1932

Abstract

The two cosmogenic isotopes 129I and 36Cl have half-lives and geochemical characteristics that make their application of interest in the tracing of crustal fluids, oil field brines, and geothermal fluids. The focus of this review is to compare 129I data from volcanic fluids with those from mud volcanoes and gas hydrate locations associated with the same subduction zone in order to demonstrate that fundamentally different hydrologic systems are present in active margins. Whereas 129I/I ratios in volcanic fluids are site dependent and show a relation to the ages of subducting marine sediments, ratios in fore arc fluids are similar in all sites investigated and are independent of the ages of the host sediments and the age of the subducting slab. Volcanic fluids contain iodine transported in sediments from the trench to the main volcanic zone, whereas iodine in fore arc fluids is derived from organic material stored in the upper plates of subduction zones.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-042711-105528
2012-05-30
2025-06-19
Loading full text...

Full text loading...

/deliver/fulltext/earth/40/1/annurev-earth-042711-105528.html?itemId=/content/journals/10.1146/annurev-earth-042711-105528&mimeType=html&fmt=ahah

Literature Cited

  1. Aldahan A, Alfimov V, Possnert G. 2007. 129I anthropogenic budget: major sources and sinks. Appl. Geochem. 22:3606–18 [Google Scholar]
  2. Alfimov V, Aldahan A, Possnert G. 2004. Tracing water masses with 129I in the western Nordic Seas in early spring 2002. Geophys. Res. Lett. 31:L19305 [Google Scholar]
  3. Andrews JN, Davis SN, Fabryka-Martin J, Fontes J-C, Lehmann BE. et al. 1989. The in situ production of radioisotopes in rock matrices with particular reference to the Stripa granite. Geochim. Cosmochim. Acta 53:1803–15 [Google Scholar]
  4. Archer D, Buffett B, Brovkin V. 2009. Ocean methane hydrates as a slow tipping point in the global carbon cycle. Proc. Natl. Acad. Sci. USA 106:4920596–601 [Google Scholar]
  5. Argento DC, Stone JO, Fifield LK, Tims SG. 2010. Chlorine-36 in seawater. Nucl. Instrum. Methods Phys. Res. B 268:1226–28 [Google Scholar]
  6. Bennett CL, Beukens RP, Clover MR, Gove HE, Liebert RB. et al. 1977. Radiocarbon dating using electrostatic accelerators: Negative ions provide the key. Science 198:508–10 [Google Scholar]
  7. Bentley HW, Phillips FM, Davis SN. 1986a. Chlorine-36 in the terrestrial environment. Handbook of Environmental Isotope Geochemistry P Fritz, J-C Fontes 427–80 Amsterdam: Elsevier [Google Scholar]
  8. Bentley HW, Phillips FM, Davis SN, Gifford S, Elmore D. et al. 1982. Thermonuclear 36Cl pulse in natural water. Nature 300:737–40 [Google Scholar]
  9. Bentley HW, Phillips FM, Davis SN, Habermehl MA, Airey PL. et al. 1986b. Chlorine-36 dating of very old groundwater: 1. The Great Artesian Basin, Australia. Water Resour. Res. 22:1991–2001 [Google Scholar]
  10. Birkle P. 2006. Application of 129I/127I to define the source of hydrocarbons of the Pol-Chuc, Abkatún and Taratunich-Batab oil reservoirs, Bay of Campeche, southern Mexico. J. Geochem. Explor. 89:15–18 [Google Scholar]
  11. Bottomley DJ, Renaud R, Kotzer T, Clark I. 2002. Iodine-129 constraints on residence times of deep marine brines in the Canadian Shield. Geology 30:587–90 [Google Scholar]
