The global positioning system (GPS) is one of the most powerful tools available for observation of Earth's surface deformation. In particular, coseismic, postseismic, slow transient, and interseismic deformation have all been observed globally by GPS over the past two decades, especially in subduction zones. Moreover, GPS-acoustic techniques have been developed for practical use in the past decade, allowing observation of offshore deformation immediately above slip regions. Here, we describe the application of GPS and GPS-acoustic observations to the detection of deformation due to plate boundary slip for interplate earthquakes as well as afterslip and slow slip events in subduction zones around Japan, where geodetic data coverage is particularly dense. The data demonstrate temporally variable strain accumulation in the source region of the 2011 9.0 Tohoku-oki earthquake, and observation of the huge slip of the Tohoku-oki earthquake near the trench using GPS-acoustic methods has considerably advanced our knowledge of stress release and accumulation in this subduction zone.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Asada A, Yabuki T. 2001. Centimeter-level positioning on the seafloor. Proc. Jpn. Acad. B 77:7–12 [Google Scholar]
  2. Baba T, Hirata K, Hori T, Sakaguchi H. 2006. Offshore geodetic data conducive to the estimation of the afterslip distribution following the 2003 Tokachi-oki earthquake. Earth Planet. Sci. Lett. 241:281–92 [Google Scholar]
  3. Beroza GC, Ide S. 2011. Slow earthquakes and nonvolcanic tremor. Annu. Rev. Earth Planet. Sci. 39:271–96 [Google Scholar]
  4. Blewitt G. 1993. Advances in Global Positioning System technology for geodynamics investigations: 1978–1992. Contributions of Space Geodesy to Geodynamics: Technology DE Smith, DL Turcotte 195–213 Washington, DC: AGU [Google Scholar]
  5. Blewitt G, Heflin MB, Hurst KJ, Jefferson DC, Webb FH, Zumberge JF. 1993. Absolute far-field displacements from the 28 June 1992 Landers earthquake sequence. Nature 361:340–42 [Google Scholar]
  6. Blewitt G, Kreemer C, Hammond WC, Plag HP, Stein S, Okal E. 2006. Rapid determination of earthquake magnitude using GPS for tsunami warning systems. Geophys. Res. Lett. 33:L11309 [Google Scholar]
  7. Bürgmann R, Schmidt D, Nadeau RM, d'Alessio M, Fielding E. et al. 2000. Earthquake potential along the northern Hayward fault, California. Science 2891178–82
  8. Byrne DE, Davis DM, Sykes LR. 1988. Loci and maximum size of thrust earthquakes and the mechanics of the shallow region of subduction zones. Tectonics 7:833–57 [Google Scholar]
  9. Chadwell CD. 2003. Shipboard towers for Global Positioning System antennas. Ocean Eng. 30:1467–87 [Google Scholar]
  10. Chadwick WW Jr, Nooner S, Zumberge M, Embley R, Fox CG. 2006. Vertical deformation monitoring at Axial Seamount since its 1998 eruption using deep-sea pressure sensors. J. Volcanol. Geotherm. Res. 150:313–27 [Google Scholar]
  11. Colombelli S, Allen R, Zollo A. 2013. Application of real-time GPS to earthquake early warning in subduction and strike-slip environments. J. Geophys. Res. Solid Earth 118:3448–61 [Google Scholar]
  12. Dragert H, Wang K, James TS. 2001. A silent slip event on the deeper Cascadia subduction interface. Science 292:1525–28 [Google Scholar]
  13. Fox CG. 1990. Evidence of active ground deformation on the mid-ocean ridge: Axial seamount, Juan de Fuca Ridge, April–June 1988. J. Geophys. Res. 95:B812813–22 [Google Scholar]
