Earth formed in a series of giant impacts, and the last one made the Moon. This idea, an edifice of post-Apollo science, can explain the Moon's globally melted silicate composition, its lack of water and iron, and its anomalously large mass and angular momentum. But the theory is seriously called to question by increasingly detailed geochemical analysis of lunar rocks. Lunar samples should be easily distinguishable from Earth, because the Moon derives mostly from the impacting planet, in standard models of the theory. But lunar rocks are the same as Earth in O, Ti, Cr, W, K, and other species, to measurement precision. Some regard this as a repudiation of the theory; others say it wants a reformation. Ideas put forward to salvage or revise it are evaluated, alongside their relationships to past models and their implications for planet formation and Earth.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Agnor C, Asphaug E. 2004. Accretion efficiency during planetary collisions. Astrophys. J. 613:L157–60 doi: 10.1086/425158 [Google Scholar]
  2. Agnor CB, Canup RM, Levison HF. 1999. On the character and consequences of large impacts in the late stage of terrestrial planet formation. Icarus 142:219–37 doi: 10.1006/icar.1999.6201 [Google Scholar]
  3. Ahrens TJ. 1993. Impact erosion of terrestrial planetary atmospheres. Annu. Rev. Earth Planet. Sci. 21:525–55 doi: 10.1146/annurev.ea.21.050193.002521 [Google Scholar]
  4. Asphaug E. 2010. Similar-sized collisions and the diversity of planets. Chem. Erde Geochem. 70:199–219 doi: 10.1016/j.chemer.2010.01.004 [Google Scholar]
  5. Asphaug E, Agnor CB, Williams Q. 2006. Hit-and-run planetary collisions. Nature 439:155–60 doi: 10.1038/nature04311 [Google Scholar]
  6. Asphaug E, Reufer A. 2013. Late origin of the Saturn system. Icarus 223:544–65 doi: 10.1016/j.icarus.2012.12.009 [Google Scholar]
  7. Belbruno E, Gott JR III. 2005. Where did the Moon come from?. Astron. J. 129:1724–45 doi: 10.1086/427539 [Google Scholar]
  8. Benz W, Cameron AGW, Melosh HJ. 1989. The origin of the Moon and the single-impact hypothesis III. Icarus 81:113–31 doi: 10.1016/0019-1035(89)90129-2 [Google Scholar]
  9. Benz W, Slattery WL, Cameron AGW. 1986. Short note: snapshots from a three-dimensional modeling of a giant impact. See Hartmann et al. 1986 617–20
  10. Bezdek RH, Wendling RM. 1992. Sharing out NASA's spoils. Nature 355:105–6 doi: 10.1038/355105a0 [Google Scholar]
  11. Borg LE, Connelly JN, Boyet M, Carlson RW. 2011. Chronological evidence that the Moon is either young or did not have a global magma ocean. Nature 477:70–72 doi: 10.1038/nature10328 [Google Scholar]
  12. Bottke WF, Walker RJ, Day JMD, Nesvorny D, Elkins-Tanton L. 2010. Stochastic late accretion to Earth, the Moon, and Mars. Science 330:1527–30 doi: 10.1126/science.1196874 [Google Scholar]
  13. Bouvier A, Wadhwa M. 2010. The age of the Solar System redefined by the oldest Pb-Pb age of a meteoritic inclusion. Nat. Geosci. 3:637–41 doi: 10.1038/ngeo941 [Google Scholar]
  14. Brush SG. 1978. A geologist among astronomers: the rise and fall of the Chamberlin–Moulton cosmogony, part 1. J. Hist. Astron. 9:77–104 [Google Scholar]
  15. Buffon GLL. 1749. Histoire Naturelle, Générale et Particulière 1 Deux-Ponts, Ger: Sanson
