Geophysics research has long been dominated by classical mechanics, largely disregarding the potential of particle physics to augment existing techniques. The purpose of this article is to review recent progress in probing Earth's interior with muons and neutrinos. Existing results for various volcanological targets are reviewed. Geoneutrinos are also highlighted as examples in which the neutrino probes elucidate the composition of Earth's deep interior. Particle geophysics has the potential to serve as a useful paradigm to transform our understanding of Earth as dramatically as the X-ray transformed our understanding of medicine and the body.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Aleksandrov A, Bozza C, Consiglio L, D'Ambrosio N, De Lellis G. et al. 2012. Automatic readout for nuclear emulsions in muon radiography of volcanoes. Geophys. Res. Abstr. 14:EGU2012–5795 [Google Scholar]
  2. Alvarez LW, Anderson JA, Bedwei FE, Burkhard J, Fakhry A. et al. 1970. Search for hidden chambers in the pyramids. Science 167:832–39 [Google Scholar]
  3. Anastasio A, Ambrosinoa F, Basta D, Bonechi L, Brianzi M. et al. 2013. The MU-RAY experiment. An application of SiPM technology to the understanding of volcanic phenomena. Nucl. Instrum. Methods Phys. Res. A 718:134–37 [Google Scholar]
  4. Araki T, Enomoto S, Furuno K, Gando Y, Ichimura K. et al. 2005. Experimental investigation of geologically produced antineutrinos with KamLAND. Nature 436:499–503 [Google Scholar]
  5. Barnafoldi GG, Hamar G, Melegh HG, Olah L, Suranyi G. et al. 2012. Portable cosmic muon telescope for environmental applications. Nucl. Instrum. Methods Phys. Res. A 689:60–69 [Google Scholar]
  6. Barrett PH, Bollinger LM, Cocconi G, Eisenberg Y, Greisen K. 1952. Interpretation of cosmic-ray measurements far underground. Rev. Mod. Phys. 24:133–78 [Google Scholar]
  7. Basset M, Ansoldi S, Bari M, Battiston R, Blasko S. et al. 2006. MGR: an innovative, low-cost and compact cosmic-ray detector. Nucl. Instrum. Methods Phys. Res. A 567:298–301 [Google Scholar]
  8. Beauducel F, Bross A, Buontempo S, D'Auria L, Déclais Y. et al. 2010. The MU-RAY project: summary of the round-table discussions. Earth Planets Space 62:145–51 [Google Scholar]
  9. Becquerel H. 1896. Sur les radiations émises par phosphorescence. C.R. Acad. Sci. 122:420–21 [Google Scholar]
  10. Bellini G, Benziger J, Bick D, Bonfini G, Bravo D. et al.(Borexino Collab.) 2013. Measurement of geo-neutrinos from 1353 days of Borexino. Phys. Lett. B 722:295–300 [Google Scholar]
  11. Bellini G, Benziger J, Bonetti S, Buizza Avanzini M, Caccianiga B. et al. 2010. Observation of geo-neutrinos. Phys. Lett. B 687:299–304 [Google Scholar]
  12. Beringer J, Arguin JF, Barnett RM, Copic K, Dahl O. et al.(Particle Data Group) 2012. Review of particle physics. Phys. Rev. D 86:010001 [Google Scholar]
  13. Bugaev EV, Misaki A, Naumov VA, Sinegovskaya TS, Sinegovsky SI, Takahashi N. 1998. Atmospheric muon flux at sea level, underground, and underwater. Phys. Rev. D 58:054001 [Google Scholar]
  14. Bull R, Nash WF, Rustin BC. 1965. The momentum spectrum and charge ratio of μ-mesons at sea-level—II. Nuovo Cimento A 2:365–84 [Google Scholar]
  15. Caffau E, Coren F, Giannini G. 1997. Underground cosmic-ray measurement for morphological reconstruction of the Grotta Gigante natural cave. Nucl. Instrum. Methods Phys. Res. A 385:480–88 [Google Scholar]
  16. Carbone D, Gibert D, Marteau J, Diament M, Zuccarello L, Galichet E. 2013. An experiment of muon radiography at Mt Etna (Italy). Geophys. J. Int. 196:633–43 [Google Scholar]