  12. Boudreau BP. 1997. Diagenetic Models and Their Implementation: Modelling Transport and Reactions in Aquatic Sediments Berlin: /New York: Springer414 [Google Scholar]
  13. Broecker WS, Peng T-H. 1982. Tracers in the Sea Palisades, NY: Eldigio690 [Google Scholar]
  14. Cooper LW, Beasley TM, Zhao X-L, Soto C, Vinogradova KL, Dunton KH. 1998. Iodine-129 and plutonium isotopes in Arctic kelp as historical indicators of transport of nuclear fuel-reprocessing wastes from mid-to-high latitudes in the Atlantic Ocean. Mar. Biol. 131:391–99 [Google Scholar]
  15. Daraoui A. 2010. Migration von Iod-129 und Retrospektive Dosimetrie PhD thesis . Gottfried Wilhelm Leibniz Universität Hannover, Ger.212 [Google Scholar]
  16. Davis SN, Cecil LD, Zreda M, Moysey S. 2001. Chlorine-36, bromide, and the origin of spring water. Chem. Geol. 179:3–16 [Google Scholar]
  17. Davis SN, Moysey S, Cecil LD, Zreda M. 2003. Chlorine-36 in groundwater of the United States: empirical data. Hydrogeol. J. 11:2217–27 [Google Scholar]
  18. De Carvalho HG, Martins JB, Medeiros EL, Tavares OAP. 1982. Decay constant for the spontaneous-fission process in 238U. Nucl. Instrum. Methods Phys. Res. 197:417–26 [Google Scholar]
  19. Egeberg PK, Barth T. 1998. Contribution of dissolved organic species to the carbon and energy budgets of hydrate bearing deep sea sediments (Ocean Drilling Program Site 997 Blake Ridge). Chem. Geol. 149:25–35 [Google Scholar]
  20. Egeberg PK, Dickens GR. 1999. Thermodynamic and halogen pore water constraints on gas hydrate distribution at ODP Site 997 (Blake Ridge). Chem. Geol. 153:53–79 [Google Scholar]
  21. Elderfield H, Truesdale VW. 1980. On the biophilic nature of iodine in seawater. Earth Planet. Sci. Lett. 50:105–14 [Google Scholar]
  22. Elmore D, Fulton BR, Clover MR, Marsden JR, Gove HE. et al. 1979. Analysis of 36Cl in environmental water samples using an electrostatic accelerator. Nature 277:22–25 [Google Scholar]
  23. Elmore D, Gove HE, Ferraro R, Kilius L, Lee HW. et al. 1980. Determination of 129I using tandem accelerator mass spectrometry. Nature 286:138–40 [Google Scholar]
  24. Emmermann R, Lauterjung J. 1997. German Continental Deep Drilling Program KTB: overview and major results. J. Geophys. Res. 102:18179–202 [Google Scholar]
  25. Fabryka-Martin JT, Bentley HW, Elmore D, Airey PL. 1985. Natural iodine-129 as an environmental tracer. Geochim. Cosmochim. Acta 49:337–47 [Google Scholar]
  26. Fabryka-Martin JT, Davis SN, Elmore D. 1987. Applications of 129I and 36Cl in hydrology. Nucl. Instrum. Methods Phys. Res. B 29:361–71 [Google Scholar]
  27. Fabryka-Martin JT, Davis SN, Elmore D, Kubik PW. 1989. In situ production and migration of 129I in the Stripa granite, Sweden. Geochim. Cosmochim. Acta 53:1817–23 [Google Scholar]
  28. Fabryka-Martin J, Whittemore DO, Davis SN, Kubik PW, Sharma P. 1991. Geochemistry of halogens in the Milk River aquifer, Alberta, Canada. Appl. Geochem. 6:4447–64 [Google Scholar]
  29. Fehn U, Holdren GR, Elmore D, Brunelle T, Teng R, Kubik PW. 1986. Determination of natural and anthropogenic 129I in marine sediments. Geophys. Res. Lett. 13:137–39 [Google Scholar]
  30. Fehn U, Lu Z, Tomaru H. 2006. Data report: 129I/I ratios and halogen concentrations in pore water of Hydrate Ridge and their relevance for the origin of gas hydrates: a progress report. Proceedings of the Ocean Drilling Program, Scientific Results 204 AM Tréhu, G Bohrmann, ME Torres, FS Colwell, Ms 204SR-107 College Station, TX: Ocean Drill. Program [Google Scholar]