  16. Cameron AGW. 2000. Higher-resolution simulations of the giant impact. See Canup & Righter 2000 133–44
  17. Cameron AGW, Benz W. 1991. The origin of the Moon and the single impact hypothesis IV. Icarus 92:204–16 doi: 10.1016/0019-1035(91)90046-V [Google Scholar]
  18. Cameron AGW, Ward WR. 1976. The origin of the Moon. Lunar Planet. Sci. Conf. Abstr. 7:120–22 [Google Scholar]
  19. Canup RM. 2004. Dynamics of lunar formation. Annu. Rev. Astron. Astrophys. 42:441–75 doi: 10.1146/annurev.astro.41.082201.113457 [Google Scholar]
  20. Canup RM. 2005. A giant impact origin of Pluto-Charon. Science 307:546–50 doi: 10.1126/science.1106818 [Google Scholar]
  21. Canup RM. 2012. Forming a Moon with an Earth-like composition via a giant impact. Science 338:1052–55 doi: 10.1126/science.1226073 [Google Scholar]
  22. Canup RM, Asphaug E. 2001. Origin of the Moon in a giant impact near the end of the Earth's formation. Nature 412:708–12 doi: 10.1038/35089010 [Google Scholar]
  23. Canup RM, Barr AC, Crawford DA. 2013. Lunar-forming impacts: high-resolution SPH and AMR-CTH simulations. Icarus 222:200–19 doi: 10.1016/j.icarus.2012.10.011 [Google Scholar]
  24. Canup RM, Righter K. 2000. Origin of the Earth and Moon. Tucson: Univ. Ariz. Press
  25. Canup RM, Ward WR, Cameron AGW. 2001. A scaling relationship for satellite-forming impacts. Icarus 150:288–96 doi: 10.1006/icar.2000.6581 [Google Scholar]
  26. Chamberlin TC. 1916. The planetesimal hypothesis. J. R. Astron. Soc. Can. 10:473 [Google Scholar]
  27. Chandrasekhar S. 1969. Ellipsoidal Figures of Equilibrium (the Silliman Foundation Lectures). New Haven, CT: Yale Univ. Press
  28. Ćuk M, Gladman BJ. 2009. The fate of primordial lunar Trojans. Icarus 199:237–44 doi: 10.1016/j.icarus.2008.10.022 [Google Scholar]
  29. Ćuk M, Stewart ST. 2011. The puzzle of lunar inclination. EPSC Abstr. 6:580 [Google Scholar]
  30. Ćuk M, Stewart ST. 2012. Making the Moon from a fast-spinning Earth: a giant impact followed by resonant despinning. Science 338:1047–52 doi: 10.1126/science.1225542 [Google Scholar]
  31. Dahl TW, Stevenson DJ. 2010. Turbulent mixing of metal and silicate during planet accretion—and interpretation of the Hf-W chronometer. Earth Planet. Sci. Lett. 295:177–86 doi: 10.1016/j.epsl.2010.03.038 [Google Scholar]
  32. Darwin GH. 1879. A tidal theory of the evolution of satellites. Observatory 3:79–84 [Google Scholar]
  33. Dauphas N, Pourmand A. 2011. Hf-W-Th evidence for rapid growth of Mars and its status as a planetary embryo. Nature 473:489–92 doi: 10.1038/nature10077 [Google Scholar]
  34. Desch SJ, Taylor GJ. 2013. Isotopic mixing due to interaction between the protolunar disk and the Earth's atmosphere. Lunar Planet. Sci. Conf. Abstr. 44:2566 [Google Scholar]
  35. Dobrovolskis AR, Peale SJ, Harris AW. 1997. Dynamics of the Pluto-Charon binary. Pluto and Charon SA Stern, DJ Tholen 159–90 Tucson: Univ. Ariz. Press [Google Scholar]
  36. Drake MJ. 1986. Is lunar bulk material similar to Earth's mantle?. See Hartmann et al. 1986 105–24
  37. Elkins-Tanton LT. 2012. Magma oceans in the inner Solar System. Annu. Rev. Earth Planet. Sci. 40:113–39 doi: 10.1146/annurev-earth-042711-105503 [Google Scholar]
  38. Elkins-Tanton LT, Burgess S, Yin Q-Z. 2011. The lunar magma ocean: reconciling the solidification process with lunar petrology and geochronology. Earth Planet. Sci. Lett. 304:326–36 doi: 10.1016/j.epsl.2011.02.004 [Google Scholar]