  17. Carloganu C, Niess V, Béné S, Busato E, Dupieux P. 2012. Towards a muon radiography of the Puy de Dôme. Geosci. Instrum. Methods Data Syst. 2:55–60 [Google Scholar]
  18. Dziewonski AM, Anderson DL. 1981. Preliminary reference Earth model. Phys. Earth Planet. Inter. 25:297–356 [Google Scholar]
  19. Eder G. 1966. Terrestrial neutrinos. Nucl. Phys. 78:657–62 [Google Scholar]
  20. Enomoto E, Ohtani K, Inoue Suzuki A. 2007. Neutrino geophysics with KamLAND and future prospects. Earth Planet. Sci. Lett. 258:147–59 [Google Scholar]
  21. Gaisser T, Stanev T. 2008. Cosmic rays. Phys. Lett. B 667:254–60 [Google Scholar]
  22. Gando A, Gando Y, Hanakago H, Ikeda H, Inoue K. et al. 2013. Reactor on-off antineutrino measurement with KamLAND. Phys. Rev. D 88:033001 [Google Scholar]
  23. Gando A, Gando Y, Ichimura K, Ikeda H, Inoue K. et al. 2011. Partial radiogenic heat model for Earth revealed by geoneutrino measurements. Nat. Geosci. 4:647–51 [Google Scholar]
  24. George EP. 1955. Cosmic rays measure overburden of tunnel. Commonw. Eng. 1955:455–57 [Google Scholar]
  25. Gibert D, Beauducel F, Déclais Y, Lesparre N, Marteau J. et al. 2010. Muon tomography: plans for observations in the Lesser Antilles. Earth Planets Space 52:153–65 [Google Scholar]
  26. Gray FE, Ruybal C, Totushek J, Mei DM, Thomas K. et al. 2011. Cosmic ray muon flux at the Sanford Underground Laboratory at Homestake. Nucl. Instrum. Methods Phys. Res. A 638:63–66 [Google Scholar]
  27. Groom DE, Mokhov NV, Striganov SI. 2001. Muon stopping-power and range tables: 10 MeV–100 TeV. At. Data Nucl. Data Tables 78:183–356 [Google Scholar]
  28. Hedenquist JW, Aoki M, Shinohara H. 1994. Flux of volatiles and ore-forming metals from the magmatic-hydrothermal system of Satsuma Iwojima volcano. Geology 22:585–88 [Google Scholar]
  29. Hernández I, Hernández P, Pérez N, Tanaka HKM, Miyamoto S. et al. 2013. Application of emulsion imaging system for cosmic-ray muon radiography to explore the internal structure of Teide and Cumbre Vieja volcanoes in the Canary Islands, Spain. Geophys. Res. Abstr. 15:EGU2013–953 [Google Scholar]
  30. Herndon JM. 1996. Substructure of the inner core of the Earth. Proc. Natl. Acad. Sci. USA 93:646–48 [Google Scholar]
  31. Hess VF. 1912. Über Beobachtungen der durchdringenden Strahlung bei sieben Freiballonfahrten. Phys. Z. 13:1084–91 [Google Scholar]
  32. Kazahaya K, Shinohara H, Saito G. 2002. Degassing process of Satsuma-Iwojima volcano, Japan: supply of volatile components from a deep magma chamber. Earth Planets Space 54:327–35 [Google Scholar]
  33. Komazawa M, Nawa K, Murata Y, Makino M, Morijiri R. et al. 2005. Gravity map of Yakushima district (Bouguer anomalies) Gravity Map Ser. 22, Geol. Surv. Jpn., Natl. Inst. Adv. Ind. Sci. Technol. (AIST) [Google Scholar]
  34. Kudryavtsev VA, Spooner NJC, Gluyas J, Fung C, Coleman M. 2012. Monitoring subsurface CO2 emplacement and security of storage using muon tomography. Int. J. Greenh. Gas Control 11:21–24 [Google Scholar]
  35. Kuster D, Silve V. 1997. Guadeloupe: Canyons, Gouffres, Découverte Chambéry, Fr: Editions GAP [Google Scholar]
  36. Lesparre N, Gibert D, Marteau J, Déclais Y, Carbone D, Galichet E. 2010. Geophysical muon imaging: feasibility and limits. Geophys. J. Int. 183:1348–61 [Google Scholar]
  37. Lesparre N, Gibert D, Marteau J, Nicollin F, Coutant O. et al. 2012a. Density muon radiography of La Soufrière of Guadeloupe volcano: comparison with geological, electrical resistivity and gravity data. Geophys. J. Int. 190:1008–19 [Google Scholar]
  38. Lesparre N, Marteau J, Déclais Y, Gibert D, Nicollin F, Kergosien B. 2012b. Design and operation of a field telescope for cosmic ray geophysical tomography. Geosci. Instrum. Methods Data Syst. 1:33–42 [Google Scholar]
