transitions of weak, axisymmetric Hadley circulations. . J. Atmos. Sci. 65::2194214
    [Google Scholar]
  10. Boos WR, Kuang Z-M. 2010.. Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. . Nature 463::21822
    [Google Scholar]
  11. Boos WR, Kuang Z-M. 2013.. Sensitivity of the South Asian monsoon to elevated and non-elevated heating. . Sci. Rep. 3::1192
    [Google Scholar]
  12. Bordoni S, Schneider T. 2008.. Monsoons as eddy-mediated regime transitions of the tropical overturning circulation. . Nat. Geosci. 1::51519
    [Google Scholar]
  13. Brandon C, Romanowicz B. 1986.. A “no-lid” zone in the central Chang-Thang platform of Tibet: evidence from pure path phase velocity measurements of long period Rayleigh waves. . J. Geophys. Res. 91:(B6):654764
    [Google Scholar]
  14. Brierley C, Burls N, Ravelo C, Fedorov A. 2015.. Pliocene warmth and gradients. . Nat. Geosci. 8::41920
    [Google Scholar]
  15. Brierley CM, Fedorov AV. 2010.. Relative importance of meridional and zonal sea surface temperature gradients for the onset of the ice ages and Pliocene-Pleistocene climate evolution. . Paleoceanography 25::PA2214
    [Google Scholar]
  16. Brierley CM, Fedorov AV, Liu Z-H, Herbert TD, Lawrence KT, LaRiviere JP. 2009.. Greatly expanded tropical warm pool and weakened Hadley circulation in the early Pliocene. . Science 323::171418
    [Google Scholar]
  17. Burls NJ, Fedorov AV. 2017.. Wetter subtropics in a warmer world: contrasting past and future hydrological cycles. . PNAS 114::1288893
    [Google Scholar]
  18. Bush MB, Colinvaux PA. 1990.. A pollen record of a complete glacial cycle from lowland Panama. . J. Veg. Sci. 1::10518
    [Google Scholar]
  19. Cane MA, Molnar P. 2001.. Closing of the Indonesian seaway as a precursor to east African aridification around 3–4 million years ago. . Nature 411::15762
    [Google Scholar]
  20. Chen M, Niu F, Tromp J, Lenardic A, Lee C-TA, et al. 2017.. Lithospheric foundering and underthrusting imaged beneath Tibet. . Nat. Commun. 8::15659
    [Google Scholar]
  21. Chen W-P, Jiang Y. 2020.. Undulating Moho beneath a near-uniform surface of central Tibet. . Earth Planet. Sci. Lett. 543::116343
    [Google Scholar]
  22. Chen W-P, Nábělek JL, Fitch TJ, Molnar P. 1981.. An intermediate depth earthquake beneath Tibet: source characteristics of the event of September 14, 1976. . J. Geophys. Res. 86:(B4):286376
    [Google Scholar]
  23. Chiang JCH, Bitz CM. 2005.. Influence of high latitude ice cover on the marine Intertropical Convergence Zone. . Clim. Dyn. 25::47796
    [Google Scholar]
  24. Conrad CP. 2000.. Convective instability of thickening mantle lithosphere. . Geophys. J. Int. 143::5270
    [Google Scholar]
  25. Conrad CP, Molnar P. 1999.. Convective instability of a boundary layer with temperature- and strain-rate-dependent viscosity in terms of ‘available buoyancy. .’ Geophys. J. Int. 139::5168
    [Google Scholar]
  26. Cronin TW, Emanuel KA, Molnar P. 2015.. Island precipitation enhancement and the diurnal cycle in radiative-convective equilibrium. . Q. J. R. Meteorol. Soc. 141::101734
    [Google Scholar]
  27. Davis P, England P, Houseman G. 1997.. Comparison of shear wave splitting and finite strain from the India-Asia collision zone. . J. Geophys. Res. 102:(B12):2751122