  39. England PC, Molnar P, Richter FM. 2007. Kelvin, Perry and the age of the Earth. Am. Sci. 95:342–49 doi: 10.1511/2007.66.3755 [Google Scholar]
  40. Garrick-Bethell I, Weiss BP, Shuster DL, Buz J. 2009. Early lunar magnetism. Science 323:356–59 doi: 10.1126/science.1166804 [Google Scholar]
  41. Genda H, Abe Y. 2005. Enhanced atmospheric loss on protoplanets at the giant impact phase in the presence of oceans. Nature 433:842–44 doi: 10.1038/nature03360 [Google Scholar]
  42. Gerstenkorn H. 1955. Über Gezeitenreibung beim Zweikörperproblem. Z. Astrophys. 36:245 [Google Scholar]
  43. Golabek GJ, Gerya TV, Morishima R, Tackley PJ, Labrosse S. 2011. Towards combined modelling of planetary accretion and differentiation. EPSC Abstr. 6:1140 [Google Scholar]
  44. Goldreich P. 1966. History of the lunar orbit. Rev. Geophys. Space Phys. 4:411–39 doi: 10.1029/RG004i004p00411 [Google Scholar]
  45. Goldreich P, Soter S. 1966. Q in the Solar System. Icarus 5:375–89 doi: 10.1016/0019-1035(66)90051-0 [Google Scholar]
  46. Halliday AN. 2008. A young Moon-forming giant impact at 70–110 million years accompanied by late-stage mixing, core formation and degassing of the Earth. Philos. Trans. R. Soc. A 366:4163–81 doi: 10.1098/rsta.2008.0209 [Google Scholar]
  47. Harrison TM. 2009. The Hadean crust: evidence from >4 Ga zircons. Annu. Rev. Earth Planet. Sci. 37:479–505 doi: 10.1146/annurev.earth.031208.100151 [Google Scholar]
  48. Hartmann WK, Davis DR. 1975. Satellite-sized planetesimals and lunar origin. Icarus 24:504–14 doi: 10.1016/0019-1035(75)90070-6 [Google Scholar]
  49. Hartmann WK, Phillips RJ, Taylor GJ. 1986. Origin of the Moon Houston, TX: LPI
  50. Hauri EH, Weinreich T, Saal AE, Rutherford MC, Van Orman JA. 2011. High pre-eruptive water contents preserved in lunar melt inclusions. Science 333:213–15 doi: 10.1126/science.1204626 [Google Scholar]
  51. Hood LL, Mitchell DL, Lin RP, Acuna MH, Binder AB. 1999. Initial measurements of the lunar induced magnetic dipole moment using Lunar Prospector Magnetometer data. Geophys. Res. Lett. 26:2327–30 doi: 10.1029/1999GL900487 [Google Scholar]
  52. Housen KR, Schmidt RM, Holsapple KA. 1983. Crater ejecta scaling laws: fundamental forms based on dimensional analysis. J. Geophys. Res. 88:B32485–99 [Google Scholar]
  53. Ida S, Canup RM, Stewart GR. 1997. Lunar accretion from an impact-generated disk. Nature 389:353–57 doi: 10.1038/38669 [Google Scholar]
  54. Jackson AP, Wyatt MC. 2012. Debris from terrestrial planet formation: the Moon-forming collision. MNRAS 425:657–79 doi: 10.1111/j.1365-2966.2012.21546.x [Google Scholar]
  55. Jacobsen SB. 2005. The Hf-W isotopic system and the origin of the Earth and Moon. Annu. Rev. Earth Planet. Sci. 33:531–70 doi: 10.1146/annurev.earth.33.092203.122614 [Google Scholar]
  56. Jacobson SA, Morbidelli A, Raymond SN, O'Brien DP, Walsh KJ, Rubie DC. 2014. Highly siderophile elements in Earth's mantle as a clock for the Moon-forming impact. Nature 508:84–87 [Google Scholar]
  57. Jeans JH. 1919. Problems of Cosmogony and Stellar Dynamics Cambridge, UK: Cambridge Univ. Press
  58. Jeffreys H. 1924. The Earth: Its Origin, History and Physical Constitution Cambridge, UK: Cambridge Univ. Press, 1st ed..