  39. Ludhova L. 2012. Geo-neutrinos. Geosci. Instrum. Methods Data Syst. 1:221–27 [Google Scholar]
  40. Marteau J, Gibert D, Lesparre N, Nicollin F, Noli P. et al. 2012. Muons tomography applied to geosciences and volcanology. Nucl. Instrum. Methods Phys. Res. A 695:23–28 [Google Scholar]
  41. Matsuno S, Kajino F, Kawashima Y, Kitamura T, Mitsui K. et al. 1984. Cosmic-ray muon spectrum up to 20 TeV at 89° zenith angle. Phys. Rev. D 29:1–23 [Google Scholar]
  42. McDonough WF, Learned JG, Dye ST. 2012. The many uses of electron antineutrinos. Phys. Today 65:46–51 [Google Scholar]
  43. McDonough WF, Sun S. 1995. The composition of the Earth. Chem. Geol. 120:223–53 [Google Scholar]
  44. Menichelli M, Ansoldi S, Bari M, Basset M, Battiston R. et al. 2007. A scintillating fibres tracker detector for archaeological applications. Nucl. Instrum. Methods Phys. Res. A 572:262–65 [Google Scholar]
  45. Miyamoto S, Bozza C, D'Ambrosio N, De Lellis G, Di Crescenzo A. et al. 2012. The lava dome tomography in Unzen: the discussion about the observation and data treatment. Geophys. Res. Abstr. 14:EGU2012–6747-2 [Google Scholar]
  46. Nakamura T, Ariga A, Ban T, Fukuda T, Fukuda T. et al. 2006. The OPERA film: new nuclear emulsion for large-scale, high precision experiments. Nucl. Instrum. Methods Phys. Res. A 556:80–86 [Google Scholar]
  47. Nakano T. 1997. Automated analysis of nuclear emulsions. PhD Thesis, Nagoya Univ. (In Japanese) [Google Scholar]
  48. Narasimham VS. 2004. Perspectives of experimental neutrino physics in India. Proc. Indian Natl. Sci. Acad. 70:11–25 [Google Scholar]
  49. Olah L, Barnafoldi GG, Hamar G, Melegh HG, Suranyi G. et al. 2012. CCC-based muon telescope for examination of natural caves. Geosci. Instrum. Methods Data Syst. 1:229–34 [Google Scholar]
  50. Prettyman T. 2013. Deep mapping of small Solar System bodies with galactic cosmic ray secondary particle showers NASA Innov. Adv. Concepts (NIAC) Phase I Award, Space Technol. Mission Dir., NASA, July 19. http://www.nasa.gov/content/deep-mapping-of-small-solar-system-bodies-with-galactic-cosmic-ray-secondary-particle/ [Google Scholar]
  51. Rymer H, van Wyk de Vries B, Stix J, Williams-Jones G. 1998. Pit crater structure and processes governing persistent activity at Masaya Volcano, Nicaragua. Bull. Volcanol. 59:345–55 [Google Scholar]
  52. Saracino G, Carloganu C. 2012. Looking at volcanoes with cosmic-ray muons. Phys. Today 65:60–61 [Google Scholar]
  53. Shinohara H, Tanaka HKM. 2012. Conduit magma convection of a rhyolitic magma: constraints from cosmic-ray muon radiography of Iwodake, Satsuma-Iwojima volcano, Japan. Earth Planet. Sci. Lett. 349–50:87–97 [Google Scholar]
  54. Šrámek O, McDonough WF, Kite ES, Lekić V, Dye ST, Zhong S. 2013. Geophysical and geochemical constraints on geoneutrino fluxes from Earth's mantle. Earth Planet. Sci. Lett. 361:356–66 [Google Scholar]
  55. Stevenson DS, Blake S. 1998. Modeling the dynamics and thermodynamics of volcanic degassing. Bull. Volcanol. 60:307–17 [Google Scholar]
  56. Taira H, Tanaka HKM. 2010. A potential space- and power-effective muon sensor module for imaging a volcano. Earth Planets Space 62:179–86 [Google Scholar]
  57. Tanaka HKM. 2013. Development of stroboscopic muography. Geosci. Instrum. Methods Data Syst. 2:41–45 [Google Scholar]
  58. Tanaka HKM, Miyajima H, Kusagaya T, Taketa A, Uchida T. et al. 2011. Cosmic muon imaging of hidden seismic fault zones: rainwater permeation into the mechanical fractured zones in Itoigawa-Shizuoka Tectonic Line, Japan. Earth Planet. Sci. Lett. 306:156–62 [Google Scholar]