  14. Freed AM, Bürgmann R, Calais E, Freymueller J, Hreinsdóttir S. 2006. Implications of deformation following the 2002 Denali, Alaska, earthquake for postseismic relaxation processes and lithospheric rheology. J. Geophys. Res. 111:B01401 [Google Scholar]
  15. Fujii Y, Satake K, Sakai S, Shinohara M, Kanazawa T. 2011. Tsunami source of the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planets Space 63:815–20 [Google Scholar]
  16. Fujimoto H. 2006. Ocean bottom crustal movement observation using GPS/acoustic system by universities in Japan. J. Geod. Soc. Jpn. 52:265–72 [Google Scholar]
  17. Fujita M, Ishikawa T, Mochizuki M, Sato M, Toyama S. et al. 2006a. GPS/acoustic seafloor geodetic observation: method of data analysis and its application. Earth Planets Space 58:265–75 [Google Scholar]
  18. Fujita M, Matsumoto Y, Ishikawa T, Mochizuki M, Sato M. et al. 2006b. Combined GPS/acoustic seafloor geodetic observation system for monitoring off-shore active seismic regions near Japan. Proc. 19th Int. Tech. Meet. Satell. Div. Inst. Navig. (ION GNSS 2006)592–603 Manassas, VA: ION [Google Scholar]
  19. Fujiwara T, Kodaira S, No T, Kaiho Y, Takahashi N, Kaneda Y. 2011. The 2011 Tohoku-oki earthquake: displacement reaching the trench axis. Science 334:1240 [Google Scholar]
  20. Fukuda J, Kato A, Kato N, Aoki Y. 2013. Are the frictional properties of creeping faults persistent? Evidence from rapid afterslip following the 2011 Tohoku-oki earthquake. Geophys. Res. Lett. 40:3613–17 [Google Scholar]
  21. Geosp. Inf. Auth. Jpn 2013a. Crustal movements in the Tohoku district. Rep. Coord. Comm. Earthq. Predict. 89:72–105 (In Japanese) http://cais.gsi.go.jp/YOCHIREN/report/kaihou89/03_03.pdf [Google Scholar]
  22. Geosp. Inf. Auth. Jpn 2013b. Crustal movements in the Tohoku district. Rep. Coord. Comm. Earthq. Predict. 90:109–138 (In Japanese) http://cais.gsi.go.jp/YOCHIREN/report/kaihou90/03_03.pdf [Google Scholar]
  23. Hashimoto C, Noda A, Sagiya T, Matsu'ura M. 2009. Interplate seismogenic zones along the Kuril-Japan Trench inferred from GPS data inversion. Nat. Geosci. 2:141–44 [Google Scholar]
  24. Hashimoto M. 2013. Crustal deformation associated with the 2011 Tohoku-oki earthquake: an overview. Earthq. Spectra 29:Suppl. 1S81–98 [Google Scholar]
  25. Hashimoto M, Miyazaki S, Jackson DD. 2000. A block-fault model for deformation of the Japanese Islands derived from continuous GPS observation. Earth Planets Space 52:1095–100 [Google Scholar]
  26. Heki K, Kataoka T. 2008. On the biannually repeating slow-slip events at the Ryukyu Trench, southwestern Japan. J. Geophys. Res. 113:B11402 [Google Scholar]
  27. Heki K, Miyazaki S, Tsuji H. 1997. Silent fault slip following an interplate thrust earthquake at the Japan Trench. Nature 386:595–97 [Google Scholar]
  28. Hirose H, Hirahara K, Kimata F, Fujii N, Miyazaki S. 1999. A slow thrust slip event following the two 1996 Hyuganada earthquakes beneath the Bungo Channel, southwest Japan. Geophys. Res. Lett. 26:3237–40 [Google Scholar]
  29. Hirose H, Kimura H, Enescu B, Aoi S. 2012. Recurrent slow slip event likely hastened by the 2011 Tohoku earthquake. Proc. Natl. Acad. Sci. USA 109:15157–61 [Google Scholar]
  30. Hirose H, Obara K. 2005. Repeating short- and long-term slow slip events with deep tremor activity around the Bungo channel region, southwest Japan. Earth Planets Space 57:961–72 [Google Scholar]
  31. Hoechner A, Ge M, Babeyko AY, Sobolev SV. 2013. Instant tsunami early warning based on real-time GPS—Tohoku 2011 case study. Nat. Hazards Earth Syst. Sci. 13:1285–92 [Google Scholar]