  31. Fehn U, Moran JE, Snyder GT, Muramatsu Y. 2007a. The initial 129I/I ratio and the presence of ‘old’ iodine in continental margins. Nucl. Instrum. Methods Phys. Res. B 259:496–502 [Google Scholar]
  32. Fehn U, Peters EK, Tullai-Fitzpatrick S, Kubik PW, Sharma P. et al. 1992. 129I and 36Cl concentrations in waters of the eastern Clear Lake area, California: residence times and source ages of hydrothermal fluids. Geochim. Cosmochim. Acta 56:2069–79 [Google Scholar]
  33. Fehn U, Snyder GT. 2003. Origin of iodine and 129I in volcanic and geothermal fluids from the North Island of New Zealand: implications for subduction zone processes. Soc. Econ. Geol. Spec. Publ. 10:159–70 [Google Scholar]
  34. Fehn U, Snyder GT. 2005. Residence times and source ages of deep crustal fluids: interpretation of 129I and 36Cl results from the KTB-VB drill site, Germany. Geofluids 5:42–51 [Google Scholar]
  35. Fehn U, Snyder GT, Egeberg PK. 2000. Dating of pore waters with 129I: relevance for the origin of marine gas hydrates. Science 289:2332–35 [Google Scholar]
  36. Fehn U, Snyder GT, Matsumoto R, Muramatsu Y, Tomaru H. 2003. Iodine dating of pore waters associated with gas hydrates in the Nankai area, Japan. Geology 31:521–24 [Google Scholar]
  37. Fehn U, Snyder GT, Muramatsu Y. 2007b. Iodine as a tracer of organic material: 129I results from gas hydrate systems and fore arc fluids. J. Geochem. Explor. 95:66–80 [Google Scholar]
  38. Fehn U, Snyder GT, Varekamp JC. 2002. Detection of recycled marine sediment components in crater lake fluids using 129I. J. Volcanol. Geotherm. Res. 115:451–60 [Google Scholar]
  39. Fehn U, Tullai-Fitzpatrick S, Teng RTD, Gove HE, Kubik PW. et al. 1990. Dating of oil field brines using 129I. Nucl. Instrum. Methods Phys. Res. B 52:446–50 [Google Scholar]
  40. Fröhlich K, Ivanovich M, Hendry MJ, Andrews JN, Davis SN. et al. 1991. Application of isotopic methods to dating of very old groundwaters: Milk River aquifer, Alberta, Canada. Appl. Geochem. 6:4465–72 [Google Scholar]
  41. Hebeda EH, Schultz L, Freundel M. 1987. Radiogenic, fissiogenic, and nucleogenic noble gases in zircons. Earth Planet. Sci. Lett. 267:79–90 [Google Scholar]
  42. Hou XL, Zhou WJ, Chen N, Zhang LY, Liu Q. et al. 2010. Determination of ultralow level 129I/127I in natural samples by separation of microgram carrier free iodine and accelerator mass spectrometry detection. Anal. Chem. 82:187713–21 [Google Scholar]
  43. Hurwitz S, Mariner RH, Fehn U, Snyder GT. 2005. Systematics of halogen elements and their radioisotopes in thermal springs of the Cascade Range, Central Oregon, Western USA. Earth Planet. Sci. Lett. 235:700–14 [Google Scholar]
  44. Jarrard RD. 1986. Relations among subduction parameters. Rev. Geophys. 24:217–84 [Google Scholar]
  45. Johnson KS. 1994. Iodine. Industrial Minerals and Rocks DD Carr 583–88 Littleton, CO: Soc. Min. Metall. Explor., 6th. ed. [Google Scholar]
  46. Kaplan DI, Roberts KA, Schwehr KA, Lilley MS, Brinkmeyer R. et al. 2011. Evaluation of a radioiodine plume increasing in concentration at the Savannah River Site. Environ. Sci. Technol. 45:2489–95 [Google Scholar]
