1932

Abstract

Mantle minerals at shallow depths contain iron in the high-spin electronic state. The crystal-field splitting energy increases with increasing pressure, which can favor the low-spin state. Hence, pressure-driven transitions from the high-spin to the low-spin state were proposed as early as the 1960s, and minerals in the lower mantle were suggested to contain iron in the low-spin state. Only in the past 10 years did experiments and calculations prove that iron in mantle minerals transforms from high-spin to low-spin at lower-mantle pressures. This transition has important consequences for volume, thermodynamics, and bonding. In a geophysical framework, the transition would affect the dynamics and thermochemical state of the lower mantle, through combined effects on density, elasticity, element partitioning, and transport properties. These observations provide the basis for a new paradigm of the physics and chemistry in Earth's lower(most) mantle.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-042711-105304
2014-05-30
2024-04-13
Loading full text...

Full text loading...

/deliver/fulltext/earth/42/1/annurev-earth-042711-105304.html?itemId=/content/journals/10.1146/annurev-earth-042711-105304&mimeType=html&fmt=ahah

Literature Cited

  1. Agee CB. 1993. Petrology of the mantle transition zone. Annu. Rev. Earth Planet. Sci. 21:19–41 [Google Scholar]
  2. Allegre CJ, Poirier JP, Humler E, Hofmann AW. 1995. The chemical composition of the Earth. Earth Planet. Sci. Lett. 134:515–26 [Google Scholar]
  3. Ammann MW, Brodholt JP, Dobson DP. 2011. Ferrous iron diffusion in ferro-periclase across the spin transition. Earth Planet. Sci. Lett. 302:393–402The first study of diffusivity and viscosity across a spin transition. [Google Scholar]
  4. Antonangeli D, Siebert J, Aracne CM, Farber DL, Bosak A. et al. 2011. Spin crossover in ferropericlase at high pressure: a seismologically transparent transition?. Science 331:64–67 [Google Scholar]
  5. Auzende AL, Badro J, Ryerson FJ, Weber PK, Fallon SJ. et al. 2008. Element partitioning between magnesium silicate perovskite and ferropericlase: new insights into bulk lower-mantle geochemistry. Earth Planet. Sci. Lett. 269:164–74The first study of iron partitioning between perovskite and ferropericlase across the spin transition. [Google Scholar]
  6. Badro J, Fiquet G, Guyot F. 2005. Thermochemical state of the lower mantle: new insights from mineral physics. Earth's Deep Mantle: Structure, Composition, and Evolution ed. RD Van Der Hilst, JD Bass, J Matas, J Trampert 241–60 Geophys. Monogr. Ser. 160 Washington, DC: AGU [Google Scholar]
  7. Badro J, Fiquet G, Guyot F, Rueff JP, Struzhkin VV. et al. 2003. Iron partitioning in Earth's mantle: toward a deep lower mantle discontinuity. Science 300:789–91The first experimental observation of a spin transition in a mantle mineral, namely ferropericlase, occurring at lower-mantle pressures. [Google Scholar]
  8. Badro J, Rueff JP, Vanko G, Monaco G, Fiquet G, Guyot F. 2004. Electronic transitions in perovskite: possible nonconvecting layers in the lower mantle. Science 305:383–86The first experimental observation of spin transitions in perovskite. [Google Scholar]