  32. Hudnut KW, King NE, Galetzka JE, Stark KF, Behr JA. et al. 2002. Continuous GPS observations of postseismic deformation following the 16 October 1999 Hector Mine, California, Earthquake (Mw 7.1). Bull. Seismol. Soc. Am. 92:1403–22 [Google Scholar]
  33. Hurst KJ, Argus DF, Donnellan A, Heflin MB, Jefferson DC. et al. 2000. The coseismic geodetic signature of the 1999 Hector Mine earthquake. Geophys. Res. Lett. 27:2733–36 [Google Scholar]
  34. Ide S, Beroza GC, Shelly DR, Uchide T. 2007. A scaling law for slow earthquakes. Nature 447:76–79 [Google Scholar]
  35. Iinuma T, Hino R, Kido M, Inazu D, Osada Y. et al. 2012. Coseismic slip distribution of the 2011 off the Pacific Coast of Tohoku Earthquake (M9.0) refined by means of seafloor geodetic data. J. Geophys. Res. 117:B07409 [Google Scholar]
  36. Ito T, Hashimoto M. 2004. Spatiotemporal distribution of interplate coupling in southwest Japan from inversion of geodetic data. J. Geophys. Res. 109:B02315 [Google Scholar]
  37. Ito T, Ozawa K, Watanabe T, Sagiya T. 2011a. Slip distribution of the 2011 off the Pacific coast of Tohoku Earthquake inferred from geodetic data. Earth Planets Space 63:627–30 [Google Scholar]
  38. Ito T, Yoshioka S, Miyazaki S. 2000. Interplate coupling in northeast Japan deduced from inversion analysis of GPS data. Earth Planet. Sci. Lett. 176:117–30 [Google Scholar]
  39. Ito Y, Hino R, Kido M, Fujimoto H, Osada Y. et al. 2013. Episodic slow slip events in the Japan subduction zone before the 2011 Tohoku-oki earthquake. Tectonophysics 600:14–26 [Google Scholar]
  40. Ito Y, Tsuji T, Osada Y, Kido M, Inazu D. et al. 2011b. Frontal wedge deformation near the source region of the 2011 Tohoku-oki earthquake. Geophys. Res. Lett. 38:L00G05 [Google Scholar]
  41. Jpn. Coast Guard 2011. Seafloor movements by seafloor geodetic observations before and after the 2011 off the Pacific Coast of Tohoku Earthquake. Rep. Coord. Comm. Earthq. Predict. 86:284–93 (In Japanese) http://cais.gsi.go.jp/YOCHIREN/report/kaihou86/03_38.pdf [Google Scholar]
  42. Jpn. Coast Guard 2012. Seafloor movements obtained by seafloor geodetic observations after the 2011 off the Pacific Coast of Tohoku Earthquake. Rep. Coord. Comm. Earthq. Predict. 88:150–54 (In Japanese) http://cais.gsi.go.jp/YOCHIREN/report/kaihou88/03_06.pdf [Google Scholar]
  43. Kanamori H, Miyazawa M, Mori J. 2006. Investigation of the earthquake sequence off Miyagi prefecture with historical seismograms. Earth Planets Space 58:1533–41 [Google Scholar]
  44. Kawasaki I, Asai Y, Tamura Y. 2001. Space-time distribution of interplate moment release including slow earthquakes and the seismo-geodetic coupling in the Sanriku-oki region along the Japan Trench. Tectonophysics 330:267–83 [Google Scholar]
  45. Kido M, Fujimoto H, Miura S, Osada Y, Tsuka K, Tabei T. 2006. Seafloor displacement at Kumano-nada caused by the 2004 off Kii Peninsula earthquakes, detected through repeated GPS/acoustic surveys. Earth Planets Space 58:911–15 [Google Scholar]
  46. Kido M, Osada Y, Fujimoto H, Hino R, Ito Y. 2011. Trench-normal variation in observed seafloor displacements associated with the 2011 Tohoku-oki earthquake. Geophys. Res. Lett. 38:L24303 [Google Scholar]
  47. Kimura H, Miyahara B. 2013. Development of index of earthquake-derived crustal deformations detected by GEONET. Rep. Geosp. Inf. Auth. Jpn. 124:57–63 (In Japanese) http://www.gsi.go.jp/common/000080071.pdf [Google Scholar]
