Organosulfur compounds (OSCs) play important roles in the formation, preservation, and thermal degradation of sedimentary organic matter and the associated petroleum generation. Improved analytical techniques for S isotope analysis have recently enhanced our understanding of the mechanisms for OSC formation and maturation and their associated S isotope distributions. The close interaction of OSCs with inorganic S species throughout their formation and maturation affects their 34S/32S isotopic ratio (δ34S), forming specific signatures for distinct sources and processes. Ultimately, thermal maturation homogenizes the δ34S values of different fractions and individual compounds. Reservoir processes such as thermochemical sulfate reduction (TSR) introduce exogenous and isotopically distinct S into hydrocarbons and can significantly change the δ34S of petroleum or kerogen. Specific OSCs react at different rates and thus can be used to evaluate the extent of processes such as TSR. This article reviews factors that affect the 34S/32S isotopic distribution of OSCs along pathways of formation, diagenesis, and thermal alteration.

[Erratum, Closure]

An erratum has been published for this article:
Organosulfur Compounds: Molecular and Isotopic Evolution from Biota to Oil and Gas

Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Adam P, Mycke B, Schmid JC, Connan J, Albrecht P. 1992. Steroid moieties attached to macromolecular fraction via disulfide or polysulfide bridges. Energy Fuels 6:553–59 [Google Scholar]
  2. Adam P, Schmid JC, Mycke B, Strazielle C, Connan J. et al. 1993. Structural investigation of nonpolar sulfur cross-linked macromolecules in petroleum. Geochim. Cosmochim. Acta 57:3395–419 [Google Scholar]
  3. Adam P, Schneckenburger P, Schaeffer P, Albrecht P. 2000. Clues to early diagenetic sulfurization processes from mild chemical cleavage of labile sulfur-rich geomacromolecules. Geochim. Cosmochim. Acta 64:3485–503 [Google Scholar]
  4. Aizenshtat Z, Amrani A. 2004a. Significance of δ34S and evaluation of its imprint on sedimentary organic matter. I. The role of reduced sulfur species in the diagenetic stage: a conceptual review. Geochem. Soc. Spec. Publ. 9:15–33 [Google Scholar]
  5. Aizenshtat Z, Amrani A. 2004b. Significance of δ34S and evaluation of its imprint on sedimentary organic matter. II. Thermal changes of Type II-S kerogens catagenetic stage controlled mechanisms. Study and conceptual overview. Geochem. Soc. Spec. Publ. 9:35–50 [Google Scholar]
  6. Aizenshtat Z, Krein EB, Vairavamurthy MA, Goldstein TP. 1995. Role of sulfur in the transformations of sedimentary organic matter: a mechanistic overview. ACS Symp. Ser. 612:16–37 [Google Scholar]
  7. Aizenshtat Z, Stoler A, Cohen Y, Nielsen H. 1983. The geochemical sulphur enrichment of recent organic matter by polysulfides in the Solar Lake. Advances in Organic Geochemistry 1981 M Bjorøy, C Albrecht, C Cornford, K de Groot, G Eglinton 279–88 Chichester, UK: Wiley [Google Scholar]
  8. Amrani A, Aizenshtat Z. 2004a. Mechanisms of sulfur introduction chemically controlled: δ34S imprint. Org. Geochem. 35:1319–36 [Google Scholar]
  9. Amrani A, Aizenshtat Z. 2004b. Photosensitized oxidation of naturally occurring isoprenoid allyl alcohols as a possible pathway for their transformation to thiophenes in sulfur rich depositional environments. Org. Geochem. 35:693–712 [Google Scholar]
  10. Amrani A, Aizenshtat Z. 2004c. Reaction of polysulfide anions with α,β unsaturated isoprenoid aldehydes in aquatic media: simulation of oceanic conditions. Org. Geochem. 35:909–21 [Google Scholar]
  11. Amrani A, Deev A, Sessions AL, Tang Y, Adkins JF. 2011. Sulfur isotope fractionation during thermochemical sulfate reduction as reflected by individual organic compounds Presented at 25th Int. Meet. Org. Geochem. (IMOG 2011), Sept. 18–23, Interlaken, Switz.
  12. Amrani A, Deev A, Sessions AL, Tang Y, Adkins JF. et al. 2012a. The sulfur-isotopic compositions of benzothi-ophenes and dibenzothiophenes as a proxy for thermochemical sulfate reduction. Geochim. Cosmochim. Acta 84:152–64 [Google Scholar]
  13. Amrani A, Kamyshny A Jr, Lev O, Aizenshtat Z. 2006a. Sulfur stable isotope distribution of polysulfide anions in an (NH4)2Sn aqueous solution. Inorg. Chem. 45:1427–29 [Google Scholar]
  14. Amrani A, Lewan MD, Aizenshtat Z. 2005a. Stable sulfur isotope partitioning during simulated petroleum formation as determined by hydrous pyrolysis of Ghareb Limestone, Israel. Geochim. Cosmochim. Acta 69:5317–31 [Google Scholar]
  15. Amrani A, Ma Q, Said-Ahmad W, Aizenshtat Z, Tang Y. 2008a. Sulfur isotope fractionation during incorporation of sulfur nucleophiles into organic compounds. Chem. Commun. 2008:1356–58 [Google Scholar]
  16. Amrani A, Said-Ahamed W, Aizenshtat Z. 2005b. The δ34S values of the early-cleaved sulfur upon low temperature pyrolysis of a synthetic polysulfide cross-linked polymer. Org. Geochem. 36:971–74 [Google Scholar]
  17. Amrani A, Said-Ahamed W, Lewan MD, Aizenshtat Z. 2006b. Experiments on δ34S mixing between organic and inorganic sulfur species during thermal maturation. Geochim. Cosmochim. Acta 70:5146–61 [Google Scholar]
  18. Amrani A, Said-Ahmad W, Shaked Y, Kiene RP. 2013. Sulfur isotope homogeneity of oceanic DMSP and DMS. Proc. Natl. Acad. Sci. USA 110:18413–18 [Google Scholar]
  19. Amrani A, Sessions AL, Adkins JF. 2009. Compound-specific δ34S analysis of volatile organics by coupled GC/multicollector-ICPMS. Anal. Chem. 81:9027–34 [Google Scholar]
  20. Amrani A, Sessions AL, Adkins JF, Dalleska N, Dekas A. et al. 2012b. The δ34S of dimethyl sulfide in the surface ocean Presented at 22nd Goldschmidt Conf., Montreal