    [Google Scholar]
  28. Dayem KE, Noone DC, Molnar P. 2007.. Tropical western Pacific warm pool and maritime continent precipitation rates and their contrasting relationships with the Walker Circulation. . J. Geophys. Res. 112:(D6):D06101
    [Google Scholar]
  29. de la Torre TL, Monsalve G, Sheehan AF, Sapkota S, Wu F. 2007.. Earthquake processes of the Himalayan collision zone in eastern Nepal and the southern Tibetan Plateau. . Geophys. J. Int. 171::71838
    [Google Scholar]
  30. DeMets C, Merkouriev S. 2021.. Detailed reconstructions of India–Somalia Plate motion, 60 Ma to present: implications for Somalia Plate absolute motion and India–Eurasia Plate motion. . Geophys. J. Int. 227::173067
    [Google Scholar]
  31. Dricker IG, Roecker SW. 2002.. Lateral heterogeneity in the upper mantle beneath the Tibetan plateau and its surroundings from SS-S travel time residuals. . J. Geophys. Res. 107:(B11):2305
    [Crossref] [Google Scholar]
  32. Eiler JM. 2007.. “Clumped-isotope” geochemistry—the study of naturally-occurring multiply-substituted isotopologues. . Earth Planet. Sci. Lett. 262::30927
    [Crossref] [Google Scholar]
  33. Eiler JM. 2013.. The isotopic anatomies of molecules and minerals. . Annu. Rev. Earth Planet. Sci. 41::41141
    [Crossref] [Google Scholar]
  34. Elliott JR, Walters RJ, England PC, Jackson JA, Li Z, Parsons B. 2010.. Extension on the Tibetan Plateau: recent normal faulting measured by InSAR and body wave seismology. . Geophys. J. Int. 183::50335
    [Crossref] [Google Scholar]
  35. Emanuel K. 2007.. Quasi-equilibrium dynamics of the tropical atmosphere. . In The Global Circulation of the Atmosphere, ed. T Schneider, AH Sobel , pp. 186218. Princeton, NJ:: Princeton Univ. Press
    [Google Scholar]
  36. Emanuel KA. 1995.. On thermally direct circulations in moist atmospheres. . J. Atmos. Sci. 52::152934
    [Crossref] [Google Scholar]
  37. England P, Houseman G. 1986.. Finite strain calculations of continental deformation: 2. Comparison with the India-Asia collision zone. . J. Geophys. Res. 91:(B3):366476
    [Crossref] [Google Scholar]
  38. England P, McKenzie D. 1982.. A thin viscous sheet model for continental deformation. . Geophys. J. Int. 70::295321
    [Crossref] [Google Scholar]
  39. England P, McKenzie D. 1983.. Correction to: a thin viscous sheet model for continental deformation. . Geophys. J. Int. 73::52332
    [Crossref] [Google Scholar]
  40. England P, Molnar P. 1990.. Surface uplift, uplift of rocks, and exhumation of rocks. . Geology 18::117377
    [Crossref] [Google Scholar]
  41. England P, Molnar P. 2005.. Late Quaternary to decadal velocity fields in Asia. . J. Geophys. Res. 110:(B12):B12401
    [Crossref] [Google Scholar]
  42. England P, Molnar P. 2022.. Changes in plate motions caused by increases in gravitational potential energy of mountain belts. . Geochem. Geophys. Geosyst. 23::e2022GC010389
    [Crossref] [Google Scholar]
  43. England PC, Houseman GA. 1989.. Extension during continental convergence, with application to the Tibetan Plateau. . J. Geophys. Res. 94:(B12):1756179
    [Crossref] [Google Scholar]