  59. Tanaka HKM, Nagamine K, Kawamura N, Nakamura SN, Ishida K. et al. 2001. Development of the cosmic-ray muon detection system for probing internal-structure of a volcano. Hyperfine Interact. 138:521–26 [Google Scholar]
  60. Tanaka HKM, Nagamine K, Kawamura N, Nakamura SN, Ishida K. et al. 2003. Development of a two-fold segmented detection system for near horizontally cosmic-ray muons to probe the internal structure of a volcano. Nucl. Instrum. Methods Phys. Res. A 507:657–69 [Google Scholar]
  61. Tanaka HKM, Nagamine K, Nakamura SN, Ishida K. 2005. Radiographic measurement of the internal structure of Mt. West Iwate with near-horizontal cosmic-ray muons and future developments. Nucl. Instrum. Methods Phys. Res. A 555:164–72 [Google Scholar]
  62. Tanaka HKM, Nakano T, Takahashi S, Yoshida J, Ohshima H. et al. 2007a. Imaging the conduit size of the dome with cosmic ray muons: the structure beneath Showa-Shinzan lava dome, Japan. Geophys. Res. Lett. 34:L22311 [Google Scholar]
  63. Tanaka HKM, Nakano T, Takahashi S, Yoshida J, Takeo M. et al. 2007b. High resolution imaging in the inhomogeneous crust with cosmic ray muon radiography: the density structure below the volcanic crater floor of Mt. Asama, Japan. Earth Planet. Sci. Lett. 263:104–13 [Google Scholar]
  64. Tanaka HKM, Nakano T, Takahashi S, Yoshida J, Takeo M. et al. 2008. Radiographic imaging below a volcanic crater floor with cosmic-ray muons. Am. J. Sci. 308:843–50 [Google Scholar]
  65. Tanaka HKM, Sannomiya A. 2013. Development and operation of a muon detection system under extremely high humidity environment for monitoring underground water table. Geosci. Instrum. Methods Data Syst. 2:29–34 [Google Scholar]
  66. Tanaka HKM, Taira H, Uchida T, Tanaka M, Takeo M. et al. 2010a. Three dimensional CAT scan of a volcano with cosmic-ray muon radiography. J. Geophys. Res. 115:B12332 [Google Scholar]
  67. Tanaka HKM, Uchida T, Tanaka M, Shinohara H, Taira H. 2009a. Cosmic-ray muon imaging of magma in a conduit: degassing process of Satsuma-Iwojima volcano, Japan. Geophys. Res. Lett. 36:L01304 [Google Scholar]
  68. Tanaka HKM, Uchida T, Tanaka M, Shinohara H, Taira H. 2010b. Development of a portable assembly–type cosmic-ray muon module for measuring the density structure of a column of magma. Earth Planets Space 62:119–29 [Google Scholar]
  69. Tanaka HKM, Uchida T, Tanaka M, Takeo M, Oikawa J. et al. 2009b. Detecting a mass change inside a volcano by cosmic-ray muon radiography (muography): first results from measurements at Asama volcano, Japan. Geophys. Res. Lett. 36:L17302 [Google Scholar]
  70. Tanaka HKM, Yokoyama I. 2008. Muon radiography and deformation analysis of the lava dome formed by the 1944 eruption of Usu, Hokkaido—contact between high-energy physics and volcano physics. Proc. Jpn. Acad. B 84:107–16 [Google Scholar]
  71. Urabe B, Watanabe N, Murakami M. 2006. Topographic change of the summit crater of Asama volcano during the 2004 eruption derived from airborne synthetic aperture radar (SAR) measurements. Bull. Geosp. Inf. Auth. Jpn. 53:1–6 [Google Scholar]
  72. Williams-Jones G, Rymer H, Rothery DA. 2003. Gravity changes and passive SO2 degassing at the Masaya caldera complex, Nicaragua. J. Volcanol. Geotherm. Res. 123:137–60 [Google Scholar]
  73. Yokoyama I. 2002. Growth mechanism of the 1944 lava dome of Usu volcano in Hokkaido, Japan. Proc. Jpn. Acad. B 1:6–11 [Google Scholar]
  74. Yokoyama I. 2005. Growth rates of lava domes with respect to viscosity of magmas. Ann. Geophys. 48:957–71 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error