  21. Amrani A, Turner JW, Ma QS, Tang YC, Hatcher PG. 2007. Formation of sulfur and nitrogen cross-linked macromolecules under aqueous conditions. Geochim. Cosmochim. Acta 71:4141–60 [Google Scholar]
  22. Amrani A, Zhang TW, Ma QS, Ellis GS, Tang YC. 2008b. The role of labile sulfur compounds in thermochemical sulfate reduction. Geochim. Cosmochim. Acta 72:2960–72 [Google Scholar]
  23. Anderson TF, Pratt LM. 1995. Isotopic evidence for the origin of organic sulfur and elemental sulfur in marine sediments. ACS Symp. Ser. 612:378–96 [Google Scholar]
  24. Asif M, Alexander R, Fazeelat T, Pierce K. 2009. Geosynthesis of dibenzothiophene and alkyl dibenzothiophenes in crude oils and sediments by carbon catalysis. Org. Geochem. 40:895–901 [Google Scholar]
  25. Aycard M, Derenne S, Largeau C, Mongenot T, Tribovillard N, Baudin F. 2003. Formation pathways of proto-kerogens in Holocene sediments of the upwelling influenced Cariaco Trench, Venezuela. Org. Geochem. 34:701–18 [Google Scholar]
  26. Barakat AO, Rullkötter J. 1997. A comparative study of molecular paleosalinity indicators: chromans, tocopherols and C20 isoprenoid thiophenes in Miocene lake sediments (Nördlinger Ries, Southern Germany). Aquat. Geochem. 3:169–90 [Google Scholar]
  27. Baskin DK, Peters KE. 1992. Early generation characteristics of a sulfur-rich Monterey kerogen. AAPG Bull. 76:1–13 [Google Scholar]
  28. Berner RA. 1982. Chemistry of biogenic matter at the deep-sea floor. The Environment of the Deep Sea WG Ernst, JG Morin 154–76 Rubey Colloq. 2 Englewood Cliffs, NJ: Prentice-Hall [Google Scholar]
  29. Berner RA, Westrich JT. 1985. Bioturbation and the early diagenesis of carbon and sulfur. Am. J. Sci. 285:193–206 [Google Scholar]
  30. Blumenberg M, Mollenhauer G, Zabel M, Reimer A, Thiel V. 2010. Decoupling of bio- and geohopanoids in sediments of the Benguela Upwelling System (BUS). Org. Geochem. 41:1119–29 [Google Scholar]
  31. Bontognali TRR, Sessions AL, Allwood AC, Fischer WW, Grotzinger JP. et al. 2012. Sulfur isotopes of organic matter preserved in 3.45-billion-year-old stromatolites reveal microbial metabolism. Proc. Natl. Acad. Sci. USA 109:15146–51 [Google Scholar]
  32. Böttcher ME, Ferdelman TG, Jørgensen BB, Blake RE, Surkov AV, Claypool GE. 2006. Sulfur isotope fractionation by the deep biosphere within sediments of the eastern equatorial Pacific and Peru Margin. Proc. Ocean Drill. Program: Sci. Results Leg 201, ed. BB Jørgensen, SL D'Hondt, DJ Miller College Station, TX: Ocean Drill. Program [Google Scholar]
  33. Bottrell SH, Mortimer RJG, Davies IM, Harvey SM, Krom MD. 2009. Sulphur cycling in organic-rich marine sediments from a Scottish fjord. Sedimentology 56:1159–73 [Google Scholar]
  34. Brassell SC, Lewis CA, de Leeuw JW, de Lange F, Sinninghe Damsté JS. 1986. Isoprenoid thiophenes: novel products of sediment diagenesis?. Nature 320:160–62 [Google Scholar]
  35. Bruchert V, Pratt LM. 1996. Contemporaneous early diagenetic formation of organic and inorganic sulfur in estuarine sediments from St. Andrew Bay, Florida, USA. Geochim. Cosmochim. Acta 60:2325–32 [Google Scholar]
  36. Brunner B, Bernasconi SM. 2005. A revised isotope fractionation model for dissimilatory sulfate reduction in sulfate reducing bacteria. Geochim. Cosmochim. Acta 69:4759–71 [Google Scholar]
  37. Butler IB, Böttcher ME, Rickard D, Oldroyd A. 2004. Sulfur isotope partitioning during experimental formation of pyrite via the polysulfide and hydrogen sulfide pathways: implications for the interpretation of sedimentary and hydrothermal pyrite isotope records. Earth Planet. Sci. Lett. 228:495–509 [Google Scholar]
  38. Cai C, Hu G, He H, Li J, Li J, Wu Y. 2005. Geochemical characteristics and origin of natural gas and thermochemical sulphate reduction in Ordovician carbonates in the Ordos Basin, China. J. Pet. Sci. Eng. 48:209 [Google Scholar]
  39. Cai C, Li K, Ma A, Zhang C, Xu Z. et al. 2009a. Distinguishing Cambrian from Upper Ordovician source rocks: evidence from sulfur isotopes and biomarkers in the Tarim Basin. Org. Geochem. 40:755–68 [Google Scholar]
  40. Cai C, Worden RH, Bottrell SH, Wang L, Yang C. 2003. Thermochemical sulphate reduction and the generation of hydrogen sulphide and thiols (mercaptans) in Triassic carbonate reservoirs from the Sichuan Basin, China. Chem. Geol. 202:39–57 [Google Scholar]
  41. Cai C, Zhang C, Cai L, Wu G, Jiang L. et al. 2009b. Origins of Palaeozoic oils in the Tarim Basin: evidence from sulfur isotopes and biomarkers. Chem. Geol. 268:197–210 [Google Scholar]
  42. Canfield DE. 2001. Isotope fractionation by natural populations of sulfate-reducing bacteria. Geochim. Cosmochim. Acta 65:1117–24 [Google Scholar]
  43. Canfield DE, Boudreau BP, Mucci A, Gundersen JK. 1998. The early diagenetic formation of organic sulfur in the sediments of Mangrove Lake, Bermuda. Geochim. Cosmochim. Acta 62:767–81 [Google Scholar]
  44. Canfield DE, Habicht KS, Thamdrup B. 2000. The Archean sulfur cycle and the early history of atmospheric oxygen. Science 288:658–61 [Google Scholar]
  45. Canfield DE, Stewart FJ, Thamdrup B, De Brabandere L, Dalsgaard T. et al. 2010. A cryptic sulfur cycle in oxygen-minimum-zone waters off the Chilean coast. Science 330:1375–78 [Google Scholar]
  46. Canfield DE, Teske A. 1996. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature 382:127–32 [Google Scholar]
  47. Canfield DE, Thamdrup B. 1994. The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur. Science 266:1973–75 [Google Scholar]