  44. England PC, Houseman GA, Sonder L. 1985.. Length scales for continental deformation in convergent, divergent, and strike-slip environments: analytical and approximate solutions for a thin viscous sheet model. . J. Geophys. Res. 90:(B5):52332
    [Crossref] [Google Scholar]
  45. Fedorov AV, Brierley CM, Lawrence KT, Liu Z, Dekens PS, Ravelo AC. 2013.. Patterns and mechanisms of early Pliocene warmth. . Nature 496::4349
    [Crossref] [Google Scholar]
  46. Fedorov AV, Burls NJ, Lawrence KT, Peterson LC. 2015.. Tightly linked zonal and meridional sea surface temperature gradients over the past five million years. . Nat. Geosci. 8::97580
    [Crossref] [Google Scholar]
  47. Fedorov AV, Philander SG. 2001.. A stability analysis of tropical ocean–atmosphere interactions: bridging measurements and theory for El Niño. . J. Clim. 14::3086101
    [Crossref] [Google Scholar]
  48. Flesch LM, Holt WE, Silver PG, Stephenson M, Wang C-Y, Chan WW. 2005.. Constraining the extent of crust–mantle coupling in central Asia using GPS, geologic, and shear-wave splitting data. . Earth Planet. Sci. Lett. 238::24868
    [Crossref] [Google Scholar]
  49. Flohn H. 1968.. Contributions to a meteorology of the Tibetan highlands. PhD Thesis , Colo. State Univ., Fort Collins, CO:
    [Google Scholar]
  50. Florensov NA, Solonenko VP, eds. 1963.. [ The Gobi-Altai Earthquake]. Moscow:: Akad. Nauk (In Russian)
    [Google Scholar]
  51. Frank FC. 1972.. Plate tectonics, the analogy with glacier flow, and isostasy. . In Flow and Fracture of Rocks, ed. HC Heard et al. , pp. 28592. Geophys. Monogr. Ser. 16 . Washington, DC:: AGU
    [Google Scholar]
  52. Gan W-J, Molnar P, Zhang P-Z, Xiao G-R, Liang S-M, et al. 2022.. Initiation of clockwise rotation and eastward transport of the southeastern Tibet inferred from deflected fault traces and GPS observations. . Geol. Soc. Am. Bull. 134::112942
    [Crossref] [Google Scholar]
  53. Garzione CN, Hoke GD, Libarkin JC, Withers S, MacFadden B, et al. 2008.. Rise of the Andes. . Science 320::13047
    [Crossref] [Google Scholar]
  54. Garzione CN, Molnar P, Libarkin JC, MacFadden BJ. 2006.. Rapid late Miocene rise of the Bolivian Altiplano: evidence for removal of mantle lithosphere. . Earth Planet. Sci. Lett. 241::54356
    [Crossref] [Google Scholar]
  55. Ghosh P, Garzione CN, Eiler JM. 2006.. Rapid uplift of the Altiplano revealed through 13C-18O bonds in paleosol carbonates. . Science 311::51115
    [Crossref] [Google Scholar]
  56. Hager BH, Clayton RW, Richards MA, Comer RP, Dziewonski AM. 1985.. Lower mantle heterogeneity, dynamic topography and the geoid. . Nature 313::54145
    [Crossref] [Google Scholar]
  57. Harrison TM, Copeland P, Kidd WSF, Yin A. 1992.. Raising Tibet. . Science 255::166370
    [Crossref] [Google Scholar]
  58. Heidbach O, Iaffaldano G, Bunge H-P. 2008.. Topography growth drives stress rotations in the central Andes: observations and models. . Geophys. Res. Lett. 35::L08301
    [Crossref] [Google Scholar]
  59. Heisenberg W. 1971.. Physics and Beyond: Encounters and Conversations. New York:: Harper & Roe
    [Google Scholar]
  60. Herman F, Champagnac J-D. 2016.. Plio-Pleistocene increase of erosion rates in mountain belts in response to climate change. . Terra Nova 28::210
    [Crossref] [Google Scholar]