  59. Jeffreys H. 1929. The planetesimal hypothesis. Observatory 52:173–78 [Google Scholar]
  60. Johnson BC, Lisse CM, Chen CH, Melosh HJ, Wyatt MC. et al. 2012. A self-consistent model of the circumstellar debris created by a giant hypervelocity impact in the HD 172555 system. Astrophys. J. 761:45 doi: 10.1088/0004-637X/761/1/45 [Google Scholar]
  61. Jones JH, Palme H. 2000. Geochemical constraints on the origin of the Earth and Moon. See Canup & Righter 2000 197–216
  62. Joy KH, Arai T. 2013. Lunar meteorites: new insights into the geological history of the Moon. Astron. Geophys. 54:4.28–32 doi: 10.1093/astrogeo/att121 [Google Scholar]
  63. Jutzi M, Asphaug E. 2011. Forming the lunar farside highlands by accretion of a companion moon. Nature 476:69–72 doi: 10.1038/nature10289 [Google Scholar]
  64. Kaula WM. 1971. Dynamical aspects of lunar origin. Rev. Geophys. Space Phys. 9:217–38 doi: 10.1029/RG009i002p00217 [Google Scholar]
  65. Kipp ME, Melosh HJ. 1986. Short note: a preliminary numerical study of colliding planets. See Hartmann et al. 1986 643–47
  66. Leinhardt ZM, Marcus RA, Stewart ST. 2010. The formation of the collisional family around the dwarf planet Haumea. Astrophys. J. 714:1789–99 doi: 10.1088/0004-637X/714/2/1789 [Google Scholar]
  67. Matsui T, Abe Y. 1986. Origin of the Moon and its early thermal evolution. See Hartmann et al. 1986 453–68
  68. McKeegan KD, Kallio APA, Heber VS, Jarzebinski G, Mao PH. et al. 2011. The oxygen isotopic composition of the Sun inferred from captured solar wind. Science 332:1528–32 doi: 10.1126/science.1204636 [Google Scholar]
  69. Melosh HJ. 1990. Giant impacts and the thermal state of the early Earth. Origin of the Earth HE Newsom, JH Jones 69–83 New York: Oxford Univ. Press [Google Scholar]
  70. Melosh HJ. 2009. An isotopic crisis for the giant impact origin of the Moon?. Meteorit. Planet. Sci. Suppl. 72:5104 [Google Scholar]
  71. Melosh HJ, Vickery AM. 1989. Impact erosion of the primordial atmosphere of Mars. Nature 338:487–89 doi: 10.1038/338487a0 [Google Scholar]
  72. Morishima R, Watanabe S. 2001. Two types of co-accretion scenarios for the origin of the Moon. Earth Planets Space 53:213–31 [Google Scholar]
  73. Moulton FR. 1905. On the evolution of the Solar System. Astrophys. J. 22:165 doi: 10.1086/141260 [Google Scholar]
  74. Mukhopadhyay S. 2012. Early differentiation and volatile accretion recorded in deep-mantle neon and xenon. Nature 486:101–4 doi: 10.1038/nature11141 [Google Scholar]
  75. Nimmo F, Agnor CB. 2006. Isotopic outcomes of N-body accretion simulations: constraints on equilibration processes during large impacts from Hf/W observations. Earth Planet. Sci. Lett. 243:26–43 doi: 10.1016/j.epsl.2005.12.009 [Google Scholar]
  76. O'Brien DP, Morbidelli A, Levison HF. 2006. Terrestrial planet formation with strong dynamical friction. Icarus 184:39–58 doi: 10.1016/j.icarus.2006.04.005 [Google Scholar]
  77. Ohtake M, Matsunaga T, Haruyama J, Yokota Y, Morota T. et al. 2009. The global distribution of pure anorthosite on the Moon. Nature 461:236–40 doi: 10.1038/nature08317 [Google Scholar]
  78. O'Keefe JA, Sullivan EC. 1978. Fission origin of the Moon: cause and timing. Icarus 35:272–83 doi: 10.1016/0019-1035(78)90012-X [Google Scholar]
  79. Pahlevan K, Stevenson DJ. 2007. Equilibration in the aftermath of the lunar-forming giant impact. Earth Planet. Sci. Lett. 262:438–49 doi: 10.1016/j.epsl.2007.07.055 [Google Scholar]