  47. Kennedy HA, Elderfield H. 1987. Iodine diagenesis in pelagic deep-sea sediments. Geochim. Cosmochim. Acta 51:2489–504 [Google Scholar]
  48. Küpper FC, Carpenter LJ, McFiggans GB, Palmer CJ, Waite TJ. et al. 2008. Iodide accumulation provides kelp with an inorganic antioxidant impacting atmospheric chemistry. Proc. Natl. Acad. Sci. USA 105:196954–58 [Google Scholar]
  49. Kvenvolden KA. 1999. Potential effects of gas hydrate on human welfare. Proc. Natl. Acad. Sci. USA 96:3420–26 [Google Scholar]
  50. Kvenvolden KA, Rogers BW. 2005. Gaia's breath—global methane exhalations. Mar. Pet. Geol. 22:4579–90 [Google Scholar]
  51. Li GJ, Ji JF, Chen J, Kemp DB. 2009. Evolution of the Cenozoic carbon cycle: the roles of tectonics and CO2 fertilization. Global Biogeochem. Cycles 23:GB1009 [Google Scholar]
  52. Liu X, Fehn U, Teng RTD. 1997. Oil formation and fluid convection in Railroad Valley, NV: a study using cosmogenic isotopes to determine the onset of hydrocarbon migration. Nucl. Instrum. Methods Phys. Res. B 123:356–60 [Google Scholar]
  53. Lu Z. 2008. Halogen and I-129 systematics in gas hydrate fields: implications for the transport of iodine and methane in active margins PhD thesis Univ. Rochester, N. Y.148 [Google Scholar]
  54. Lu Z, Fehn U, Tomaru H, Elmore D, Ma X. 2007a. Reliability of 129I/I ratios produced from small sample masses. Nucl. Instrum. Methods Phys. Res. B 259:359–64 [Google Scholar]
  55. Lu Z, Hensen C, Fehn U, Wallmann K. 2007b. Old iodine in fluids venting along the Central American convergent margin. Geophys. Res. Lett. 34:L22604 [Google Scholar]
  56. Lu Z, Hensen C, Fehn U, Wallmann K. 2008a. Halogen and 129I systematics in gas hydrate fields at the northern Cascadia margin (IODP Expedition 311): insights from numerical modeling. Geochem. Geophys. Geosyst. 9:Q10006 [Google Scholar]
  57. Lu Z, Jenkyns HC, Rickaby REM. 2010. Iodine to calcium ratios in marine carbonate as a paleo-redox proxy during oceanic anoxic events. Geology 38:121107–10 [Google Scholar]
  58. Lu Z, Tomaru H, Fehn U. 2008b. Iodine ages of pore waters at Hydrate Ridge (ODP Leg 204), Cascadia Margin: implications for sources of methane in gas hydrates. Earth Planet. Sci. Lett. 267:3–4654–65 [Google Scholar]
  59. Lu Z, Tomaru H, Fehn U. 2011. Comparison of iodine dates from mud volcanoes and gas hydrate occurrences: relevance for the movement of fluids and methane in active margins. Am. J. Sci. 311:632–50 [Google Scholar]
  60. Mahara Y, Habermehl MA, Hasegawa T, Nakata K, Ransley TR. et al. 2009. Groundwater dating by estimation of groundwater flow velocity and dissolved 4He accumulation rate calibrated by 36Cl in the Great Artesian Basin, Australia. Earth Planet. Sci. Lett. 287:1–243–56 [Google Scholar]
  61. Martin JB, Gieskes JM, Torres M, Kastner M. 1993. Bromine and iodine in Peru margin sediments and pore fluids: implications for fluid origins. Geochim. Cosmochim. Acta 57:4377–89 [Google Scholar]
  62. Matsuzaki H, Tsuchiya YS, Muramatsu Y, Maejima Y, Miyairi Y, Kato K. 2010. Comparison of depth profiles of 129I and 14C concentration in the surface layer of soils collected from northeastern Japan. Radiocarbon 52:31487–97 [Google Scholar]
  63. Milkov AV. 2004. Global estimates of hydrate-bound gas in marine sediments: How much is really out there?. Earth-Sci. Rev. 66:3–4183–97 [Google Scholar]