  48. Kogan MG, Vasilenko NF, Frolov DI, Freymueller JT, Steblov GM. et al. 2011. The mechanism of postseismic deformation triggered by the 2006–2007 great Kuril earthquakes. Geophys. Res. Lett. 38:L06304 [Google Scholar]
  49. Le Pichon X, Mazzotti S, Henry P, Hashimoto M. 1998. Deformation of the Japanese Islands and seismic coupling: an interpretation based on GSI permanent GPS observations. Geophys. J. Int. 134:501–14 [Google Scholar]
  50. Liu Z, Owen S, Dong D, Lundgren P, Webb F. et al. 2010. Integration of transient strain events with models of plate coupling and areas of great earthquakes in southwest Japan. Geophys. J. Int. 181:1292–312 [Google Scholar]
  51. Loveless JP, Meade BJ. 2010. Geodetic imaging of plate motions, slip rates, and partitioning of deformation in Japan. J. Geophys. Res. 115:B02410 [Google Scholar]
  52. Loveless JP, Meade BJ. 2011. Spatial correlation of interseismic coupling and coseismic rupture extent of the 2011 MW = 9.0 Tohoku-oki earthquake. Geophys. Res. Lett. 38:L17306 [Google Scholar]
  53. Mazzotti S, Le Pichon X, Henry P, Miyazaki S. 2000. Full interseismic locking of the Nankai and Japan–west Kurile subduction zones: an analysis of uniform elastic strain accumulation in Japan constrained by permanent GPS. J. Geophys. Res. 105:B613159–77 [Google Scholar]
  54. Mikada H, Mitsuzawa K, Matsumoto H, Watanabe T, Morita S. et al. 2006. New discoveries in dynamics of an M8 earthquake-phenomena and their implications from the 2003 Tokachi-oki earthquake using a long term monitoring cabled observatory. Tectonophysics 426:95–105 [Google Scholar]
  55. Miura S, Iinuma T, Yui S, Uchida N, Sato T. et al. 2006. Co- and post-seismic slip associated with the 2005 Miyagi-oki earthquake (M7.2) as inferred from GPS data. Earth Planets Space 58:1567–72 [Google Scholar]
  56. Miura S, Suwa Y, Hasegawa A, Nishimura T. 2004. The 2003 M8.0 Tokachi-oki earthquake—how much has the great event paid back slip debts?. Geophys. Res. Lett. 31:L05613 [Google Scholar]
  57. Miyazaki S, Heki K. 2001. Crustal velocity field of southwest Japan: subduction and arc-arc collision. J. Geophys. Res. 106:B34305–26 [Google Scholar]
  58. Miyazaki S, Larson KM. 2008. Coseismic and early postseismic slip for the 2003 Tokachi-oki earthquake sequence inferred from GPS data. Geophys. Res. Lett. 35:L04302 [Google Scholar]
  59. Miyazaki S, Larson KM, Choi K, Hikima K, Koketsu K. et al. 2004a. Modeling the rupture process of the 2003 September 25 Tokachi-oki (Hokkaido) earthquake using 1-Hz GPS data. Geophys. Res. Lett. 31:L21603 [Google Scholar]
  60. Miyazaki S, McGuire JJ, Segall P. 2011. Seismic and aseismic fault slip before and during the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planets Space 63:637–42 [Google Scholar]
  61. Miyazaki S, Segall P, Fukuda J, Kato T. 2004b. Space time distribution of afterslip following the 2003 Tokachi-oki earthquake: implications for variations in fault zone frictional properties. Geophys. Res. Lett. 31:L06623 [Google Scholar]
  62. Miyazaki S, Segall P, McGuire JJ, Kato T, Hatanaka Y. 2006. Spatial and temporal evolution of stress and slip rate during the 2000 Tokai slow earthquake. J. Geophys. Res. 111:B03409 [Google Scholar]
  63. Moreno M, Rosenau M, Oncken O. 2010. 2010 Maule earthquake slip correlates with seismic locking of Andean subduction zone. Nature 467:198–202 [Google Scholar]
  64. Munekane H. 2012. Coseismic and early postseismic slips associated with the 2011 off the Pacific coast of Tohoku Earthquake sequence: EOF analysis of GPS kinematic time series. Earth Planets Space 64:1077–91 [Google Scholar]