  80. Peale SJ, Cassen P. 1978. Contribution of tidal dissipation to lunar thermal history. Icarus 36:245–69 doi: 10.1016/0019-1035(78)90109-4 [Google Scholar]
  81. Pierazzo E, Artemieva N, Asphaug E, Baldwin EC, Cazamias J. et al. 2008. Validation of numerical codes for impact and explosion cratering: impacts on strengthless and metal targets. Meteorit. Planet. Sci. 43:1917–38 doi: 10.1111/j.1945-5100.2008.tb00653.x [Google Scholar]
  82. Rasio FA, Shapiro SL. 1994. Hydrodynamics of binary coalescence. I. Polytropes with stiff equations of state. Astrophys. J. 432:27 doi: 10.1086/174566 [Google Scholar]
  83. Raymond SN, Quinn T, Lunine JI. 2006. High-resolution simulations of the final assembly of Earth-like planets. I. Terrestrial accretion and dynamics. Icarus 183:265–82 doi: 10.1016/j.icarus.2006.03.011 [Google Scholar]
  84. Raymond SN, Schlichting HE, Hersant F, Selsis F. 2013. Dynamical and collisional constraints on a stochastic late veneer on the terrestrial planets. Icarus 226:671–81 [Google Scholar]
  85. Reufer A. 2011. Collisions in planetary systems PhD Thesis, University of Bern
  86. Reufer A, Meier MMM, Benz W, Wieler R. 2012. A hit-and-run giant impact scenario. Icarus 221:296–99 doi: 10.1016/j.icarus.2012.07.021 [Google Scholar]
  87. Ringwood AE. 1986. Terrestrial origin of the Moon. Nature 322:323–28 doi: 10.1038/322323a0 [Google Scholar]
  88. Rubie DC, Nimmo F, Melosh HJ. 2007. Formation of Earth's core. Evolution of the Earth J Stevenson 51–90 Treatise Geophys. 9 Amsterdam: Elsevier [Google Scholar]
  89. Rudge JF, Kleine T, Bourdon B. 2010. Broad bounds on Earth's accretion and core formation constrained by geochemical models. Nat. Geosci. 3:439–43 doi: 10.1038/ngeo872 [Google Scholar]
  90. Safronov VS. 1972. Evolution of the Protoplanetary Cloud and Formation of the Earth and Planets transl. Isr. Program Sci. Transl. Jerusalem: Keter (from Russian)
  91. Salmon J, Canup RM. 2012. Lunar accretion from a Roche-interior fluid disk. Astrophys. J. 760:83 doi: 10.1088/0004-637X/760/1/83 [Google Scholar]
  92. Schlichting HE, Warren PH, Yin Q-Z. 2012. The last stages of terrestrial planet formation: dynamical friction and the late veneer. Astrophys. J. 752:8 doi: 10.1088/0004-637X/752/1/8 [Google Scholar]
  93. Scott ERD, Haack H, Love SG. 2001. Formation of mesosiderites by fragmentation and reaccretion of a large differentiated asteroid. Meteorit. Planet. Sci. 36:869–91 [Google Scholar]
  94. Sharp ZD, Draper DS. 2013. The chlorine abundance of Earth: implications for a habitable planet. Earth Planet. Sci. Lett. 369:71–77 doi: 10.1016/j.epsl.2013.03.005 [Google Scholar]
  95. Shearer CK, Hess PC, Wieczorek MA, Pritchard ME, Parmentier EM. et al. 2006. Thermal and magmatic evolution of the Moon. Rev. Mineral. Geochem. 60:365–518 doi: 10.2138/rmg.2006.60.4 [Google Scholar]
  96. Stevenson DJ. 1987. Origin of the Moon—the collision hypothesis. Annu. Rev. Earth Planet. Sci. 15:271–315 doi: 10.1146/annurev.ea.15.050187.001415 [Google Scholar]
  97. Stewart ST, Leinhardt ZM. 2012. Collisions between gravity-dominated bodies. II. The diversity of impact outcomes during the end stage of planet formation. Astrophys. J. 751:32 doi: 10.1088/0004-637X/751/1/32 [Google Scholar]