  64. Moran JE. 1996. Origin of iodine in the Anadarko Basin, Oklahoma: an 129I study. AAPG Bull. 80:5685–94 [Google Scholar]
  65. Moran JE, Fehn U, Hanor JS. 1995. Determination of source ages and migration patterns of brines from the U.S. Gulf Coast basin using 129I. Geochim. Cosmochim. Acta 59:245055–69 [Google Scholar]
  66. Moran JE, Fehn U, Teng RTD. 1998. Variations in 129I/127I ratios in recent marine sediments: evidence for a fossil organic component. Chem. Geol. 152:193–203 [Google Scholar]
  67. Moran JE, Oktay S, Santschi PH, Schink DR. 1999. Atmospheric dispersal of 129iodine from nuclear fuel reprocessing facilities. Environ. Sci. Technol. 33:152536–42 [Google Scholar]
  68. Morris JD, Gosse J, Brachfeld S, Tera F. 2002. Cosmogenic Be-10 and the Solid Earth: studies in geomagnetism, subduction zone processes, and active tectonics. Rev. Mineral. Geochem. 50:207–70 [Google Scholar]
  69. Muramatsu Y, Fehn U, Yoshida S. 2001. Recycling of iodine in fore-arc areas: evidence from the iodine brines in Chiba, Japan. Earth Planet. Sci. Lett. 192:583–93 [Google Scholar]
  70. Muramatsu Y, Wedepohl KH. 1998. The distribution of iodine in the earth's crust. Chem. Geol. 147:201–16 [Google Scholar]
  71. Nelson DE, Korteling RG, Stott WR. 1977. Carbon-14: direct detection at natural concentrations. Science 198:507–8 [Google Scholar]
  72. Phillips FM, Zreda MG, Smith SS, Elmore D, Kubik PW, Sharma P. 1990. Cosmogenic chlorine-36 chronology for glacial deposits at Bloody Canyon, eastern Sierra Nevada. Science 248:1529–32 [Google Scholar]
  73. Pohlman JW, Bauer JE, Waite WF, Osburn CL, Chapman NR. 2011. Methane hydrate-bearing seeps as a source of aged dissolved organic carbon to the oceans. Nat. Geosci. 4:137–41 [Google Scholar]
  74. Pohlman JW, Kaneko M, Heuer VB, Coffin RB, Whiticar M. 2009. Methane sources and production in the northern Cascadia margin gas hydrate system. Earth Planet. Sci. Lett. 287:3–4504–12 [Google Scholar]
  75. Pyle DM, Mather TA. 2009. Halogens in igneous processes and their fluxes to the atmosphere and oceans from volcanic activity: a review. Chem. Geol. 263:110–21 [Google Scholar]
  76. Raisbeck GM, Yiou F. 1999. 129I in the oceans: origins and applications.. Sci. Total Environ. 237–38:31–41 [Google Scholar]
  77. Rao U, Fehn U. 1999. Sources and reservoirs of anthropogenic iodine-129 in western New York. Geochim. Cosmochim. Acta 63:1927–38 [Google Scholar]
  78. Reagan MK, Morris JD, Herrstrom EA, Murrell MT. 1994. Uranium series and beryllium isotope evidence for an extended history of subduction modification of the mantle below Nicaragua. Geochim. Cosmochim. Acta 58:194199–212 [Google Scholar]
  79. Reich M, Palacios C, Parada MA, Fehn U, Cameron EM. et al. 2008. Atacamite formation by deep saline waters in copper deposits from the Atacama Desert, Chile: evidence from fluid inclusions, groundwater geochemistry, TEM, and 36Cl data. Mineral. Depos. 43:663–75 [Google Scholar]
  80. Reich M, Snyder G, Fehn U, Palacios C, Vargas G, Cameron EM. 2010. Sources and sinks of iodine in the Atacama Desert, northern Chile: insights from the nitrate ore fields and supergene zones of Cu deposits. Geochim. Cosmochim. Acta 74:12, Suppl.A858 (Abstr.) [Google Scholar]
  81. Reithmeier H, Lazarev V, Rühm W, Nolte E. 2010. Anthropogenic 129I in the atmosphere: overview over major sources, transport processes and deposition pattern. Sci. Total Environ. 408:215052–64 [Google Scholar]