  65. Murakami M, Suito H, Ozawa S, Kaidzu M. 2006. Earthquake triggering by migrating slow slip initiated by M8 earthquake along Kuril Trench, Japan. Geophys. Res. Lett. 33:L09306 [Google Scholar]
  66. Nishimura T. 2011. Back-arc spreading of the northern Izu-Ogasawara (Bonin) Islands arc clarified by GPS data. Tectonophysics 512:60–67 [Google Scholar]
  67. Nishimura T. 2012. Crustal deformation of northeastern Japan based on geodetic data for recent 120 years. J. Geol. Soc. Jpn. 118:278–93 (In Japanese, with English abstr.) [Google Scholar]
  68. Nishimura T, Hirasawa T, Miyazaki S, Sagiya T, Tada T. et al. 2004. Temporal change of interplate coupling in northeastern Japan during 1995–2002 estimated from continuous GPS observations. Geophys. J. Int. 157:901–16 [Google Scholar]
  69. Nishimura T, Matsuzawa T, Obara K. 2013. Detection of short-term slow slip events along the Nankai Trough, southwest Japan using GNSS data. J. Geophys. Res. Solid Earth 118:3112–25 [Google Scholar]
  70. Nishimura T, Miura S, Tachibana K, Hashimoto K, Sato T. et al. 2000. Distribution of seismic coupling on the subducting plate boundary in northeastern Japan inferred from GPS observations. Tectonophysics 323:217–38 [Google Scholar]
  71. Nishimura T, Munekane H, Yarai H. 2011. The 2011 off the Pacific coast of Tohoku Earthquake and its aftershocks observed by GEONET. Earth Planets Space 63:631–36 [Google Scholar]
  72. Obana K, Katao H, Ando M. 2000. Seafloor positioning system with GPS-acoustic link for crustal dynamics observation—a preliminary result from experiments in the sea. Earth Planets Space 42:415–23 [Google Scholar]
  73. Obara K. 2002. Nonvolcanic deep tremor associated with subduction in southwest Japan. Science 296:1679–81 [Google Scholar]
  74. Obara K. 2010. Phenomenology of deep slow earthquake family in southwest Japan: spatiotemporal characteristics and segmentation. J. Geophys. Res. 115:B00A25 [Google Scholar]
  75. Obara K. 2011. Characteristics and interactions between non-volcanic tremor and related slow earthquakes in the Nankai subduction zone, southwest Japan. J. Geodyn. 52:229–48 [Google Scholar]
  76. Obara K, Hirose H. 2006. Non-volcanic deep low-frequency tremors accompanying slow slips in the southwest Japan subduction zone. Tectonophysics 417:33–51 [Google Scholar]
  77. Ohta Y, Hino R, Inazu D, Ohzono M, Ito Y. et al. 2012a. Geodetic constraints on afterslip characteristics following the March 9, 2011, Sanriku-oki earthquake, Japan. Geophys. Res. Lett. 39:L16304 [Google Scholar]
  78. Ohta Y, Kobayashi T, Tsushima H, Miura S, Hino R. et al. 2012b. Quasi real-time fault model estimation for near-field tsunami forecasting based on RTK-GPS analysis: application to the 2011 Tohoku-oki earthquake (Mw 9.0). J. Geophys. Res. 117:B02311 [Google Scholar]
  79. Ozawa S. 1996. Geodetic inversion for the fault model of the 1994 Shikotan earthquake. Geophys. Res. Lett. 23:2009–12 [Google Scholar]
  80. Ozawa S, Kaidzu M, Murakami M, Imakiire T, Hatanaka Y. 2004. Coseismic and postseismic crustal deformation after the Mw 8 Tokachi-oki earthquake in Japan. Earth Planets Space 56:6 75–80
  81. Ozawa S, Miyazaki S, Hatanaka Y, Imakiire T, Kaidzu M, Murakami M. 2003. Characteristic silent earthquakes in the eastern part of the Boso Peninsula, Central Japan. Geophys. Res. Lett. 30:1283 [Google Scholar]
  82. Ozawa S, Murakami M, Kaidzu M, Tada T, Sagiya T. et al. 2002. Detection and monitoring of ongoing aseismic slip in the Tokai region, central Japan. Science 298:1009–12 [Google Scholar]