  9. Bengtson A, Persson K, Morgan D. 2008. Ab initio study of the composition dependence of the pressure-induced spin crossover in perovskite (Mg1−x,Fex)SiO3. Earth Planet. Sci. Lett. 265:535–45 [Google Scholar]
  10. Brodholt JP. 2000. Pressure-induced changes in the compression mechanism of aluminous perovskite in the Earth's mantle. Nature 407:620–22 [Google Scholar]
  11. Burns RG. 1993. Mineralogical Application of Crystal Field Theory Cambridge, UK: Cambridge Univ. Press
  12. Cammarano F, Marquardt H, Speziale S, Tackley PJ. 2010. Role of iron-spin transition in ferropericlase on seismic interpretation: a broad thermochemical transition in the mid mantle?. Geophys. Res. Lett. 37:L03308 [Google Scholar]
  13. Caracas R, Mainprice D, Thomas C. 2010. Is the spin transition in Fe2+-bearing perovskite visible in seismology?. Geophys. Res. Lett. 37:L13309 [Google Scholar]
  14. Catalli K, Shim SH, Prakapenka V. 2009. Thickness and Clapeyron slope of the post-perovskite boundary. Nature 462:782–85 [Google Scholar]
  15. Catalli K, Shim SH, Prakapenka VB, Zhao J, Sturhahn W. 2010a. X-ray diffraction and Mössbauer spectroscopy of Fe3+-bearing Mg-silicate post-perovskite at 128–138 GPa. Am. Mineral. 95:418–21 [Google Scholar]
  16. Catalli K, Shim SH, Prakapenka VB, Zhao JY, Sturhahn W. et al. 2010b. Spin state of ferric iron in MgSiO3 perovskite and its effect on elastic properties. Earth Planet. Sci. Lett. 289:68–75 [Google Scholar]
  17. Chen B, Jackson JM, Sturhahn W, Zhang DZ, Zhao JY. et al. 2012. Spin crossover equation of state and sound velocities of (Mg0.65Fe0.35)O ferropericlase to 140 GPa. J. Geophys. Res. 117:B08208 [Google Scholar]
  18. Crowhurst JC, Brown JM, Goncharov AF, Jacobsen SD. 2008. Elasticity of (Mg,Fe)O through the spin transition of iron in the lower mantle. Science 319:451–53 [Google Scholar]
  19. Fei YW, Zhang L, Corgne A, Watson H, Ricolleau A. et al. 2007. Spin transition and equations of state of (Mg,Fe)O solid solutions. Geophys. Res. Lett. 34:L17307 [Google Scholar]
  20. Fiquet G. 2001. Mineral phases of the Earth's mantle. Z. Kristallogr. 216:248–71 [Google Scholar]
  21. Fujino K, Nishio-Hamane D, Kuwayama Y, Sata N, Murakami S. et al. 2013. Spin transition and substitution of Fe3+ in Al-bearing post-Mg-perovskite. Phys. Earth Planet. Inter. 217:31–35 [Google Scholar]
  22. Fujino K, Nishio-Hamane D, Seto Y, Sata N, Nagai T. et al. 2012. Spin transition of ferric iron in Al-bearing Mg-perovskite up to 200 GPa and its implication for the lower mantle. Earth Planet. Sci. Lett. 317:407–12 [Google Scholar]
  23. Fyfe WS. 1960. The possibility of d-electron coupling in olivine at high pressures. Geochim. Cosmochim. Acta 19:141–43The first publication suggesting the possibility of spin transition driven by high pressure in mantle minerals. [Google Scholar]
  24. Goncharov AF, Haugen BD, Struzhkin VV, Beck P, Jacobsen SD. 2008. Radiative conductivity in the Earth's lower mantle. Nature 456:231–34 [Google Scholar]
  25. Goncharov AF, Struzhkin VV, Jacobsen SD. 2006. Reduced radiative conductivity of low-spin (Mg,Fe)O in the lower mantle. Science 312:1205–8The first study of absorption and radiative thermal conductivity across a spin transition. [Google Scholar]
