Planetary bodies can undergo reorientation due to mass redistribution associated with internal or external processes such as convection or impacts. Mass redistribution produces perturbations to the inertia tensor, and the planet must reorient to adjust to the new orientation of the maximum principal axis. The amount of reorientation depends on the competing sizes of the applied load and the remnant bulge. For tidally deformed satellites in synchronous rotation, the slow rotation and correspondingly small remnant bulge makes them prone to reorientation. Reorientation can generate gravity and topography perturbations and large tectonic stresses. Observational constraints based on gravity, tectonic, and paleomagnetic data suggest that many Solar System bodies appear to have undergone significant reorientation.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Aharonson O, Goldreich P, Sari R. 2012. Why do we see the man in the Moon?. Icarus 219:241–43 [Google Scholar]
  2. Anderson EM. 1905. The dynamics of faulting. Trans. Edinb. Geol. Soc. 8:387–402 [Google Scholar]
  3. Arfken G, Weber H. 1995. Mathematical Methods for Physicists San Diego, CA: Academic, 4th ed..
  4. Argus D, Gross RS. 2004. An estimate of motion between the spin axis and the hotspots over the past century. Geophys. Res. Lett. 31:L06614 [Google Scholar]
  5. Arkani-Hamed J, Boutin D. 2004. Paleomagnetic poles of Mars: revisited. J. Geophys. Res. 109:E03011 [Google Scholar]
  6. Baland RM, Hoolst TV, Yseboodt M, Karatekin Ö. 2011. Titan's obliquity as evidence of a subsurface ocean?. Astron. Astrophys. 530:A141 [Google Scholar]
  7. Besse J, Courtillot V. 2002. Apparent and true polar wander and the geometry of the geomagnetic field over the last 200 Myr. J. Geophys. Res. 107:B112300 [Google Scholar]
  8. Beuthe M. 2008. Thin elastic shells with variable thickness for lithospheric flexure of one-plate planets. Geophys. J. Int. 172:817–41 [Google Scholar]
  9. Bills BG, James TS. 1999. Moments of inertia and rotational stability of Mars: lithospheric support of subhydrostatic rotational flattening. J. Geophys. Res. 104:E49081–96 [Google Scholar]
  10. Bills BG, Nimmo F. 2008. Forced obliquity and moments of inertia of Titan. Icarus 196:293–97 [Google Scholar]
  11. Chan NH, Mitrovica JX, Matsuyama I, Creveling JR, Stanley S. 2011a. The rotational stability of a convecting Earth: assessing inferences of rapid TPW in the Late Cretaceous. Geophys. J. Int. 187:1319–33 [Google Scholar]
  12. Chan NH, Mitrovica JX, Matsuyama I, Latychev K, Creveling JR. et al. 2011b. The rotational stability of a convecting Earth: the Earth's figure and TPW over the last 100 Myr. Geophys. J. Int. 187:773–82 [Google Scholar]
  13. Cottrell RD. 2000. Late Cretaceous true polar wander: not so fast. Science 288:2283 [Google Scholar]
  14. Cournède C, Gattacceca J, Rochette P. 2012. Magnetic study of large Apollo samples: possible evidence for an ancient centered dipolar field on the Moon. Earth Planet. Sci. Lett. 331:31–42 [Google Scholar]
  15. Creveling JR, Mitrovica JX, Chan NH, Latychev K, Matsuyama I. 2012. Mechanisms for oscillatory true polar wander. Nature 491:244–48 [Google Scholar]
  16. Daradich A, Mitrovica JX, Matsuyama I, Perron JT, Manga M, Richards MA. 2008. Equilibrium rotational stability and figure of Mars. Icarus 194:463–75 [Google Scholar]
  17. Darwin GH. 1877. On the influence of geological changes on the Earth's axis of rotation. Philos. Trans. R. Soc. 167:271–312 [Google Scholar]
  18. Evans D. 2003. True polar wander and supercontinents. Tectonophysics 362:303–20 [Google Scholar]