  98. Terez EI, Gerasimov ME. 2009. Did the Moon form as a result of a thermonuclear explosion?. Bull. Crime. Astrophys. Obs. 105:129–34 doi: 10.3103/S0190271709010148 [Google Scholar]
  99. Thompson C, Stevenson DJ. 1988. Gravitational instability in two-phase disks and the origin of the Moon. Astrophys. J. 333:452–81 doi: 10.1086/166760 [Google Scholar]
  100. Thomson W. 1864. On the secular cooling of the Earth. Trans. R. Soc. Edinb. 23:167–69 [Google Scholar]
  101. Touboul M, Kleine T, Bourdon B, Palme H, Wieler R. 2007. Late formation and prolonged differentiation of the Moon inferred from W isotopes in lunar metals. Nature 450:1206–9 doi: 10.1038/nature06428 [Google Scholar]
  102. Touma J. 2000. The phase space adventure of the Earth and Moon. See Canup & Righter 2000 165–78
  103. Touma J, Wisdom J. 1994. Evolution of the Earth-Moon system. Astron. J. 108:1943–61 doi: 10.1086/117209 [Google Scholar]
  104. Touma J, Wisdom J. 1998. Resonances in the early evolution of the Earth-Moon system. Astron. J. 115:1653–63 doi: 10.1086/300312 [Google Scholar]
  105. Urey HC. 1952. The Planets: Their Origin and Development New Haven, CT: Yale Univ. Press
  106. Wada K, Kokubo E, Makino J. 2006. High-resolution simulations of a Moon-forming impact and postimpact evolution. Astrophys. J. 638:1180–86 doi: 10.1086/499032 [Google Scholar]
  107. Ward WR, Canup RM. 2000. Origin of the Moon's orbital inclination from resonant disk interactions. Nature 403:741–43 doi: 10.1038/35001516 [Google Scholar]
  108. Warren PH. 1985. The magma ocean concept and lunar evolution. Annu. Rev. Earth Planet. Sci. 13:201–40 doi: 10.1146/annurev.ea.13.050185.001221 [Google Scholar]
  109. Weber RC, Lin P-Y, Garnero EJ, Williams Q, Lognonné P. 2011. Seismic detection of the lunar core. Science 331:309–12 doi: 10.1126/science.1199375 [Google Scholar]
  110. Wetherill GW. 1976. The role of large bodies in the formation of the Earth and Moon. Lunar Planet. Sci. Conf. Abstr. 7:3245–57 [Google Scholar]
  111. Wetherill GW. 1980. Formation of the terrestrial planets. Annu. Rev. Astron. Astrophys. 18:77–113 doi: 10.1146/annurev.aa.18.090180.000453 [Google Scholar]
  112. Wetherill GW. 1985. Occurrence of giant impacts during the growth of the terrestrial planets. Science 228:877–79 doi: 10.1126/science.228.4701.877 [Google Scholar]
  113. Wetherill GW, Stewart GR. 1993. Formation of planetary embryos: effects of fragmentation, low relative velocity, and independent variation of eccentricity and inclination. Icarus 106:190–209 doi: 10.1006/icar.1993.1166 [Google Scholar]
  114. Wiechert U, Halliday AN, Lee D-C, Snyder GA, Taylor LA, Rumble D. 2001. Oxygen isotopes and the Moon-forming giant impact. Science 294:345–48 doi: 10.1126/science.1063037 [Google Scholar]
  115. Wilhelms DE. 1993. To a Rocky Moon: A Geologist's History of Lunar Exploration Tucson: Univ. Ariz. Press
  116. Yu G, Jacobsen SB. 2011. Fast accretion of the Earth with a late Moon-forming giant impact. Proc. Natl. Acad. Sci. USA 108:17604–9 doi: 10.1073/pnas.1108544108 [Google Scholar]
  117. Zahnle K, Arndt N, Cockell C, Halliday A, Nisbet E. et al. 2007. Emergence of a habitable planet. Space Sci. Rev. 129:35–78 doi: 10.1007/s11214-007-9225-z [Google Scholar]
  118. Zhang J, Dauphas N, Davis AM, Leya I, Fedkin A. 2012. The proto-Earth as a significant source of lunar material. Nat. Geosci. 5:251–55 doi: 10.1038/ngeo1429 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error