  26. Goncharov AF, Struzhkin VV, Montoya JA, Kharlamova S, Kundargi R. et al. 2010. Effect of composition, structure, and spin state on the thermal conductivity of the Earth's lower mantle. Phys. Earth Planet. Inter. 180:148–53 [Google Scholar]
  27. Grocholski B, Catalli K, Shim SH, Prakapenka V. 2012. Mineralogical effects on the detectability of the postperovskite boundary. Proc. Natl. Acad. Sci. USA 109:2275–79 [Google Scholar]
  28. Grocholski B, Shim SH, Sturhahn W, Zhao J, Xiao Y, Chow PC. 2009. Spin and valence states of iron in (Mg0.8Fe0.2)SiO3 perovskite. Geophys. Res. Lett. 36:L24303 [Google Scholar]
  29. Gu C, Catalli K, Grocholski B, Gao LL, Alp E. et al. 2012. Electronic structure of iron in magnesium silicate glasses at high pressure. Geophys. Res. Lett. 39:L24304 [Google Scholar]
  30. Hsu H, Blaha P, Cococcioni M, Wentzcovitch RM. 2011. Spin-state crossover and hyperfine interactions of ferric iron in MgSiO3 perovskite. Phys. Rev. Lett. 106:118501 [Google Scholar]
  31. Hsu H, Umemoto K, Blaha P, Wentzcovitch RM. 2010. Spin states and hyperfine interactions of iron in (Mg,Fe)SiO3 perovskite under pressure. Earth Planet. Sci. Lett. 294:19–26 [Google Scholar]
  32. Hsu H, Yu YGG, Wentzcovitch RM. 2012. Spin crossover of iron in aluminous MgSiO3 perovskite and post-perovskite. Earth Planet. Sci. Lett. 359:34–39 [Google Scholar]
  33. Jackson JM, Sturhahn W, Shen GY, Zhao JY, Hu MY. et al. 2005. A synchrotron Mössbauer spectroscopy study of (Mg,Fe)SiO3 perovskite up to 120 GPa. Am. Mineral. 90:199–205 [Google Scholar]
  34. Keppler H, Dubrovinsky LS, Narygina O, Kantor I. 2008. Optical absorption and radiative thermal conductivity of silicate perovskite to 125 Gigapascals. Science 322:1529–32 [Google Scholar]
  35. Keppler H, Kantor I, Dubrovinsky LS. 2007. Optical absorption spectra of ferropericlase to 84 GPa. Am. Mineral. 92:433–36 [Google Scholar]
  36. Komabayashi T, Hirose K, Nagaya Y, Sugimura E, Ohishi Y. 2010. High-temperature compression of ferropericlase and the effect of temperature on iron spin transition. Earth Planet. Sci. Lett. 297:691–99 [Google Scholar]
  37. Li J, Struzhkin VV, Mao HK, Shu JF, Hemley RJ. et al. 2004. Electronic spin state of iron in lower mantle perovskite. Proc. Natl. Acad. Sci. USA 101:14027–30 [Google Scholar]
  38. Li J, Sturhahn W, Jackson JM, Struzhkin VV, Lin JF. et al. 2006. Pressure effect on the electronic structure of iron in (Mg,Fe)(Si,Al)O3 perovskite: a combined synchrotron Mössbauer and X-ray emission spectroscopy study up to 100 GPa. Phys. Chem. Miner. 33:575–85 [Google Scholar]
  39. Li L, Brodholt JP, Stackhouse S, Weidner DJ, Alfredsson M, Price GD. 2005. Electronic spin state of ferric iron in Al-bearing perovskite in the lower mantle. Geophys. Res. Lett. 32:L17307The first DFT calculation of spin transition in perovskite. [Google Scholar]
  40. Lin JF, Alp EE, Mao Z, Inoue T, McCammon C. et al. 2012. Electronic spin states of ferric and ferrous iron in the lower-mantle silicate perovskite. Am. Mineral. 97:592–97 [Google Scholar]
  41. Lin JF, Speziale S, Mao Z, Marquardt H. 2013. Effects of the electronic spin transitions of iron in lower mantle minerals: implications for deep mantle geophysics and geochemistry. Rev. Geophys. 51:244–75A recent and thorough review article on the effect of spin transitions in Earth's lower mantle. [Google Scholar]