  19. Evans J. 1866. On a possible geological cause of changes in the position of the axis of the Earth's crust. Proc. R. Soc. 15:46–54 [Google Scholar]
  20. Gallant J, Gladman B, Cuk M. 2009. Current bombardment of the Earth-Moon system: emphasis on cratering asymmetries. Icarus 202:371–82 [Google Scholar]
  21. Garrick-Bethell I, Wisdom J, Zuber MT. 2006. Evidence for a past high-eccentricity lunar orbit. Science 313:652–55 [Google Scholar]
  22. Gold T. 1955. Instability of the Earth's axis of rotation. Nature 175:526–29 [Google Scholar]
  23. Goldreich P, Toomre A. 1969. Some remarks on polar wandering. J. Geophys. Res. 74:2555–67 [Google Scholar]
  24. Greff-Lefftz M. 2004. Upwelling plumes, superswells and true polar wander. Geophys. J. Int. 159:1125–37 [Google Scholar]
  25. Grimm RE, Solomon SC. 1986. Tectonic tests of proposed polar wander paths for Mars and the Moon. Icarus 65:110–21 [Google Scholar]
  26. Hand KP, Chyba CF. 2007. Empirical constraints on the salinity of the europan ocean and implications for a thin ice shell. Icarus 189:424–38 [Google Scholar]
  27. Harada Y. 2012. Long-term polar motion on a quasi-fluid planetary body with an elastic lithosphere: semi-analytic solutions of the time-dependent equation. Icarus 220:449–65 [Google Scholar]
  28. Hemingway D, Garrick-Bethell I. 2012. Magnetic field direction and lunar swirl morphology: insights from Airy and Reiner Gamma. J. Geophys. Res. 117:E10012 [Google Scholar]
  29. Hemingway D, Nimmo F, Zebker H, Iess L. 2013. A rigid and weathered ice shell on Titan. Nature 500:550–52 [Google Scholar]
  30. Hood LL. 2011. Central magnetic anomalies of Nectarian-aged lunar impact basins: probable evidence for an early core dynamo. Icarus 211:1109–28 [Google Scholar]
  31. Hood LL, Young CN, Richmond NC, Harrison KP. 2005. Modeling of major martian magnetic anomalies: further evidence for polar reorientations during the Noachian. Icarus 177:144–73 [Google Scholar]
  32. Janes DM, Melosh HJ. 1988. Sinker tectonics: an approach to the surface of Miranda. J. Geophys. Res. 93:B43127–43 [Google Scholar]
  33. Jeffreys H. 1915. Certain hypotheses as to the internal structure of the Earth and Moon. Mem. R. Astron. Soc. 60:187–217 [Google Scholar]
  34. Kaula WM. 1968. An Introduction to Planetary Physics The Terrestrial Planets. New York: Wiley [Google Scholar]
  35. Kirchoff MR, McKinnon WB, Schenk PM. 2011. Global distribution of volcanic centers and mountains on Io: control by asthenospheric heating and implications for mountain formation. Earth Planet. Sci. Lett. 301:22–30 [Google Scholar]
  36. Kite ES, Matsuyama I, Manga M, Perron JT, Mitrovica JX. 2009. True polar wander driven by late-stage volcanism and the distribution of paleopolar deposits on Mars. Earth Planet. Sci. Lett. 280:254–67 [Google Scholar]
  37. Kivelson MG, Khurana KK, Russell CT, Volwerk M, Walker RJ, Zimmer C. 2000. Galileo magnetometer measurements: a stronger case for a subsurface ocean at Europa. Science 289:1340–43 [Google Scholar]
  38. Kivelson MG, Khurana KK, Volwerk M. 2002. The permanent and inductive magnetic moments of Ganymede. Icarus 157:507–22 [Google Scholar]
  39. Konopliv AS, Banerdt WB, Sjogren WL. 1999. Venus gravity: 180th degree and order model. Icarus 139:3–18 [Google Scholar]
  40. Konopliv AS, Binder AB, Hood LL, Kucinskas AB, Sjogren WL, Williams JG. 1998. Improved gravity field of the Moon from Lunar Prospector. Science 281:1476–80 [Google Scholar]
  41. Lambeck K. 1980. The Earth's Variable Rotation: Geophysical Causes and Consequences Cambridge, UK: Cambridge Univ. Press
  42. Lambeck K, Pullan S. 1980. The lunar fossil bulge hypothesis revisited. Phys. Earth Planet. Inter. 22:29–35 [Google Scholar]