  83. Ozawa S, Murakami M, Tada T. 2001. Time-dependent inversion study of the slow thrust event in the Nankai Trough subduction zone, southwestern Japan. J. Geophys. Res. 106:B1787–802 [Google Scholar]
  84. Ozawa S, Nishimura T, Munekane H, Suito H, Kobayashi T. et al. 2012. Preceding, coseismic, and postseismic slips of the 2011 Tohoku earthquake, Japan. J. Geophys. Res. 117:B07404 [Google Scholar]
  85. Ozawa S, Nishimura T, Suito H, Kobayashi T, Tobita M, Imakiire T. 2011. Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-oki earthquake. Nature 475:373–76 [Google Scholar]
  86. Ozawa S, Suito H, Imakiire T, Murakmi M. 2007a. Spatiotemporal evolution of aseismic interplate slip between 1996 and 1998 and between 2002 and 2004, in Bungo channel, southwest Japan. J. Geophys. Res. 112:B05409 [Google Scholar]
  87. Ozawa S, Suito H, Nishimura T, Tobita M, Munekane H. 2007b. Possibility of recovery of slip deficit rate between the North American plate and the Pacific plate off Sanriku, northeast Japan. Geophys. Res. Lett. 34:L20308 [Google Scholar]
  88. Ozawa S, Suito H, Tobia M. 2007c. Occurrence of quasi-periodic slow-slip off the east coast of the Boso Peninsula, Central Japan. Earth Planets Space 59:1241–45 [Google Scholar]
  89. Ozawa S, Yarai H, Imakiire T, Tobita M. 2013. Spatial and temporal evolution of the long-term slow slip in the Bungo Channel, Japan. Earth Planets Space 65:67–73 [Google Scholar]
  90. Pararas-Carayannis G. 2013. The great Tohoku-oki earthquake and tsunami of March 11, 2011 in Japan: a critical review and evaluation of the tsunami source mechanism. Pure Appl. Geophys. doi: 10.1007/s00024-013-0677-7
  91. Peterson ET, Seno T. 1984. Factors affecting seismic moment release rates in subduction zones. J. Geophys. Res. 89:B1210233–48 [Google Scholar]
  92. Pollitz FF, Bürgmann R, Banerjee P. 2011. Geodetic slip model of the 2011 M9.0 Tohoku earthquake. Geophys. Res. Lett. 38:L00G08 [Google Scholar]
  93. Radiguet M, Cotton F, Vergnolle M, Campillo M, Walpersdorf A. et al. 2012. Slow slip events and strain accumulation in the Guerrero gap, Mexico. J. Geophys. Res. 117:B04305 [Google Scholar]
  94. Sagiya T. 1999. Interplate coupling in the Tokai District, central Japan deduced from continuous GPS data. Geophys. Res. Lett. 26:2315–18 [Google Scholar]
  95. Sagiya T. 2004a. A decade of GEONET: 1994–2003—the continuous GPS observation in Japan and its impact on earthquake studies. Earth Planets Space 56:xxix–xli [Google Scholar]
  96. Sagiya T. 2004b. Interplate coupling in the Kanto district, central Japan, and the Boso Peninsula silent earthquake in May 1996. Pure Appl. Geophys. 161:2327–42 [Google Scholar]
  97. Sagiya T, Miyazaki S, Tada T. 2000. Continuous GPS array and present-day crustal deformation of Japan. Pure Appl. Geophys. 157:2303–22 [Google Scholar]
  98. Sagiya T, Thatcher W. 1999. Coseismic slip resolution along a plate boundary megathrust: the Nankai Trough, southwest Japan. J. Geophys. Res. 104:B11111–29 [Google Scholar]
  99. Sato M, Fujita M, Matsumoto Y, Ishikawa T, Saito H. et al. 2013a. Interplate coupling off northeastern Japan before the 2011 Tohoku-oki earthquake, inferred from seafloor geodetic data. J. Geophys. Res. Solid Earth 118:3860–69 [Google Scholar]
  100. Sato M, Fujita M, Matsumoto Y, Saito H, Ishikawa T, Asakura T. 2013b. Improvement of GPS/acoustic seafloor positioning precision through controlling the ship's track line. J. Geod. 87:825–42 [Google Scholar]