  61. Herman F, Seward D, Valla PG, Carter A, Kohn B, et al. 2013.. Worldwide acceleration of mountain erosion under a cooling climate. . Nature 504::42326
    [Crossref] [Google Scholar]
  62. Holland GJ, Keenan TD. 1980.. Diurnal variations of convection over the “maritime continent. .” Mon. Weather Rev. 108::22325
    [Crossref] [Google Scholar]
  63. Holt WE, Wallace TC. 1990.. Crustal thickness and upper mantle velocities in the Tibetan Plateau region from the inversion of regional Pnl waveforms: evidence for a thick upper mantle lid beneath southern Tibet. . J. Geophys. Res. 95:(B8):12499526
    [Crossref] [Google Scholar]
  64. Houseman GA, England PC. 1986.. A dynamical model of lithosphere extension and sedimentary basin formation. . J. Geophys. Res. 91:(B1):71929
    [Crossref] [Google Scholar]
  65. Houseman GA, McKenzie DP, Molnar P. 1981.. Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts. . J. Geophys. Res. 86:(B7):611532
    [Crossref] [Google Scholar]
  66. Houseman GA, Molnar P. 1997.. Gravitational (Rayleigh-Taylor) instability of a layer with non-linear viscosity and convective thinning of continental lithosphere. . Geophys. J. Int. 128::12550
    [Crossref] [Google Scholar]
  67. Iaffaldano G, Bunge H-P, Dixon TH. 2006.. Feedback between mountain belt growth and plate convergence. . Geology 34::89396
    [Crossref] [Google Scholar]
  68. Lawrence KT, Liu Z-H, Herbert TD. 2006.. Evolution of the eastern tropical Pacific through Plio-Pleistocene glaciation. . Science 312::7983
    [Crossref] [Google Scholar]
  69. Le Dain AY, Tapponnier P, Molnar P. 1984.. Active faulting and tectonics of Burma and surrounding regions. . J. Geophys. Res. 89:(B1):45372
    [Crossref] [Google Scholar]
  70. Leyden BW. 1984.. Guatemalan forest synthesis after Pleistocene aridity. . PNAS 81::485659
    [Crossref] [Google Scholar]
  71. Liang C-T, Song X-D. 2006.. A low velocity belt beneath northern and eastern Tibetan Plateau from Pn tomography. . Geophys. Res. Lett. 33::L22306
    [Crossref] [Google Scholar]
  72. Lindzen RS, Hou AY. 1988.. Hadley circulations for zonally averaged heating centered off the equator. . J. Atmos. Sci. 45::241627
    [Crossref] [Google Scholar]
  73. Lyon-Caen H. 1986.. Comparison of the upper mantle shear wave velocity structure of the Indian Shield and the Tibetan Plateau and tectonic implications. . Geophys. J. Int. 86::72749
    [Crossref] [Google Scholar]
  74. Macdonald FA, Swanson-Hysell NL, Park Y, Lisiecki L, Jagoutz O. 2019.. Arc-continent collisions in the tropics set Earth's climate state. . Science 364::18184
    [Crossref] [Google Scholar]
  75. Marshak S. 2012.. Earth: Portrait of a Planet. New York:: W. W. Norton & Co. , 4th ed..
    [Google Scholar]
  76. Marshall LG. 1985.. Geochronology and land-mammal biochronology of the Transamerican faunal interchange. . In The Great American Biotic Interchange, ed. FG Stehli, SD Webb , pp. 4985. New York:: Plenum
    [Google Scholar]
  77. Marshall LG, Webb SD, Sepkoski JJ Jr., Raup DM. 1982.. Mammalian evolution and the great American interchange. . Science 215::135157
    [Crossref] [Google Scholar]
  78. McKenzie DP. 1969.. Speculations on the consequences and causes of plate motions. . Geophys. J. Int. 18::132
    [Crossref] [Google Scholar]