  48. Chakhmakhchev A, Suzuki N. 1995. Aromatic sulfur compounds as maturity indicators for overmature petroleums from the Buzuluk depression, Russia. Org. Geochem. 23:617–27 [Google Scholar]
  49. Chakhmakhchev A, Suzuki N, Takayama K. 1997. Distribution of alkylated dibenzothiophenes in petroleum as a tool for maturity assessments. Org. Geochem. 26:483–89 [Google Scholar]
  50. Chanton JP, Martens CS, Goldhaber MB. 1987. Biogeochemical cycling in an organic-rich coastal marine basin. 8. A sulfur isotopic budget balanced by differential diffusion across the sediment-water interface. Geochim. Cosmochim. Acta 51:1201–8 [Google Scholar]
  51. Claypool GE, Holser WT, Kaplan IR, Sakai H, Zak I. 1980. The age curve of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chem. Geol. 28:199–260 [Google Scholar]
  52. Craddock PR, Rouxel OJ, Ball LA, Bach W. 2008. Sulfur isotope measurement of sulfate and sulfide by high-resolution MC-ICP-MS. Chem. Geol. 253:102–13 [Google Scholar]
  53. Dahl JE, Moldowan JM, Peters KE, Claypool GE, Rooney MA. et al. 1999. Diamondoid hydrocarbons as indicators of natural oil cracking. Nature 399:54–57 [Google Scholar]
  54. de Graaf W, Sinninghe Damsté JS, de Leeuw JW. 1995. Low-temperature addition of hydrogen polysulfides to olefins: formation of 2,2′-dialkyl polysulfides from alk-1-enes and cyclic (poly)sulfides and polymeric organic sulfur compounds from α,ω-dienes. J. Chem. Soc. Perkin Trans. 1 1995:635–40 [Google Scholar]
  55. de Leeuw JW, Sinninghe Damsté JS. 1990. Organic sulfur compounds and other biomarkers as indicators of paleosalinity. ACS Symp. Ser. 429:417–43 [Google Scholar]
  56. Detmers J, Bruchert V, Habicht SK, Kuever J. 2001. Diversity of sulfur isotope fractionations by sulfate-reducing prokaryotes. Appl. Environ. Microbiol. 67:888–94 [Google Scholar]
  57. Ding T, Valkiers S, Kipphardt H, De Bièvre P, Taylor PDP. et al. 2001. Calibrated sulfur isotope abundance ratios of three IAEA sulfur isotope reference materials and V-CDT with a reassessment of the atomic weight of sulfur. Geochim. Cosmochim. Acta 65:2433–37 [Google Scholar]
  58. Dinur D, Spiro B, Aizenshtat Z. 1980. The distribution and isotopic composition of sulfur in organic-rich sedimentary rocks. Chem. Geol. 31:37–51 [Google Scholar]
  59. Douglas DL, Cooley RA, Yost DM. 1949. Non-exchange of sulfur between carbon di-sulfide and hydrogen sulfide in benzene solution. J. Am. Chem. Soc. 71:3237–38 [Google Scholar]
  60. Eglinton TI, Sinninghe Damsté JS, Kohnen MEL, de Leeuw JW, Larter SR, Patience RL. 1990. Analysis of maturity-related changes in the organic sulfur composition of kerogens by flash pyrolysis–gas chromatography. ACS Symp. Ser. 429:529–65 [Google Scholar]
  61. Eglinton TI, Sinninghe Damsté JS, Pool W, de Leeuw JW, Eijel G, Boon JJ. 1992. Organic sulphur in macromolecular sedimentary organic matter. II. Analysis of distributions of sulphur-containing pyrolysis products using multivariate techniques. Geochim. Cosmochim. Acta 56:1545–60 [Google Scholar]
  62. Engel MH, Zumberge JE. 2007. Secular change in the stable sulfur isotope composition of crude oils relative to marine sulfates and sulfides. Presented at 23rd Int. Meet. Org. Geochem. (IMOG 2007), September 9–14, Torquay, UK
  63. Fedoseev VM. 1990. Investigation of organic reactions by the use of radioactive sulfur. Chemistry of Organosulfur Compounds: General Problems LI Belen'kii 229–43 New York: Ellis Horwood [Google Scholar]
  64. Ferdelman TG, Church TM, Luther GW III. 1991. Sulfur enrichment of humic substances in a Delaware salt marsh sediment core. Geochim. Cosmochim. Acta 55:979–88 [Google Scholar]
  65. Fike DA, Grotzinger JP, Pratt LM, Summons RE. 2006. Oxidation of the Ediacaran ocean. Nature 444:744–47 [Google Scholar]
  66. Filley TR, Freeman KH, Wilkin RT, Hatcher PG. 2002. Biogeochemical controls on reaction of sedimentary organic matter and aqueous sulfides in Holocene sediments of Mud Lake, Florida. Geochim. Cosmochim. Acta 66:937–54 [Google Scholar]
  67. Fossing H, Jørgensen BB. 1990. Isotope exchange reactions with radiolabeled sulfur compounds in anoxic seawater. Biogeochemistry 9:223–45 [Google Scholar]
  68. Francois R. 1987. A study of sulfur enrichment in the humic fraction of marine sediments during early diagenesis. Geochim. Cosmochim. Acta 51:17–27 [Google Scholar]
  69. Fry B, Macko SA, Zieman JC. 1987. Review of stable isotopic investigations of food webs in seagrass meadows. Fla. Mar. Res. Publ. 42:189–209 [Google Scholar]
  70. Fry B, Ruf W, Gest H, Hayes MJ. 1988. Sulfur isotope effects associated with oxidation of sulfide by O2 in aqueous solution. Chem. Geol. Isot. Geosci. 73:205–10 [Google Scholar]
  71. Fukushima K, Yasukawa M, Muto N, Uemura H, Ishiwatari R. 1992. Formation of C20 isoprenoid thiophenes in modern sediments. Org. Geochem. 18:83–91 [Google Scholar]
  72. Gaffney JS, Premuzic ET, Manowitz B. 1980. On the usefulness of sulfur isotope ratios in crude oil correlations. Geochim. Cosmochim. Acta 44:135–40 [Google Scholar]
  73. Giesemann A, Jager HJ, Norman AL, Krouse HR, Brand WA. 1994. Online sulfur-isotope determination using an elemental analyzer coupled to a mass spectrometer. Anal. Chem. 66:2816–19 [Google Scholar]
  74. Goldhaber MB. 2004. Sulfur-rich sediments. Sediments, Diagenesis, and Sedimentary Rocks FT Mackenzie 257–88 Treatise Geochem. 7 Amsterdam: Elsevier [Google Scholar]
  75. Goldhaber MB, Kaplan IR. 1974. The sulfur cycle. The Sea ED Goldberg 569–655 New York: Wiley [Google Scholar]
  76. Goldstein TP, Aizenshtat Z. 1994. Thermochemical sulfate reduction: a review. J. Therm. Anal. 42:241–90 [Google Scholar]