  42. Lin JF, Struzhkin VV, Jacobsen SD, Hu MY, Chow P. et al. 2005. Spin transition of iron in magnesiowüstite in the Earth's lower mantle. Nature 436:377–80The first experimental observation of a spin transition at combined high pressure and temperature, at lower-mantle P and T. [Google Scholar]
  43. Lin JF, Vanko G, Jacobsen SD, Iota V, Struzhkin VV. et al. 2007a. Spin transition zone in Earth's lower mantle. Science 317:1740–43 [Google Scholar]
  44. Lin JF, Watson H, Vanko G, Alp EE, Prakapenka VB. et al. 2008. Intermediate-spin ferrous iron in lowermost mantle post-perovskite and perovskite. Nat. Geosci. 1:688–91 [Google Scholar]
  45. Lin JF, Weir ST, Jackson DD, Evans WJ, Vohra YK. et al. 2007b. Electrical conductivity of the lower-mantle ferropericlase across the electronic spin transition. Geophys. Res. Lett. 34:L16305 [Google Scholar]
  46. Lyubetskaya T, Korenaga J. 2007. Chemical composition of Earth's primitive mantle and its variance. 1. Method and results. J. Geophys. Res. 112:B03211 [Google Scholar]
  47. Mao Z, Lin JF, Jacobs C, Watson HC, Xiao Y. et al. 2010. Electronic spin and valence states of Fe in CaIrO3-type silicate post-perovskite in the Earth's lowermost mantle. Geophys. Res. Lett. 37:L22304 [Google Scholar]
  48. Mao Z, Lin JF, Scott HP, Watson HC, Prakapenka VB. et al. 2011. Iron-rich perovskite in the Earth's lower mantle. Earth Planet. Sci. Lett. 309:179–84 [Google Scholar]
  49. Masters G, Johnson S, Laske G, Bolton H. 1996. A shear-velocity model of the mantle. Philos. Trans. R. Soc. A 354:1385–410 [Google Scholar]
  50. McCammon C, Dubrovinsky L, Narygina O, Kantor I, Wu X. et al. 2010. Low-spin Fe2+ in silicate perovskite and a possible layer at the base of the lower mantle. Phys. Earth Planet. Inter. 180:215–21 [Google Scholar]
  51. McCammon C, Kantor I, Narygina O, Rouquette J, Ponkratz U. et al. 2008. Stable intermediate-spin ferrous iron in lower-mantle perovskite. Nat. Geosci. 1:684–87 [Google Scholar]
  52. McDonough WF, Sun SS. 1995. The composition of the Earth. Chem. Geol. 120:223–53 [Google Scholar]
  53. Murakami M, Hirose K, Kawamura K, Sata N, Ohishi Y. 2004. Post-perovskite phase transition in MgSiO3. Science 304:855–58 [Google Scholar]
  54. Nomura R, Ozawa H, Tateno S, Hirose K, Hernlund J. et al. 2011. Spin crossover and iron-rich silicate melt in the Earth's deep mantle. Nature 473:199–202 [Google Scholar]
  55. Ohta K, Hirose K, Onoda S, Shimizu K. 2007. The effect of iron spin transition on electrical conductivity of (Mg,Fe)O magnesiowüstite. Proc. Jpn. Acad. B 83:97–100The first study of electrical conductivity across a spin transition. [Google Scholar]
  56. Ohta K, Hirose K, Shimizu K, Sata N, Ohishi Y. 2010. The electrical resistance measurements of (Mg,Fe)SiO3 perovskite at high pressures and implications for electronic spin transition of iron. Phys. Earth Planet. Inter. 180:154–58 [Google Scholar]
  57. Persson K, Bengtson A, Ceder G, Morgan D. 2006. Ab initio study of the composition dependence of the pressure-induced spin transition in the (Mg1−x,Fex)O system. Geophys. Res. Lett. 33:L16306 [Google Scholar]