  79. McKenzie DP. 1972.. Active tectonics of the Mediterranean system. . Geophys. J. Int. 30::10972
    [Crossref] [Google Scholar]
  80. McNamara DE, Walter WR, Owens TJ, Ammon CJ. 1997.. Upper mantle velocity structure beneath the Tibetan Plateau from Pn travel time tomography. . J. Geophys. Res. 102:(B1):493505
    [Crossref] [Google Scholar]
  81. Molnar P. 1990.. S-wave residuals from earthquakes in the Tibetan region and lateral variations in the upper mantle. . Earth Planet. Sci. Lett. 101::6877
    [Crossref] [Google Scholar]
  82. Molnar P. 2008.. Closing of the Central American Seaway and the Ice Age: a critical review. . Paleoceanography 23::PA2201
    [Crossref] [Google Scholar]
  83. Molnar P. 2022.. The rise of the Tibetan Plateau and removal of some its mantle lithosphere in light of recent observations. . Himal. Geol. 43:(1B):12339
    [Google Scholar]
  84. Molnar P, Boos WR, Battisti DS. 2010.. Orographic controls on climate and paleoclimate of Asia: thermal and mechanical roles for the Tibetan Plateau. . Annu. Rev. Earth Planet. Sci. 38::77102
    [Crossref] [Google Scholar]
  85. Molnar P, Cane MA. 2002.. El Niño's tropical climate and teleconnections as a blueprint for pre-Ice Age climates. . Paleoceanography 17:(2):11111-11
    [Crossref] [Google Scholar]
  86. Molnar P, Cane MA. 2007.. Early Pliocene (pre–Ice Age) El Niño–like Global climate: which El Niño?. Geosphere 3:(5):33765
    [Crossref] [Google Scholar]
  87. Molnar P, Chen W-P. 1983.. Focal depths and fault plane solutions of earthquakes under the Tibetan plateau. . J. Geophys. Res. 88:(B2):118096
    [Crossref] [Google Scholar]
  88. Molnar P, Cronin TW. 2015.. Growth of the Maritime Continent and its possible contribution to recurring Ice Ages. . Paleoceanography 30::196225
    [Crossref] [Google Scholar]
  89. Molnar P, England P. 1990.. Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg?. Nature 346::2934
    [Crossref] [Google Scholar]
  90. Molnar P, England P, Martinod J. 1993.. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon. . Rev. Geophys. 31::35796
    [Crossref] [Google Scholar]
  91. Molnar P, England PC, Jones CH. 2015.. Mantle dynamics, isostasy, and the support of high terrain. . J. Geophys. Res. Solid Earth 120::193257
    [Crossref] [Google Scholar]
  92. Molnar P, Fitch TJ, Wu FT. 1973.. Fault plane solutions of shallow earthquakes and contemporary tectonics in Asia. . Earth Planet. Sci. Lett. 19::10112
    [Crossref] [Google Scholar]
  93. Molnar P, Lyon-Caen H. 1988.. Some simple physical aspects of the support, structure, and evolution of mountain belts. . In Processes in Continental Lithospheric Deformation, ed. SP Clark, BC Burchfiel, J Suppe , pp. 179207. Geol. Soc. Am. Spec. Pap. 218 . Boulder, CO:: GSA
    [Google Scholar]
  94. Molnar P, Lyon-Caen H. 1989.. Fault plane solutions of earthquakes and active tectonics of the Tibetan Plateau and its margins. . Geophys. J. Int. 99::12353
    [Crossref] [Google Scholar]
  95. Molnar P, Rajagopalan B. 2012.. Late Miocene upward and outward growth of eastern Tibet and decreasing monsoon rainfall over the northwestern Indian subcontinent since ∼10 Ma. . Geophys. Res. Lett. 39::L09702
    [Crossref] [Google Scholar]