  43. Maloof AC, Halverson GP, Kirschvink JL, Schrag DP, Weiss BP, Hoffman PF. 2006. Combined paleomagnetic, isotopic, and stratigraphic evidence for true polar wander from the Neoproterozoic Akademikerbreen Group, Svalbard, Norway. GSA Bull. 118:1099–124 [Google Scholar]
  44. Matsumoto K, Goossens S, Ishihara Y, Liu Q, Kikuchi F. et al. 2010. An improved lunar gravity field model from SELENE and historical tracking data: revealing the farside gravity features. J. Geophys. Res. 115:E06007 [Google Scholar]
  45. Matsuyama I. 2013. Fossil figure contribution to the lunar figure. Icarus 222:411–14 [Google Scholar]
  46. Matsuyama I, Manga M. 2010. Mars without the equilibrium rotational figure, Tharsis, and the remnant rotational figure. J. Geophys. Res. 115:E12020 [Google Scholar]
  47. Matsuyama I, Mitrovica JX, Manga M, Perron JT, Richards MA. 2006. Rotational stability of dynamic planets with elastic lithospheres. J. Geophys. Res. 111:E02003 [Google Scholar]
  48. Matsuyama I, Nimmo F. 2008. Tectonic patterns on reoriented and despun planetary bodies. Icarus 195:459–73 [Google Scholar]
  49. Matsuyama I, Nimmo F. 2009. Gravity and tectonic patterns of Mercury: effect of tidal deformation, spin-orbit resonance, nonzero eccentricity, despinning, and reorientation. J. Geophys. Res. 114:E01010 [Google Scholar]
  50. Matsuyama I, Nimmo F, Mitrovica JX. 2007. Reorientation of planets with lithospheres: the effect of elastic energy. Icarus 191:401–12 [Google Scholar]
  51. McGovern PJ, Solomon SC, Smith DE, Zuber MT, Simons M. et al. 2004. Correction to “Localized gravity/topography admittance and correlation spectra on Mars: Implications for regional and global evolution.”. J. Geophys. Res. 109:E07007 [Google Scholar]
  52. Melosh HJ. 1975a. Large impact craters and the Moon's orientation. Earth Planet. Sci. Lett. 26:353–60 [Google Scholar]
  53. Melosh HJ. 1975b. Mascons and the Moon's orientation. Earth Planet. Sci. Lett. 25:322–26 [Google Scholar]
  54. Melosh HJ. 1977. Global tectonics of a despun planet. Icarus 31:221–43 [Google Scholar]
  55. Melosh HJ. 1980a. Tectonic patterns on a reoriented planet: Mars. Icarus 44:745–51 [Google Scholar]
  56. Melosh HJ. 1980b. Tectonic patterns on a tidally distorted planet. Icarus 43:334–37 [Google Scholar]
  57. Melosh HJ, Dzurisin D. 1978. Tectonic implications for the gravity structure of Caloris Basin, Mercury. Icarus 33:141–44 [Google Scholar]
  58. Mitrovica JX, Wahr J. 2011. Ice age Earth rotation. Annu. Rev. Earth Planet. Sci. 39:577–616 [Google Scholar]
  59. Mitrovica JX, Wahr JM, Matsuyama I, Paulson A. 2005. The rotational stability of an ice-age earth. Geophys. J. Int. 161:491–506 [Google Scholar]
  60. Mitrovica JX, Wahr JM, Matsuyama I, Paulson A, Tamisiea ME. 2006. Reanalysis of ancient eclipse, astronomic and geodetic data: a possible route to resolving the enigma of global sea-level rise. Earth Planet. Sci. Lett. 243:390–99 [Google Scholar]
  61. Mound JE, Mitrovica JX, Milne GA. 2001. Sea-level change and true polar wander during the Late Cretaceous. Geophys. Res. Lett. 28:2057–60 [Google Scholar]
  62. Muller PM, Sjogren WL. 1968. Mascons: lunar mass concentrations. Science 161:680–84 [Google Scholar]
  63. Munk WH, MacDonald GJF. 1960. The Rotation of the Earth: A Geophysical Discussion Cambridge, UK: Cambridge Univ. Press
  64. Murchie SL, Head JW III. 1986. Global reorientation and its effect on tectonic patterns on Ganymede. Geophys. Res. Lett. 13:345–48 [Google Scholar]
  65. Murray C, Dermott S. 1999. Solar System Dynamics Cambridge, UK: Cambridge Univ. Press