  77. Gribble GW. 2003. The diversity of naturally produced organohalogens. Chemosphere 52:289–97 [Google Scholar]
  78. Grice K, Schouten S, Blokker P, Derenne S, Largeau C. et al. 2003. Structural and isotopic analysis of kerogens in sediments rich in free sulfurised Botryococcus braunii biomarkers. Org. Geochem. 34:471–82 [Google Scholar]
  79. Grice K, Schouten S, Nissenbaum A, Charrach J, Sinninghe Damsté JS. 1998. A remarkable paradox: sulfurised freshwater algal (Botryococcus braunii) lipids in an ancient hypersaline euxinic ecosystem. Org. Geochem. 28:195–216 [Google Scholar]
  80. Grossi V, Hirschler A, Raphel D, Rontani JF, de Leeuw JW, Bertrand JC. 1998. Biotransformation pathways of phytol in recent anoxic sediments. Org. Geochem. 29:845–61 [Google Scholar]
  81. Halevy I, Peters SE, Fischer WW. 2012. Sulfate burial constraints on the Phanerozoic sulfur cycle. Science 337:331–34 [Google Scholar]
  82. Hanin S, Adam P, Kowalewski I, Huc AY, Carpentier B, Albrecht P. 2002. Bridgehead alkylated 2-thiaadamantanes: novel markers for sulfurisation processes occurring under high thermal stress in deep petroleum reservoirs. Chem. Commun. 2002:1750–51 [Google Scholar]
  83. Harrison AG, Thode HG. 1957. The kinetic isotope effect in the chemical reduction of sulphate. Trans. Faraday Soc. 53:1648–51 [Google Scholar]
  84. Hartgers WA, Lòpez JF, Sinninghe Damsté JS, Reiss C, Maxwell JR, Grimalt JO. 1997. Sulfur-binding in recent environments. II. Speciation of sulfur and iron and implications for the occurrence of organo-sulfur compounds. Geochim. Cosmochim. Acta 61:4769–88 [Google Scholar]
  85. Hebting Y, Adam P, Albrecht P. 2003. Reductive desulfurization of allylic thiols by HS/H2S in water gives clue to chemical reactions widespread in natural environments. Org. Lett. 5:1571–74 [Google Scholar]
  86. Hebting Y, Schaeffer P, Behrens A, Adam P, Schmitt G. et al. 2006. Biomarker evidence for a major preservation pathway of sedimentary organic carbon. Science 312:1627–31 [Google Scholar]
  87. Heitmann T, Blodau C. 2006. Oxidation and incorporation of hydrogen sulfide by dissolved organic matter. Chem. Geol. 235:12–20 [Google Scholar]
  88. Ho TY, Rogers MA, Drushel HV, Koons CB. 1974. Evolution of sulfur compounds in crude oils. AAPG Bull. 58:2338–48 [Google Scholar]
  89. Idiz EF, Tannenbaum E, Kaplan IR. 1990. Pyrolysis of high-sulfur Monterey kerogen. ACS Symp. Ser. 429:575–91 [Google Scholar]
  90. Johnston TD, Farquhar J, Wing AB, Kaufman A, Canfield ED, Habicht SK. 2005. Multiple sulfur isotope fractionations in biological systems: a case study with sulfate reducers and sulfur disproportionators. Am. J. Sci. 305:645–60 [Google Scholar]
  91. Jørgensen BB. 1982. Mineralization of organic matter in the sea bed—the role of sulfate reduction. Nature 296:643–45 [Google Scholar]
  92. Kamyshny A Jr, Goifman A, Gun J, Rizkov D, Lev O. 2004. Equilibrium distribution of polysulfide ions in aqueous solutions at 25°C: a new approach for the study of polysulfides' equilibria. Environ. Sci. Technol. 38:6633–44 [Google Scholar]
  93. Kamyshny A Jr, Zilberbrand M, Ekeltchik I, Voitsekovski T, Gun J, Lev O. 2008. Speciation of polysulfides and zerovalent sulfur in sulfide-rich water wells in southern and central Israel. Aquat. Geochem. 14:171–92 [Google Scholar]
  94. Kaplan IR, Emery OK, Rittenberg CS. 1963. The distribution and isotopic abundance of sulfur in recent marine sediments off southern California. Geochim. Cosmochim. Acta 27:297–312 [Google Scholar]
  95. Kaplan IR, Rittenberg SC. 1964. Microbiological fractionation of sulphur isotopes. J. Gen. Microbiol. 34:195–212 [Google Scholar]
  96. Kelemen SR, Walters CC, Kwiatek PJ, Freund H, Afeworki M. et al. 2010. Characterization of solid bitumens originating from thermal chemical alteration and thermochemical sulfate reduction. Geochim. Cosmochim. Acta 74:5305–32 [Google Scholar]
  97. King HE, Walters CC, Horn WC, Zimmer M, Heines MM. et al. 2014. Sulfur isotope analysis of bitumen and pyrite associated with thermal sulfate reduction in reservoir carbonates at the Big Piney–La Barge production complex. Geochim. Cosmochim. Acta. In press
  98. Kiyosu Y. 1980. Chemical reduction and sulfur isotope effects of sulfate by organic matter under hydrothermal conditions. Chem. Geol. 30:47–56 [Google Scholar]
  99. Kiyosu Y, Krouse HR. 1993. Thermochemical reduction and sulfur isotopic behavior of sulfate by acetic acid in the presence of native sulfur. Geochem. J. 27:49–57 [Google Scholar]
  100. Kohnen MEL, Sinninghe Damsté JS, Baas M, Kock-van Dalen AC, de Leeuw JW. 1993. Sulfur-bound steroid and phytane carbon skeletons in geomacromolecules: implications for the mechanism of incorporation of sulfur into organic matter. Geochim. Cosmochim. Acta 57:2515–28 [Google Scholar]
  101. Kohnen MEL, Sinninghe Damsté JS, de Leeuw JW. 1991a. Biases from natural sulfurization in paleoenvironmental reconstruction based on hydrocarbon biomarker distributions. Nature 349:775–78 [Google Scholar]
  102. Kohnen MEL, Sinninghe Damsté JS, Kock-van Dalen AC, de Leeuw JW. 1991b. Disulfide-bound or polysulfide-bound biomarkers in sulfur-rich geomacromolecules as revealed by selective chemolysis. Geochim. Cosmochim. Acta 55:1375–94 [Google Scholar]
  103. Kok MD, Schouten S, Sinninghe Damsté JS. 2000. Formation of insoluble, nonhydrolyzable, sulfur-rich macromolecules via incorporation of inorganic sulfur species into algal carbohydrates. Geochim. Cosmochim. Acta 64:2689–99 [Google Scholar]