  82. Renaud R, Clark ID, Kotzer TG, Milton GM, Bottomley DJ. 2005. The mobility of anthropogenic 129I in a shallow sand aquifer at Sturgeon Falls, Ontario, Canada. Radiochim. Acta 93:6363–71 [Google Scholar]
  83. Riese WC, Pelzmann WL, Snyder GT. 2005. New insights on the hydrocarbon system of the Fruitland Formation coal beds, northern San Juan Basin, Colorado and New Mexico, USA. Geol. Soc. Am. Spec. Pap. 387:73–111 [Google Scholar]
  84. Saffer DM, Bekins BA. 1998. Episodic fluid flow in the Nankai accretionary complex: timescale, geochemistry, flow rates, and fluid budget. J. Geophys. Res. 103:B1230351–70 [Google Scholar]
  85. Saffer DM, Bekins BA. 2002. Hydrologic controls on the morphology and mechanics of accretionary wedges. Geology 30:3271–74 [Google Scholar]
  86. Sahoo SK, Muramatsu Y, Yoshida S, Matsuzaki H, Rühm W. 2009. Determination of 129I and 127I concentration in soil samples from the Chernobyl 30-km zone by AMS and ICP-MS. J. Radiat. Res. 50:4325–32 [Google Scholar]
  87. Santschi PH, Schink DR, Corapcioglu O, Oktay-Marshall S, Fehn U, Sharma P. 1996. Evidence for elevated levels of iodine-129 in the Deep Western Boundary Current in the Middle Atlantic Bight. Deep Sea Res. Part I 43:259–65 [Google Scholar]
  88. Schink DR, Santschi PH, Corapcioglu P, Sharma P, Fehn U. 1995. 129I in Gulf of Mexico waters. Earth Planet. Sci. Lett. 135:131–38 [Google Scholar]
  89. Scholz F, Hensen C, Lu Z, Fehn U. 2010. Controls on the 129I/I ratio of deep-seated marine interstitial fluids: ‘old’ organic versus fissiogenic 129-iodine. Earth Planet. Sci. Lett. 294:27–36 [Google Scholar]
  90. Schwehr KA, Santschi PH, Moran JE, Elmore D. 2005. Near-conservative behavior of 129I in the Orange County aquifer system, California. Appl. Geochem. 20:81461–72 [Google Scholar]
  91. Snyder GT. 2001. Volatiles of the Central American Volcanic Arc: source determination through iodine-129, noble gas, and stable isotope analyses PhD thesis Univ. Rochester, N. Y.207 [Google Scholar]
  92. Snyder GT, Aldahan A, Possnert G. 2010. Global distribution and long-term fate of anthropogenic 129I in marine and surface water reservoirs. Geochem. Geophys. Geosyst. 11:4Q04010 [Google Scholar]
  93. Snyder GT, Fabryka-Martin JT. 2007. 129I and 36Cl in dilute hydrocarbon waters: marine-cosmogenic, in situ, and anthropogenic sources. Appl. Geochem. 22:692–714 [Google Scholar]
  94. Snyder GT, Fehn U. 2002. Origin of iodine in volcanic fluids: 129I results from the Central American Volcanic Arc. Geochim. Cosmochim. Acta 67:3827–38 [Google Scholar]
  95. Snyder GT, Fehn U. 2004. Global distribution of 129I in rivers and lakes: implications for iodine cycling in surface reservoirs. Nucl. Instrum. Methods Phys. Res. B 223–24:579–86 [Google Scholar]
  96. Snyder GT, Fehn U, Goff F. 2002. Iodine isotope ratios and halide concentrations of the Satsuma-Iwojima volcano, Japan. Earth Planets Space 54:265–73 [Google Scholar]
  97. Snyder GT, Riese WC, Franks S, Fehn U, Pelzmann WL. et al. 2003. Origin and history of waters associated with coalbed methane: 129I, 36Cl, and stable isotope results from the Fruitland Formation, CO and NM. Geochim. Cosmochim. Acta 67:234529–44 [Google Scholar]