  96. Molnar P, Stock JM. 2009.. Slowing of India's convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics. . Tectonics 28::TC3001
    [Crossref] [Google Scholar]
  97. Molnar P, Tapponnier P. 1975.. Cenozoic tectonics of Asia: effects of a continental collision. . Science 189::41926
    [Crossref] [Google Scholar]
  98. Molnar P, Tapponnier P. 1978.. Active tectonics of Tibet. . J. Geophys. Res. 83:(B11):536175
    [Crossref] [Google Scholar]
  99. Molnar P, Tapponnier P. 1981.. A possible dependence of tectonic strength on the age of the crust in Asia. . Earth Planet. Sci. Lett. 52::10714
    [Crossref] [Google Scholar]
  100. Montes C, Bayona G, Cardona A, Buchs DM, Silva CA, et al. 2012b.. Arc-continent collision and orocline formation: closing of the Central American seaway. . J. Geophys. Res. 117:(B4):B04105
    [Crossref] [Google Scholar]
  101. Montes C, Cardona A, Jaramillo CA, Pardo A, Silva JC, et al. 2015.. Middle Miocene closure of the Central American Seaway. . Science 348::22629
    [Crossref] [Google Scholar]
  102. Montes C, Cardona A, McFadden R, Morón SE, Silva CA, et al. 2012a.. Evidence for middle Eocene and younger land emergence in central Panama: implications for Isthmus closure. . Geol. Soc. Am. Bull. 124::78099
    [Crossref] [Google Scholar]
  103. Morgan WJ. 1965a.. Gravity anomalies and convection currents. 1. A sphere and a cylinder sinking beneath the surface of a viscous fluid. . J. Geophys. Res. 70:(24):617587
    [Crossref] [Google Scholar]
  104. Morgan WJ. 1965b.. Gravity anomalies and convection currents. 2. The Puerto Rico Trench and the Mid-Atlantic Rise. . J. Geophys. Res. 70:(24):6189204
    [Crossref] [Google Scholar]
  105. Neelin JD. 2007.. Moist dynamics of tropical convection zones in monsoons, teleconnections, and global warming. . In The Global Circulation of the Atmosphere, ed. T Schneider, AH Sobel , pp. 267301. Princeton, NJ:: Princeton Univ. Press
    [Google Scholar]
  106. Ni J, Barazangi M. 1983.. High-frequency seismic wave propagation beneath the Indian Shield, Himalayan Arc, Tibetan Plateau, and surrounding regions: high uppermost mantle velocities and efficient Sn propagation beneath Tibet. . Geophys. J. Int. 72::66589
    [Crossref] [Google Scholar]
  107. Norabuena EO, Dixon TH, Stein S, Harrison CGA. 1999.. Decelerating Nazca–South America and Nazca-Pacific plate motions. . Geophys. Res. Lett. 26::34058
    [Crossref] [Google Scholar]
  108. Owens TJ, Zandt G. 1997.. Implications of crustal property variations for models of Tibetan plateau evolution. . Nature 387::3743
    [Crossref] [Google Scholar]
  109. Park Y, Maffre P, Goddéris Y, Macdonald FA, Anttila ESC, Swanson-Hysell NL. 2020.. Emergence of the Southeast Asian islands as a driver for Neogene cooling. . PNAS 117::2531926
    [Crossref] [Google Scholar]
  110. Pekeris CL. 1935.. Thermal convection in the interior of the Earth. . Geophys. J. Int. 3::34367
    [Crossref] [Google Scholar]
  111. Philander SG, Fedorov AV. 2003.. Role of tropics in changing the response to Milankovich forcing some three million years ago. . Paleoceanography 18:(2):1045
    [Crossref] [Google Scholar]
  112. Piperno DR. 2006.. Quaternary environmental history and agricultural impact on vegetation in Central America. . Ann. Mo. Bot. Garden 93::27496
    [Crossref] [Google Scholar]