  104. Koopmans MP, Carson FC, Sinninghe Damsté JS, Lewan D. 1998. Biomarker generation from type II-S kerogens in claystone and limestone during hydrous and anhydrous pyrolysis. Org. Geochem. 29:1395–402 [Google Scholar]
  105. Koopmans MP, de Leeuw JW, Lewan MD, Sinninghe Damsté JS. 1996a. Impact of dia- and catagenesis on sulphur and oxygen sequestration of biomarkers as revealed by artificial maturation of an immature sedimentary rock. Org. Geochem. 25:391–426 [Google Scholar]
  106. Koopmans MP, Köster J, Van Kaam-Peters HME, Kenig F, Schouten S. et al. 1996b. Diagenetic and catagenetic products of isorenieratene: molecular indicators for photic zone anoxia. Geochim. Cosmochim. Acta 60:4467–96 [Google Scholar]
  107. Koopmans MP, Rijpstra WIC, Klapwijk MM, de Leeuw JW, Lewan MD, Sinninghe Damsté JS. 1999. A thermal and chemical degradation approach to decipher pristane and phytane precursors in sedimentary organic matter. Org. Geochem. 30:1089–104 [Google Scholar]
  108. Koopmans MP, Sinninghe Damsté JS, Lewan MD, de Leeuw JW. 1995. Thermal stability of thiophene biomarkers as studied by hydrous pyrolysis. Org. Geochem. 23:583–96 [Google Scholar]
  109. Köster J, Van Kaam-Peters HME, Koopmans MP, de Leeuw JW, Sinninghe Damsté JS. 1997. Sulphurisation of homohopanoids: effects on carbon number distribution, speciation, and 22S/22R epimer ratios. Geochim. Cosmochim. Acta 61:2431–52 [Google Scholar]
  110. Kowalewski I, Schaeffer P, Adam P, Dessort D, Fafet A, Carpentier B. 2010. Formation of H2S and sulfur-rich bitumen from a reservoired heavy oil in the presence of elemental sulfur. Org. Geochem. 41:951–58 [Google Scholar]
  111. Krein EB. 1993. Organic sulfur in the geosphere: analysis, structure and chemical processes. See Patai & Rappoport 1993 975–1032
  112. Krein EB, Aizenshtat Z. 1993. Phase transfer catalyzed reactions between polysulfide anions and α,β-unsaturated carbonyl compounds. J. Org. Chem. 58:6103–8 [Google Scholar]
  113. Krein EB, Aizenshtat Z. 1994. The formation of isoprenoid sulfur compounds during diagenesis: simulated sulfur incorporation and thermal transformation. Org. Geochem. 21:1015–25 [Google Scholar]
  114. Krein EB, Aizenshtat Z. 1995. Proposed thermal pathways for sulfur transformations in organic macromolecules: laboratory simulation experiments. ACS Symp. Ser. 612:110–37 [Google Scholar]
  115. Krouse HR. 1977. Sulfur isotope studies and their role in petroleum exploration. J. Geochem. Explor. 7:189–211 [Google Scholar]
  116. Lalonde RT, Ferrara LM, Hayes MP. 1987. Low-temperature, polysulfide reactions of conjugated ene carbonyls: a reaction model for the geologic origin of S-heterocycles. Org. Geochem. 11:563–71 [Google Scholar]
  117. Lewan MD. 1985. Evaluation of petroleum generation by hydrous pyrolysis experimentation. Philos. Trans. R. Soc. A 315:123–34 [Google Scholar]
  118. Lewan MD. 1998. Sulphur-radical control on petroleum formation rates. Nature 391:164–66 [Google Scholar]
  119. Loch AR, Lippa KA, Carlson DL, Chin YP, Traina SJ, Roberts AL. 2002. Nucleophilic aliphatic substitution reactions of propachlor, alachlor and metolachlor with bisulfide (HS) and polysulfides (Sn2−). Environ. Sci. Technol. 36:4065–73 [Google Scholar]
  120. Luckge A, Horsfield B, Littke R, Scheeder G. 2002. Organic matter preservation and sulfur uptake in sediments from the continental margin off Pakistan. Org. Geochem. 33:477–88 [Google Scholar]
  121. Luther GW III, Church TM. 1988. Seasonal cycling of sulfur and iron in porewaters of a Delaware salt marsh. Mar. Chem. 23:295–309 [Google Scholar]
  122. Ma QS, Ellis GS, Amrani A, Zhang TW, Tang YC. 2008. Theoretical study on the reactivity of sulfate species with hydrocarbons. Geochim. Cosmochim. Acta 72:4565–76 [Google Scholar]
  123. Machel HG. 2001. Bacterial and thermochemical sulfate reduction in diagenetic settings: old and new insights. Sediment. Geol. 140:143–75 [Google Scholar]
  124. Machel HG, Krouse HR, Sassen R. 1995. Products and distinguishing criteria of bacterial and thermochemical sulfate reduction. Appl. Geochem. 10:373–89 [Google Scholar]
  125. Manowitz B, Krouse HR, Barker C, Premuzic ET. 1990. Sulfur isotope data analysis of crude oils from the Bolivar coastal fields (Venezuela). ACS Symp. Ser. 429:592–612 [Google Scholar]
  126. Manzano BK, Fowler MG, Machel HG. 1997. The influence of thermochemical sulphate reduction on hydrocarbon composition in Nisku reservoirs, Brazeau River area, Alberta, Canada. Org. Geochem. 27:507–21 [Google Scholar]
  127. Marcano N, Larter S, Mayer B. 2013. The impact of severe biodegradation on the molecular and stable (C, H, N, S) isotopic compositions of oils in the Alberta Basin, Canada. Org. Geochem. 59:114–32 [Google Scholar]
  128. Martin G. 1993. Pyrolysis of organosulphur compounds. See Patai & Rappoport 1993 395–437
  129. McNamara J, Thode HG. 1950. Comparison of the isotope constitution of terrestrial and meteoritic sulfur. Phys. Rev. 78:307–8 [Google Scholar]
  130. Méhay S, Adam P, Kowalewski I, Albrecht P. 2009. Evaluating the sulfur isotopic composition of biodegraded petroleum: the case of the Western Canada Sedimentary Basin. Org. Geochem. 40:531–45 [Google Scholar]
  131. Mossmann JR, Aplin AC, Curtis CD, Coleman ML. 1991. Geochemistry of inorganic and organic sulfur in organic-rich sediments from the Peru Margin. Geochim. Cosmochim. Acta 55:3581–95 [Google Scholar]
  132. Nelson BC, Eglinton TI, Seewald JS, Vairavamurthy MA, Miknis FP. 1995. Transformations in organic sulfur speciation during maturation of monetary shale: constraints from laboratory experiments. ACS Symp. Ser. 612:138–66 [Google Scholar]