  98. Suter M, Beer J, Bonani G, Hofmann HJ, Michel D. et al. 1987. 36Cl studies at the ETH/SIN-AMS facility. Nucl. Instrum. Methods Phys. Res. B 29:203–6 [Google Scholar]
  99. Suzuki T, Minakawa M, Amano H, Togawa O. 2010. The vertical profiles of iodine-129 in the Pacific Ocean and the Japan Sea before the routine operation of a new nuclear fuel reprocessing plant. Nucl. Instrum. Methods Phys. Res. B 268:1229–31 [Google Scholar]
  100. Tomaru H, Fehn U, Lu Z, Takeuchi R, Inagaki F. et al. 2009a. Dating of dissolved iodine in pore waters from the gas hydrate occurrence offshore Shimokita Peninsula, Japan: 129I results from the D/V Chikyu shakedown cruise. Resour. Geol. 59:4359–73 [Google Scholar]
  101. Tomaru H, Lu Z, Fehn U, Muramatsu Y. 2009b. Origin of hydrocarbons in the Green Tuff region of Japan: 129I results from oil field brines and hot springs in the Akita and Niigata basins. Chem. Geol. 264:221–31 [Google Scholar]
  102. Tomaru H, Lu Z, Fehn U, Muramatsu Y, Matsumoto R. 2007a. Age variation of pore water iodine in the eastern Nankai Trough, Japan: evidence for different methane sources in a large gas hydrate field. Geology 35:1015–18 [Google Scholar]
  103. Tomaru H, Ohsawa S, Amita K, Lu Z, Fehn U. 2007b. Influence of subduction zone settings on the origin of forearc fluids: halogen concentrations and 129I/I ratios in waters from Kyushu, Japan. Appl. Geochem. 22:676–91 [Google Scholar]
  104. Torgersen T, Habermehl MA, Phillips FM, Elmore D, Kubik P. et al. 1991. Chlorine-36 dating of very old groundwater: 3. Further studies in the Great Artesian Basin, Australia. Water Resour. Res. 27:123201–13 [Google Scholar]
  105. Ullman WJ, Aller RC. 1980. Dissolved iodine flux from estuarine sediments and implications for the enrichment of iodine at the sediment water interface. Geochim. Cosmochim. Acta 44:81177–84 [Google Scholar]
  106. Ullman WJ, Aller RC. 1983. Rates of iodine remineralization in terrigenous near-shore sediments. Geochim. Cosmochim. Acta 47:81423–32 [Google Scholar]
  107. von Huene R, Pecher IA, Gutscher M-A. 1996. Development of the accretionary prism along Peru and material flux after subduction of Nazca Ridge. Tectonics 15:119–33 [Google Scholar]
  108. Wagner MJM, Dittrich-Hannen B, Synal H-A, Suter M, Schotterer U. 1996. Increase of 129I in the environment. Nucl. Instrum. Methods Phys. Res. B 113:490–94 [Google Scholar]
  109. Wallmann K, Aloisi G, Haeckel M, Obzhirov A, Pavlova G, Tishchenko P. 2006. Kinetics of organic matter degradation, microbial methane generation, and gas hydrate formation in anoxic marine sediments. Geochim. Cosmochim. Acta 70:153905–27 [Google Scholar]
  110. Wei W, Kastner M, Spivack A. 2008. Chlorine stable isotopes and halogen concentrations in convergent margins with implications for the Cl isotopes cycle in the ocean. Earth Planet. Sci. Lett. 266:90–104 [Google Scholar]
  111. Zreda M, Noller JS. 1998. Ages of prehistoric earthquakes revealed by cosmogenic chlorine-36 in a bedrock fault scarp at Hebgen Lake. Science 282:1097–99 [Google Scholar]
  112. Zreda MG, Phillips FM, Kubik PW, Sharma P, Elmore D. 1993. Cosmogenic 36Cl dating of a young basaltic eruption complex, Lathrop Wells, Nevada. Geology 21:57–60 [Google Scholar]
/content/journals/10.1146/annurev-earth-042711-105528
Loading
/content/journals/10.1146/annurev-earth-042711-105528
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error