  113. Piperno DR, Jones JG. 2003.. Paleoecological and archaeological implications of a Late Pleistocene/Early Holocene record of vegetation and climate from the Pacific coastal plain of Panama. . Quat. Res. 59::7987
    [Crossref] [Google Scholar]
  114. Plumb RA, Hou AY. 1992.. The response of a zonally symmetric atmosphere to subtropical thermal forcing: threshold behavior. . J. Atmos. Sci. 49::179099
    [Crossref] [Google Scholar]
  115. Prell WL, Murray DW, Clemens SC, Anderson DM. 1992.. Evolution and variability of the Indian Ocean summer monsoon: evidence from the western Arabian Sea drilling program. . In Synthesis of Results from Scientific Drilling in the Indian Ocean, ed. RA Duncan, DK Rea, RB Kidd, U von Rad, JK Weissel , pp. 44769. Geophys. Monogr. Ser. 70. Washington, DC:: AGU
    [Google Scholar]
  116. Priestley K, Jackson J, McKenzie D. 2008.. Lithospheric structure and deep earthquakes beneath India, the Himalaya and southern Tibet. . Geophys. J. Int. 172::34562
    [Crossref] [Google Scholar]
  117. Privé NC, Plumb RA. 2007a.. Monsoon dynamics with interactive forcing. Part I: axisymmetric studies. . J. Atmos. Sci. 64::141730
    [Crossref] [Google Scholar]
  118. Privé NC, Plumb RA. 2007b.. Monsoon dynamics with interactive forcing. Part II: impact of eddies and asymmetric geometries. . J. Atmos. Sci. 64::143142
    [Crossref] [Google Scholar]
  119. Quade J, Garzione C, Eiler J. 2007.. Paleoelevation reconstruction using pedogenic carbonates. . Rev. Mineral. Geochem. 66::5387
    [Crossref] [Google Scholar]
  120. Rajagopalan B, Molnar P. 2013.. Signatures of Tibetan Plateau heating on Indian summer monsoon rainfall variability. . J. Geophys. Res. Atmos. 118::117078
    [Crossref] [Google Scholar]
  121. Rajagopalan B, Molnar P. 2014.. Combining regional moist static energy and ENSO for forecasting of early and late season Indian monsoon rainfall and its extremes. . Geophys. Res. Lett. 41::432331
    [Crossref] [Google Scholar]
  122. Ravelo AC, Andreasen DH, Lyle M, Olivarez Lyle A, Wara MW. 2004.. Regional climate shifts caused by gradual global cooling in the Pliocene epoch. . Nature 429::26367
    [Crossref] [Google Scholar]
  123. Ren Y, Shen Y. 2008.. Finite frequency tomography in southeastern Tibet: evidence for the causal relationship between mantle lithosphere delamination and the north–south trending rifts. . J. Geophys. Res. 113:(B10):B10316
    [Crossref] [Google Scholar]
  124. Rodgers KB, Latif M, Legutke S. 2000.. Sensitivity of equatorial Pacific and Indian Ocean watermasses to the position of the Indonesian throughflow. . Geophys. Res. Lett. 27::294144
    [Crossref] [Google Scholar]
  125. Rowley DB, Garzione CN. 2007.. Stable isotope-based paleoaltimetry. . Annu. Rev. Earth Planet. Sci. 35::463508
    [Crossref] [Google Scholar]
  126. Ruddiman WF. 2008.. Earth's Climate: Past and Future. New York:: W. H. Freeman & Co. , 2nd ed..
    [Google Scholar]
  127. Shapiro NM, Ritzwoller MH. 2002.. Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantle. . Geophys. J. Int. 151::88105
    [Crossref] [Google Scholar]
  128. Sobel AH, Burleyson CD, Yuter SE. 2011.. Rain on small tropical islands. . J. Geophys. Res. 116:(D8):D08102
    [Crossref] [Google Scholar]