  133. Nguyen VP, Burkl-Vitzthum V, Marquaire PM, Michels R. 2013. Thermal reactions between alkanes and H2S or thiols at high pressure. J. Anal. Appl. Pyrolysis 103:307–13 [Google Scholar]
  134. Oduro H, Kamyshny A Jr, Guo W, Farquhar J. 2011. Multiple sulfur isotope analysis of volatile organic sulfur compounds and their sulfonium precursors in coastal marine environments. Mar. Chem. 124:78–89 [Google Scholar]
  135. Oduro H, Van Alstyne KL, Farquhar J. 2012. Sulfur isotope variability of oceanic DMSP generation and its contributions to marine biogenic sulfur emissions. Proc. Natl. Acad. Sci. USA 109:9012–16 [Google Scholar]
  136. Orr WL. 1974. Changes in sulfur content and isotopic ratios of sulfur during petroleum maturation: study of Big Horn Basin Paleozoic oils. AAPG Bull. 58:2295–318 [Google Scholar]
  137. Orr WL. 1977. Geologic and geochemical controls on the distribution of hydrogen sulfide in natural gas. Advances in Organic Geochemistry 1975 R Campos, J Goni 571–97 Oxford, UK: Pergamon [Google Scholar]
  138. Orr WL. 1986. Kerogen/asphaltene/sulfur relationships in sulfur-rich Monterey oils. Org. Geochem. 10:499–516 [Google Scholar]
  139. Paris G, Sessions LA, Subhas VA, Adkins FJ. 2013. MC-ICP-MS measurement of δ34S and Δ33S in small amounts of dissolved sulfate. Chem. Geol. 345:50–61 [Google Scholar]
  140. Parnell J, Boyce JA, Mark D, Bowden S, Spinks S. 2010. Early oxygenation of the terrestrial environment during the Mesoproterozoic. Nature 468:290–93 [Google Scholar]
  141. Passier HF, Bosch HJ, Nijenhuis IA, Lourens LJ, Böttcher ME. et al. 1999. Sulphidic Mediterranean surface waters during Pliocene sapropel formation. Nature 397:146–49 [Google Scholar]
  142. Patai S, Rappoport Z. 1993. The Chemistry of Sulphur-Containing Functional Groups Chichester, UK: Wiley
  143. Payzant JD, Cyr TD, Montgomery DS, Strausz OP. 1988. Studies on the structure of terpenoid sulphide type biological markers in petroleum. Geochemical Biomarkers TF Yen, JM Moldowan 133–47 Chur, Switz: Harwood [Google Scholar]
  144. Perlinger JA, Kalluri VM, Venkatapathy R, Angst W. 2002. Addition of hydrogen sulfide to juglone. Environ. Sci. Technol. 36:2663–69 [Google Scholar]
  145. Peters KE, Walters CC, Moldowan JM. 2005. The Biomarker Guide Cambridge, UK: Cambridge Univ. Press
  146. Peterson JB. 1999. Stable isotopes as tracers of organic matter input and transfer in benthic food webs: a review. Acta Oecologica 20:479–87 [Google Scholar]
  147. Pickering MD, Keely BJ. 2012. Low temperature abiotic formation of mesopyrophaeophorbide a from pyrophaeophorbide a under conditions simulating anoxic natural environments. Geochim. Cosmochim. Acta 75:533–40 [Google Scholar]
  148. Powell TG, Macqueen RW. 1984. Precipitation of sulfide ores and organic matter: sulfate reactions at Pine Point, Canada. Science 224:63–66 [Google Scholar]
  149. Price FT, Shieh YN. 1979. Fractionation of sulfur isotopes during laboratory synthesis of pyrite at low temperatures. Chem. Geol. 27:245–53 [Google Scholar]
  150. Putschew A, Schaeffer-Reiss C, Schaeffer P, Koopmans MP, de Leeuw JW. et al. 1998. Release of sulfur- and oxygen-bound components from a sulfur-rich kerogen during simulated maturation by hydrous pyrolysis. Org. Geochem. 29:1875–90 [Google Scholar]
  151. Raab M, Spiro B. 1991. Sulfur isotopic variations during seawater evaporation with fractional crystallization. Chem. Geol. 86:323–33 [Google Scholar]
  152. Radke M. 1988. Application of aromatic compounds as maturity indicators in source rocks and crude oils. Mar. Pet. Geol. 5:224–36 [Google Scholar]
  153. Radke M, Welte DH, Willsch H. 1986. Maturity parameters based on aromatic hydrocarbons: influence of the organic matter type. Org. Geochem. 1051–63
  154. Radke M, Welte DH, Willsch H. 1991. Distribution of alkylated aromatic hydrocarbons and dibenzothiophenes in rocks of the Upper Rhine Graben. Chem. Geol. 93:325–41 [Google Scholar]
  155. Radke M, Willsch H. 1994. Extractable alkyldibenzothiophenes in Posidonia shale (Toarcian) source rocks: relationship of yields to petroleum formation and expulsion. Geochim. Cosmochim. Acta 58:5223–44 [Google Scholar]
  156. Raven M, Sessions A, Adkins J. 2013. The sulfur-isotopic compositions of individual organic compounds in Cariaco Basin Presented at 26th Int. Meet. Org. Geochem. (IMOG 2013), Sept. 15–20, Tenerife, Spain
  157. Revsbech NP, Ward DM. 1984. Microprofiles of dissolved substances and photosynthesis in microbial mats measured with microelectrodes. Microbial Mats: Stromatolites Y Cohen, RW Castenholz, HD Halvorson 171–88 New York: Liss [Google Scholar]
  158. Riboulleau A, Derenne S, Sarret G, Largeau C, Baudin F, Connan J. 2000. Pyrolytic and spectroscopic study of a sulphur-rich kerogen from the “Kashpir oil shales” (Upper Jurassic, Russian platform). Org. Geochem. 31:1641–61 [Google Scholar]
  159. Rickard D, Luther GW III. 2007. Chemistry of iron sulfides. Chem. Rev. 107:514–62 [Google Scholar]
  160. Rontani JF, Bonin PC, Volkman JK. 1999. Biodegradation of free phytol by bacterial communities isolated from marine sediments under aerobic and denitrifying conditions. Appl. Environ. Microbiol. 65:5484–92 [Google Scholar]
  161. Russell M, Hartgers WA, Grimalt JO. 2000. Identification and geochemical significance of sulphurized fatty acids in sedimentary organic matter from the Lorca Basin, SE Spain. Geochim. Cosmochim. Acta 64:3711–23 [Google Scholar]
  162. Said-Ahmad W. 2012. Investigation of structural and ratio changes in sulfur stable isotopes during enrichment processes of organic matter with sulfur PhD Thesis, Hebrew Univ., Jerusalem (in Hebrew, with English abstr.)