  101. Sato M, Ishikawa T, Ujihara N, Yoshida S, Fujita M. et al. 2011a. Displacement above the hypocenter of the 2011 Tohoku-oki earthquake. Science 332:1395 [Google Scholar]
  102. Sato M, Kido M, Tadokoro K. 2008. GPS/acoustic seafloor geodetic observation—major results and new approaches. J. Geod. Soc. Jpn. 54:113–25 (In Japanese, with English abstr.) [Google Scholar]
  103. Sato M, Saito H, Ishikawa T, Matsumoto Y, Fujita M. et al. 2011b. Restoration of interplate locking after the 2005 off–Miyagi prefecture earthquake, detected by GPS/acoustic seafloor geodetic observation. Geophys. Res. Lett. 38:L01312 [Google Scholar]
  104. Schwartz DP, Coppersmith KJ. 1984. Fault behavior and characteristic earthquakes: examples from the Wasatch and San Andreas fault zones. J. Geophys. Res. 89:B75681–98 [Google Scholar]
  105. Schwartz SY, Rokosky JM. 2007. Slow slip events and seismic tremor at circum-Pacific subduction zones. Rev. Geophys. 45:RG3004 [Google Scholar]
  106. Segall P, Davis JL. 1997. GPS applications for geodynamics and earthquake studies. Annu. Rev. Earth Planet. Sci. 25:301–36 [Google Scholar]
  107. Sekine S, Hirose H, Obara K. 2010. Along-strike variations in short-term slow slip events in the southwest Japan subduction zone. J. Geophys. Res. 115:B00A27 [Google Scholar]
  108. Seno T, Sakurai T, Stein S. 1996. Can the Okhotsk plate be discriminated from the North American plate?. J. Geophys. Res. 101:B511305–15 [Google Scholar]
  109. Shao G, Li X, Ji C, Maeda T. 2011. Focal mechanism and slip history of the 2011 Mw 9.1 off the Pacific coast of Tohoku earthquake, constrained with teleseismic body and surface waves. Earth Planets Space 63:559–64 [Google Scholar]
  110. Shen ZK, Jackson DD, Feng Y, Cline M, Kim M. et al. 1994. Postseismic deformation following the Landers earthquake, California, 28 June 1992. Bull. Seismol. Soc. Am. 84:780–91 [Google Scholar]
  111. Shestakov NV, Gerasimenko MD, Takahashi H, Kasahara M, Bormotov VA. et al. 2011. Present tectonics of the southeast of Russia as seen from GPS observations. Geophys. J. Int. 184:529–40 [Google Scholar]
  112. Shestakov NV, Takahashi H, Ohzono M, Prytkov AS, Bykov VG. et al. 2012. Analysis of the far-field crustal displacements caused by the 2011 Great Tohoku earthquake inferred from continuous GPS observations. Tectonophysics 524:76–86 [Google Scholar]
  113. Shimada S, Bock Y. 1992. Crustal deformation measurements in central Japan determined by a Global Positioning System fixed-point network. J. Geophys. Res. 97:B912437–55 [Google Scholar]
  114. Shimazaki K, Nakata T. 1980. Time-predictable recurrence model for large earthquakes. Geophys. Res. Lett. 7:279–82 [Google Scholar]
  115. Spiess FN. 1985. Analysis of a possible seafloor strain measurement system. Mar. Geodesy 9:385–98 [Google Scholar]
  116. Spiess FN, Chadwell CD, Hildebrand JA, Young LE, Purcell GH Jr, Dragert H. 1998. Precise GPS/acoustic positioning of seafloor reference points for tectonic studies. Phys. Earth Planet. Inter. 108:101–12 [Google Scholar]
  117. Steblov GM, Kogan MG, Levin BV, Vasilenko NF, Prytkov AS, Frolov DI. 2008. Spatially linked asperities of the 2006–2007 great Kuril earthquakes revealed by GPS. Geophys. Res. Lett. 35:L22306 [Google Scholar]
  118. Suito H, Freymueller JT. 2009. A viscoelastic and afterslip postseismic deformation model for the 1964 Alaska earthquake. J. Geophys. Res. 114:B11404 [Google Scholar]