  129. Stanley SM, Luczaj JA. 2012.. Earth System History. New York:: W. H. Freeman & Co. , 4th ed..
    [Google Scholar]
  130. Tapponnier P, Molnar P. 1976.. Slip-line field theory and large-scale continental tectonics. . Nature 264::31924
    [Crossref] [Google Scholar]
  131. Tapponnier P, Molnar P. 1977.. Active faulting and tectonics of China. . J. Geophys. Res. 82:(20):290530
    [Crossref] [Google Scholar]
  132. Tapponnier P, Molnar P. 1979.. Active faulting and Cenozoic tectonics of the Tien Shan, Mongolia and Baykal regions. . J. Geophys. Res. 84:(B7):342559
    [Crossref] [Google Scholar]
  133. Tseng T-L, Chen W-P, Nowack RL. 2009.. Northward thinning of Tibetan crust revealed by virtual seismic profiles. . Geophys. Res. Lett. 36::L24304
    [Google Scholar]
  134. von der Heydt AS, Nnafie A, Dijkstra HA. 2011.. Cold tongue/warm pool and ENSO dynamics in the Pliocene. . Clim. Past 7::90315
    [Crossref] [Google Scholar]
  135. Walker CC, Schneider T. 2006.. Eddy influences on Hadley circulations: simulations with an idealized GCM. . J. Atmos. Sci. 63::333350
    [Crossref] [Google Scholar]
  136. Wang M, Shen Z-K. 2020.. Present-day crustal deformation of continental China derived from GPS and its tectonic implications. . J. Geophys. Res. Solid Earth 125::e2019JB018774
    [Crossref] [Google Scholar]
  137. Wang Z-Q, Yang S, Duan A-M, Hua W, Ullah K, Liu S-F. 2019.. Tibetan Plateau heating as a driver of monsoon rainfall variability in Pakistan. . Clim. Dyn. 52::612130
    [Crossref] [Google Scholar]
  138. Wara MW, Ravelo AC, Delaney ML. 2005.. Permanent El Niño-like conditions during the Pliocene warm period. . Science 309::75861
    [Crossref] [Google Scholar]
  139. Webb SD. 1976.. Mammalian faunal dynamics of the great American interchange. . Paleobiology 2::22034
    [Crossref] [Google Scholar]
  140. Webb SD. 1978.. A history of savanna vertebrates in the New World. Part II: South America and the Great Interchange. . Annu. Rev. Ecol. Syst. 9::393426
    [Crossref] [Google Scholar]
  141. Webb SD. 1985.. Late Cenozoic of mammal dispersals between the Americas. . In The Great American Biotic Interchange, ed. FG Stehli, SD Webb , pp. 35786. New York:: Plenum
    [Google Scholar]
  142. Webb SD. 1991.. Ecogeography and the Great American Interchange. . Paleobiology 17::26680
    [Crossref] [Google Scholar]
  143. Webb SD. 1997.. The great American faunal interchange. . In Central America: A Natural and Cultural History, ed. AG Coates , pp. 97122. New Haven, CT:: Yale Univ. Press
    [Google Scholar]
  144. Webb SD. 2006.. The Great American Biotic Interchange: patterns and processes. . Ann. Mo. Bot. Garden 93::24557
    [Crossref] [Google Scholar]
  145. Willett SD, Herman F, Fox M, Stalder N, Ehlers TA, et al. 2021.. Bias and error in modelling thermochronometric data: resolving a potential increase in Plio-Pleistocene erosion rate. . Earth Surf. Dyn. 9::1153221
    [Crossref] [Google Scholar]
  146. Woodward RL, Molnar P. 1995.. Lateral heterogeneity in the upper mantle and SS-S traveltime intervals for SS rays reflected from the Tibetan Plateau and its surroundings. . Earth Planet. Sci. Lett. 135::13948
    [Crossref] [Google Scholar]
  147. Wu G-X, Liu Y-M, He B, Bao Q, Duan A-M, Jin F-F. 2012.. Thermal controls on the Asian summer monsoon. . Sci. Rep. 2::404
    [Crossref] [Google Scholar]
  148. Wu G-X, Liu Y-M, Wang T-M, Wan R-J, Liu X, et al. 2007.. The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate. . J. Hydrometeorol. 8::77089
    [Crossref] [Google Scholar]
  149. Wycech JB, Gill E, Rajagopalan B, Marchitto TM Jr., Molnar PH. 2020.. Multiproxy reduced-dimension reconstruction of Pliocene equatorial Pacific sea surface temperatures. . Paleoceanogr. Paleoclimatol. 35::e2019PA003685
    [Crossref] [Google Scholar]
  150. Zhang P-Z, Shen Z-K, Wang M, Gan W-J, Bürgmann R, et al. 2004.. Continuous deformation of the Tibetan Plateau from global positioning system data. . Geology 32::80912
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-earth-040722-111915
Loading
/content/journals/10.1146/annurev-earth-040722-111915
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error