  163. Said-Ahmad W, Amrani A. 2013. A method for the sulfur isotope analysis of DMS and DMSP in seawater. Rapid Commun. Mass Spectrom. 27:2789–96 [Google Scholar]
  164. Said-Ahmad W, Amrani A, Aizenshtat Z. 2013. The action of elemental sulfur plus water on 1-octene at low temperatures. Org. Geochem. 59:82–86 [Google Scholar]
  165. Santamaria-Orozco D, Horsfield B, Di Primio R, Welte DH. 1998. Influence of maturity on distributions of benzo- and dibenzothiophenes in Tithonian source rocks and crude oils, Sonda de Campeche, Mexico. Org. Geochem. 28:423–39 [Google Scholar]
  166. Schaeffer P, Adam P, Philippe E, Trendel MJ, Schmid JC. et al. 2006. The wide diversity of hopanoid sulfides evidenced by the structural identification of several novel hopanoid series. Org. Geochem. 37:1590–616 [Google Scholar]
  167. Schaeffer P, Harrison WN, Keely BJ, Maxwell JR. 1995. Product distributions from chemical degradation of kerogens from a marl from a Miocene evaporitic sequence (Vena del Gesso, N. Italy). Org. Geochem. 23:541–54 [Google Scholar]
  168. Schaeffer-Reiss C, Schaeffer P, Putschew A, Maxwell JR. 1998. Stepwise chemical degradation of immature S-rich kerogens from Vena del Gesso (Italy). Org. Geochem. 29:1857–73 [Google Scholar]
  169. Schmid JC, Connan J, Albrecht P. 1987. Occurrence and geochemical significance of long-chain dialkylthiacyclopentanes. Nature 329:54–56 [Google Scholar]
  170. Schneckenburger P, Adam P, Albrecht P. 1998. Thioketones as key intermediates in the reduction of ketones to thiols by HS in natural environments. Tetrahedron Lett. 39:447–50 [Google Scholar]
  171. Schouten S, de Graaf W, Sinninghe Damsté JS, Vandriel GB, de Leeuw JW. 1994. Laboratory simulation of natural sulfurization. II. Reaction of multi-functionalized lipids with inorganic polysulfides at low temperatures. Org. Geochem. 22:825–34 [Google Scholar]
  172. Sheppard WA, Bourns AN. 1954. Sulphur isotope effects in the bisulphite addition reaction of aldehydes and ketones. I. Equilibrium effect and the structure of the addition product. Can. J. Chem. 32:4–13 [Google Scholar]
  173. Sim MS, Bosak T, Ono S. 2011. Large sulfur isotope fractionation does not require disproportionation. Science 333:74–77 [Google Scholar]
  174. Sinninghe Damsté JS, de Leeuw JW. 1990. Analysis, structure and geochemical significance of organically-bound sulfur in the geosphere: state of the art and future research. Org. Geochem. 16:1077–101 [Google Scholar]
  175. Sinninghe Damsté JS, Eglinton TI, de Leeuw JW, Schenck PA. 1989a. Organic sulphur in macromolecular sedimentary organic matter. I. Structure and origin of sulphur-containing moieties in kerogen, asphaltenes and coal as revealed by flash pyrolysis. Geochim. Cosmochim. Acta 53:873–89 [Google Scholar]
  176. Sinninghe Damsté JS, Eglinton TI, Rijpstra WIC, de Leeuw JW. 1990. Characterization of organically bound sulfur in high-molecular-weight, sedimentary organic matter using flash pyrolysis and Raney Ni desulfurization. ACS Symp. Ser. 429:486–528 [Google Scholar]
  177. Sinninghe Damsté JS, Hartgers WA, Baas M, de Leeuw JW. 1993. Characterization of high-molecular-weight organic matter in marls of the Salt IV formation of the Mulhouse Basin. Org. Geochem. 20:1237–51 [Google Scholar]
  178. Sinninghe Damsté JS, Kohnen MEL, Horsfield B. 1998a. Origin of low-molecular-weight alkylthiophenes in pyrolysates of sulphur-rich kerogens as revealed by micro-scale sealed vessel pyrolysis. Org. Geochem. 29:1891–903 [Google Scholar]
  179. Sinninghe Damsté JS, Kok MD, Köster J, Schouten S. 1998b. Sulfurized carbohydrates: an important sedimentary sink for organic carbon?. Earth Planet. Sci. Lett. 164:7–13 [Google Scholar]
  180. Sinninghe Damsté JS, Rijpstra WIC, Coolen MJL, Schouten S, Volkman JK. 2007. Rapid sulfurisation of highly branched isoprenoid (HBI) alkenes in sulfidic Holocene sediments from Ellis Fjord, Antarctica. Org. Geochem. 38:128–39 [Google Scholar]
  181. Sinninghe Damsté JS, Rijpstra WIC, de Leeuw JW, Schenck PA. 1988. Origin of organic sulphur compounds and sulphur-containing high molecular weight substances in sediments and immature crude oils. Org. Geochem. 13:593–606 [Google Scholar]
  182. Sinninghe Damsté JS, Rijpstra WIC, de Leeuw JW, Schenck PA. 1989b. The occurrence and identification of series of organic sulfur compounds in oils and sediment extracts. II. Their presence in samples from hypersaline and non-hypersaline paleoenvironments and possible application as source, palaeoenvironmental and maturity indicators. Geochim. Cosmochim. Acta 53:1323–41 [Google Scholar]
  183. Sinninghe Damsté JS, Rijpstra WIC, Kock-van Dalen AC, de Leeuw JW, Schenck PA. 1989c. Quenching of labile functionalized lipids by inorganic sulfur species: evidence for the formation of sedimentary organic sulfur compounds at the early stages of diagenesis. Geochim. Cosmochim. Acta 53:1343–55 [Google Scholar]
  184. Sinninghe Damsté JS, ten Haven HL, de Leeuw JW, Schenck PA. 1986. Organic geochemical studies of a Messinian evaporitic basin, northern Apennines (Italy). II. Isoprenoid and n-alkyl thiophenes and thiolanes. Org. Geochem. 10:791–805 [Google Scholar]
  185. Sinninghe Damsté JS, van Duin ACT, Hollander D, Kohnen MEL, de Leeuw JW. 1995. Early diagenesis of bacteriohopanepolyol derivatives: formation of fossil homohopanoids. Geochim. Cosmochim. Acta 59:5141–57 [Google Scholar]
  186. Sinninghe Damsté JS, van Koert ER, Kock-van Dalen AC, de Leeuw JW, Schenck PA. 1989d. Characterisation of highly branched isoprenoid thiophenes occurring in sediments and immature oils.. Org. Geochem 14:555–67 [Google Scholar]
  187. Smith M, March J. 2001. March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure New York: Wiley, 5th ed..
  188. Sullivan MJ, Moncreiff CA. 1990. Edaphic algae are an important component of salt marsh food-webs: evidence from multiple stable isotope analysis. Mar. Ecol. Prog. Ser. 62:149–59 [Google Scholar]
  189. Tannenbaum E, Aizenshtat Z. 1985. Formation of immature asphalt from organic-rich carbonate rocks. I. Geochemical correlation. Org. Geochem. 8:181–92 [Google Scholar]
  190. Tanz N, Schmidt H-L. 2010. δ34S-value measurements in food origin assignments and sulfur isotope fractionations in plants and animals. J. Agric. Food Chem. 58:3139–46 [Google Scholar]
  191. Tcherkez G, Tea I. 2013. 32S/34S isotope fractionation in plant sulphur metabolism. New Phytol. 200:44–53 [Google Scholar]
  192. Thode HG. 1981. Sulfur isotope ratios in petroleum research and exploration: Williston Basin. AAPG Bull. 65:1527–35 [Google Scholar]
  193. Tissot BP, Welte DH. 1984. Petroleum Formation and Occurrence: A New Approach to Oil and Gas Exploration Berlin: Springer-Verlag, 2nd ed..