  58. Ringwood AE. 1966. Chemical evolution of the terrestrial planets. Geochim. Cosmochim. Acta 30:41–104 [Google Scholar]
  59. Saha S, Bengtson A, Crispin KL, Van Orman JA, Morgan D. 2011. Effects of spin transition on diffusion of Fe2+ in ferropericlase in Earth's lower mantle. Phys. Rev. B 84:184102 [Google Scholar]
  60. Saha S, Bengtson A, Morgan D. 2013. Effect of anomalous compressibility on Fe diffusion in ferropericlase throughout the spin crossover in the lower mantle. Earth Planet. Sci. Lett. 362:1–5 [Google Scholar]
  61. Sakai T, Ohtani E, Terasaki H, Miyahara M, Nishijima M. et al. 2010. Fe-Mg partitioning between post-perovskite and ferropericlase in the lowermost mantle. Phys. Chem. Miner. 37:487–96 [Google Scholar]
  62. Sakai T, Ohtani E, Terasaki H, Sawada N, Kobayashi Y. et al. 2009. Fe-Mg partitioning between perovskite and ferropericlase in the lower mantle. Am. Mineral. 94:921–25 [Google Scholar]
  63. Sherman DM. 1991. The high-pressure electronic structure of magnesiowüstite (Mg,Fe)O: applications to the physics and chemistry of the lower mantle. J. Geophys. Res. 96:B914299–312 [Google Scholar]
  64. Sinmyo R, Hirose K. 2013. Iron partitioning in pyrolitic lower mantle. Phys. Chem. Miner. 40:107–13 [Google Scholar]
  65. Sinmyo R, Hirose K, Nishio-Hamane D, Seto Y, Fujino K. et al. 2008. Partitioning of iron between perovskite/postperovskite and ferropericlase in the lower mantle. J. Geophys. Res. 113:B11204 [Google Scholar]
  66. Speziale S, Lee VE, Clark SM, Lin JF, Pasternak MP, Jeanloz R. 2007. Effects of Fe spin transition on the elasticity of (Mg,Fe)O magnesiowüstites and implications for the seismological properties of the Earth's lower mantle. J. Geophys. Res. 112:B10212 [Google Scholar]
  67. Speziale S, Milner A, Lee VE, Clark SM, Pasternak MP, Jeanloz R. 2005. Iron spin transition in Earth's mantle. Proc. Natl. Acad. Sci. USA 102:17918–22 [Google Scholar]
  68. Stackhouse S, Brodholt JP, Dobson DP, Price GD. 2006. Electronic spin transitions and the seismic properties of ferrous iron-bearing MgSiO3 post-perovskite. Geophys. Res. Lett. 33:L12S03 [Google Scholar]
  69. Stackhouse S, Brodholt JP, Price GD. 2007. Electronic spin transitions in iron-bearing MgSiO3 perovskite. Earth Planet. Sci. Lett. 253:282–90 [Google Scholar]
  70. Sturhahn W, Jackson JM, Lin JF. 2005. The spin state of iron in minerals of Earth's lower mantle. Geophys. Res. Lett. 32:L12307 [Google Scholar]
  71. Tsuchiya T, Wentzcovitch RM, da Silva CRS, de Gironcoli S. 2006. Spin transition in magnesiowüstite in Earth's lower mantle. Phys. Rev. Lett. 96:198501The first DFT calculation of spin transition in ferropericlase. [Google Scholar]
  72. Umemoto K, Wentzcovitch RM, Yu YG, Requist R. 2008. Spin transition in (Mg,Fe)SiO3 perovskite under pressure. Earth Planet. Sci. Lett. 276:198–206 [Google Scholar]
  73. Wentzcovitch RM, Justo JF, Wu Z, da Silva CRS, Yuen DA, Kohlstedt D. 2009. Anomalous compressibility of ferropericlase throughout the iron spin cross-over. Proc. Natl. Acad. Sci. USA 106:8447–52 [Google Scholar]
/content/journals/10.1146/annurev-earth-042711-105304
Loading
/content/journals/10.1146/annurev-earth-042711-105304
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error