  119. Suito H, Nishimura T, Tobita M, Imakiire T, Ozawa S. 2011. Interplate fault slip along the Japan Trench before the occurrence of the 2011 off the Pacific coast of Tohoku earthquake as inferred from GPS data. Earth Planets Space 63:615–19 [Google Scholar]
  120. Suito H, Ozawa S. 2009. Transient crustal deformation in the Tokai district: the Tokai slow slip event and postseismic deformation cause by the 2004 off southeast Kii Peninsula earthquake. Zisin 2 61:113–35 (In Japanese, with English abstr.) [Google Scholar]
  121. Suwa Y, Miura S, Hasegawa A, Sato T, Tachibana K. 2006. Interplate coupling beneath NE Japan inferred from three-dimensional displacement field. J. Geophys. Res. 111:B04402 [Google Scholar]
  122. Tadokoro K, Ando M, Ikuta R, Okuda T, Besana GM. et al. 2006. Observation of coseismic seafloor crustal deformation due to M7 class offshore earthquakes. Geophys. Res. Lett. 33:L23306 [Google Scholar]
  123. Tadokoro K, Ikuta R, Watanabe T, Ando M, Okuda T. et al. 2012. Interseismic seafloor crustal deformation immediately above the source region of anticipated megathrust earthquake along the Nankai Trough, Japan. Geophys. Res. Lett. 39:L10306 [Google Scholar]
  124. Tadokoro K, Sugimoto S, Muto D, Watanabe T, Ikuta R. et al. 2008. Repeated observations of seafloor crustal deformation along the Suruga-Nankai Trough, Japan. J. Geod. Soc. Jpn. 54:127–39 (In Japanese, with English abstr.) [Google Scholar]
  125. Taira A. 2001. Tectonic evolution of the Japanese island arc system. Annu. Rev. Earth Planet. Sci. 29:109–34 [Google Scholar]
  126. Tajima F, Mori J, Kennett BL. 2013. A review of the 2011 Tohoku-oki earthquake (Mw 9.0): large-scale rupture across heterogeneous plate coupling. Tectonophysics 586:15–34 [Google Scholar]
  127. Tsuji H, Hatanaka Y, Sagiya T, Hashimoto M. 1995. Coseismic crustal deformation from the 1994 Hokkaido-toho-oki earthquake monitored by a nationwide continuous GPS array in Japan. Geophys. Res. Lett. 22:1669–72 [Google Scholar]
  128. Uchida N, Matsuzawa T, Nakajima J, Hasegawa A. 2010. Subduction of a wedge-shaped Philippine Sea plate beneath Kanto, central Japan, estimated from converted waves and small repeating earthquakes. J. Geophys. Res. 115:B07309 [Google Scholar]
  129. Wallace LM, Beavan J. 2010. Diverse slow slip behavior at the Hikurangi subduction margin, New Zealand. J. Geophys. Res. 115:B12402 [Google Scholar]
  130. Wang M, Li Q, Wang F, Zhang R, Wang Y. et al. 2011. Far-field coseismic displacements associated with the 2011 Tohoku-oki earthquake in Japan observed by Global Positioning System. Chin. Sci. Bull. 56:2419–24 [Google Scholar]
  131. Wright TJ, Houlié N, Hildyard M, Iwabuchi T. 2012. Real-time, reliable magnitudes for large earthquakes from 1 Hz GPS precise point positioning: the 2011 Tohoku-oki (Japan) earthquake. Geophys. Res. Lett. 39:L12302 [Google Scholar]
  132. Yagi Y, Kikuchi M, Nishimura T. 2003. Co-seismic slip, post-seismic slip, and largest aftershock associated with the 1994 Sanriku-haruka-oki, Japan, earthquake. Geophys. Res. Lett. 30:2177 [Google Scholar]
  133. Yamanaka Y, Kikuchi M. 2003. Source process of the recurrent Tokachi-oki earthquake on September 26, 2003, inferred from teleseismic body waves. Earth Planets Space 55:e21–24 [Google Scholar]
  134. Yokota Y, Koketsu K, Fujii Y, Satake K, Sakai S. et al. 2011. Joint inversion of strong motion, teleseismic, geodetic, and tsunami datasets for the rupture process of the 2011 Tohoku earthquake. Geophys. Res. Lett. 38:L00G21 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error