  194. Urban NR, Ernst K, Bernasconi S. 1999. Addition of sulfur to organic matter during early diagenesis of lake sediments. Geochim. Cosmochim. Acta 63:837–53 [Google Scholar]
  195. Vairavamurthy A, Mopper K. 1989. Organosulphur formation in marine sediments: laboratory studies on the reactivity of sulphur nucleophiles with organic Michael acceptors. ACS Symp. Ser. 393:231–42 [Google Scholar]
  196. Vairavamurthy A, Mopper K, Taylor BF. 1992. Occurrence of particle-bound polysulfides and significance of their reaction with organic matters in marine sediments. Geophys. Res. Lett. 19:2043–46 [Google Scholar]
  197. Vairavamurthy A, Zhou WQ, Eglinton T, Manowitz B. 1994. Sulfonates: a novel class of organic sulfur compounds in marine sediments. Geochim. Cosmochim. Acta 58:4681–87 [Google Scholar]
  198. Vairavamurthy MA, Wang SK, Khandelwal B, Manowitz B, Ferdelman T, Fossing H. 1995. Sulfur transformations in early diagenetic sediments from the Bay of Conception, off Chile. ACS Symp. Ser. 612:38–58 [Google Scholar]
  199. Valisolalao J, Perakis N, Chappe B, Albrecht P. 1984. A novel sulfur-containing C35 hopanoid in sediments. Tetrahedron Lett. 25:1183–86 [Google Scholar]
  200. van Dongen BE, Schouten S, Sinninghe Damsté JS. 2003. Sulfurization of carbohydrates results in a sulfur-rich, unresolved complex mixture in kerogen pyrolysates. Energy Fuels 17:1109–18 [Google Scholar]
  201. van Dongen BE, Schouten S, Sinninghe Damsté JS. 2006. Preservation of carbohydrates through sulfurization in a Jurassic euxinic shelf sea: examination of the Blackstone Band TOC cycle in the Kimmeridge Clay Formation, UK. Org. Geochem. 37:1052–73 [Google Scholar]
  202. Van Kaam-Peters HME, Schouten S, Köster J, Sinninghe Damsté JS. 1998. Controls on the molecular and carbon isotopic composition of organic matter deposited in a Kimmeridgian euxinic shelf sea: evidence for preservation of carbohydrates through sulfurisation. Geochim. Cosmochim. Acta 62:3259–83 [Google Scholar]
  203. Vandenbroucke M, Largeau C. 2007. Kerogen origin, evolution and structure. Org. Geochem. 38:719–833 [Google Scholar]
  204. Vredenburgh LD, Cheney ES. 1971. Sulfur and carbon isotopic investigation of petroleum, Wind River Basin, Wyoming. AAPG Bull. 55:1954–75 [Google Scholar]
  205. Wakeham SG, Sinninghe Damsté JS, Kohnen MEL, de Leeuw JW. 1995. Organic sulfur compounds formed during early diagenesis in Black Sea sediments. Geochim. Cosmochim. Acta 59:521–33 [Google Scholar]
  206. Walters CC, Qian K, Wu C, Mennito AS, Wei Z. 2011. Proto-solid bitumen in petroleum altered by thermochemical sulfate reduction. Org. Geochem. 42:999–1006 [Google Scholar]
  207. Watanabe Y, Farquhar J, Ohmoto H. 2009. Anomalous fractionations of sulfur isotopes during thermochemical sulfate reduction. Science 324:370–73 [Google Scholar]
  208. Wei Z, Mankiewicz P, Walters C, Qian K, Phan NT. et al. 2011. Natural occurrence of higher thiadiamondoids and diamondoidthiols in a deep petroleum reservoir in the Mobile Bay gas field. Org. Geochem. 42:121–33 [Google Scholar]
  209. Wei Z, Moldowan JM, Fago F, Dahl JE, Cai C, Peters KE. 2007. Origins of thiadiamondoids and diamondoidthiols in petroleum. Energy Fuels 21:3431–36 [Google Scholar]
  210. Wei Z, Moldowan JM, Paytan A. 2006. Diamondoids and molecular biomarkers generated from modern sediments in the absence and presence of minerals during hydrous pyrolysis. Org. Geochem. 37:891–911 [Google Scholar]
  211. Wei Z, Walters CC, Moldowan JM, Mankiewicz PJ, Pottorf RJ. et al. 2012. Thiadiamondoids as proxies for the extent of thermochemical sulfate reduction. Org. Geochem. 44:53–70 [Google Scholar]
  212. Werne JP, Hollander DJ, Behrens A, Schaeffer P, Albrecht P, Sinninghe Damsté JS. 2000. Timing of early diagenetic sulfurization of organic matter: a precursor-product relationship in Holocene sediments of the anoxic Cariaco Basin, Venezuela. Geochim. Cosmochim. Acta 64:1741–51 [Google Scholar]
  213. Werne JP, Hollander DJ, Lyons TW, Sinninghe Damsté JS. 2004. Organic sulfur biogeochemistry: recent advances and future research directions. GSA Spec. Pap. 379:135–150 [Google Scholar]
  214. Werne JP, Lyons TW, Hollander DJ, Formolo MJ, Sinninghe Damsté JS. 2003. Reduced sulfur in euxinic sediments of the Cariaco Basin: sulfur isotope constraints on organic sulfur formation. Chem. Geol. 195:159–79 [Google Scholar]
  215. Werne JP, Lyons TW, Hollander DJ, Schouten S, Hopmans EC, Sinninghe Damsté JS. 2008. Investigating pathways of diagenetic organic matter sulfurization using compound-specific sulfur isotope analysis. Geochim. Cosmochim. Acta 72:3489–502 [Google Scholar]
  216. Worden RH, Smalley PC. 1996. H2S-producing reactions in deep carbonate gas reservoirs: Khuff Formation, Abu Dhabi. Chem. Geol. 133:157–71 [Google Scholar]
  217. Worden RH, Smalley PC, Barclay SA. 2003. H2S and diagenetic pyrite in North Sea sandstones: due to TSR or organic sulphur compound cracking?. J. Geochem. Explor. 78–79:487–91 [Google Scholar]
  218. Worden RH, Smalley PC, Fallick AE. 1997. Sulfur cycle in buried evaporites. Geology 25:643–66 [Google Scholar]
  219. Wortmann UG, Bernasconi SM, Böttcher ME. 2001. Hypersulfidic deep biosphere indicates extreme sulfur isotope fractionation during single-step microbial sulfate reduction. Geology 29:647–50 [Google Scholar]
  220. Wu BZ, Feng TZ, Sree U, Chiu KH, Lo JG. 2006. Sampling and analysis of volatile organics emitted from wastewater treatment plant and drain system of an industrial science park. 576:100–11 [Google Scholar]
  221. Yamada S, Wang DH, Li SR, Nishikawa M, Qian EWH. et al. 2003. Characterization of sulfur exchange reaction between polysulfides and elemental sulfur using a 35S radioisotope tracer method. Chem. Commun. 2003:842–43 [Google Scholar]
  222. Zaback DA, Pratt LM. 1992. Isotopic composition and speciation of sulfur in the Miocene Monterey Formation: reevaluation of sulfur reactions during early diagenesis in marine environments. Geochim. Cosmochim. Acta 56:763–74 [Google Scholar]
  223. Zhang JZ, Millero FJ. 1993. The products from the oxidation of H2S in seawater. Geochim. Cosmochim. Acta 57:1705–18 [Google Scholar]
  224. Zhang SC, Zhu GY, Liang YB, Dai JX, Liang HB, Li MW. 2005. Geochemical characteristics of the Zhaolanzhuang sour gas accumulation and thermochemical sulfate reduction in the Jixian Sag of Bohai Bay Basin. Org. Geochem. 36:1717–30 [Google Scholar]
  225. Zhang TW, Amrani A, Ellis GS, Ma QS, Tang YC. 2008. Experimental investigation on thermochemical sulfate reduction by H2S initiation. Geochim. Cosmochim. Acta 72:3518–30 [Google Scholar]
  226. Zielinski M, Kanska M. 1993. Synthesis and the uses of isotopically labeled compounds with sulphur-containing functional groups. See Patai & Rappoport 1993 495–597

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error