  66. Nimmo F. 2004. Stresses generated in cooling viscoelastic ice shells: application to Europa. J. Geophys. Res. 109:E12001 [Google Scholar]
  67. Nimmo F, Bills BG. 2010. Shell thickness variations and the long-wavelength topography of Titan. Icarus 208:1–9 [Google Scholar]
  68. Nimmo F, Matsuyama I. 2007. Reorientation of icy satellites by impact basins. Geophys. Res. Lett. 34:L19203 [Google Scholar]
  69. Nimmo F, Pappalardo RT. 2006. Diapir-induced reorientation of Saturn's moon Enceladus. Nature 441:614–16 [Google Scholar]
  70. Ojakangas GW, Stevenson DJ. 1989a. Polar wander of an ice shell on Europa. Icarus 81:242–70 [Google Scholar]
  71. Ojakangas GW, Stevenson DJ. 1989b. Thermal state of an ice shell on Europa. Icarus 81:220–41 [Google Scholar]
  72. Peltier WR. 1974. The impulse response of a Maxwell Earth. Rev. Geophys. 12:649–69 [Google Scholar]
  73. Perron JT, Mitrovica JX, Manga M, Matsuyama I, Richards MA. 2007. Evidence for an ancient martian ocean in the topography of deformed shorelines. Nature 447:840–43 [Google Scholar]
  74. Porco CC, Helfenstein P, Thomas PC, Ingersoll AP, Wisdom J. et al. 2006. Cassini observes the active south pole of Enceladus. Science 311:1393–401 [Google Scholar]
  75. Ricard Y, Spada G, Sabadini R. 1993. Polar wandering of a dynamic Earth. Geophys. J. Int. 113:284–98 [Google Scholar]
  76. Richards MA, Ricard Y, Lithgow-Bertelloni C, Spada G, Sabadini R. 1997. An explanation for Earth's long-term rotational stability. Science 275:372–75 [Google Scholar]
  77. Rouby H, Greff-Lefftz M, Besse J. 2010. Mantle dynamics, geoid, inertia and TPW since 120 Myr. Earth Planet. Sci. Lett. 292:301–11 [Google Scholar]
  78. Rubincam DP. 2003. Polar wander on Triton and Pluto due to volatile migration. Icarus 163:469–78 [Google Scholar]
  79. Sabadini R, Vermeersen B. 2004. Global Dynamics of the Earth: Applications of Normal Mode Relaxation Theory to Solid-Earth Geophysics . Dordrecht, Neth: Kluwer Acad.
  80. Sager WW, Koppers AAP. 2000. Late Cretaceous polar wander of the Pacific plate: evidence of a rapid true polar wander event. Science 287:455–59 [Google Scholar]
  81. Schenk P, Hamilton DP, Johnson RE, McKinnon WB, Paranicas C. et al. 2011. Plasma, plumes and rings: Saturn system dynamics as recorded in global color patterns on its midsize icy satellites. Icarus 211:740–57 [Google Scholar]
  82. Schenk PM, Matsuyama I, Nimmo F. 2008. True polar wander on Europa from global-scale small-circle depressions. Nature 453:368–71 [Google Scholar]
  83. Singer KN, McKinnon WB. 2011. Tectonics on Iapetus: despinning, respinning, or something completely different?. Icarus 216:198–211 [Google Scholar]
  84. Smith BA, Soderblom LA, Beebe R, Bliss D, Brown RH. et al. 1986. Voyager 2 in the Uranian system: imaging science results. Science 233:43–64 [Google Scholar]
  85. Smith D, Zuber M, Phillips R, Solomon S. 2012. Gravity field and internal structure of Mercury from MESSENGER. Science 336:214 [Google Scholar]
  86. Spada G, Sabadini R, Boschi EV. 1996. Long-term rotation and mantle dynamics of the Earth, Mars, and Venus. J. Geophys. Res. 101:E12253–66 [Google Scholar]
  87. Spencer JR, Pearl JC, Segura M, Flasar FM, Mamoutkine A. et al. 2006. Cassini encounters Enceladus: background and the discovery of a south polar hot spot. Science 311:1401–5 [Google Scholar]
  88. Sprenke KF, Baker LL, Williams AF. 2005. Polar wander on Mars: evidence in the geoid. Icarus 174:486–89 [Google Scholar]
  89. Steinberger B, O'Connell RJ. 1997. Changes of the Earth's rotation axis owing to advection of mantle density heterogeneities. Nature 387:169–73 [Google Scholar]
  90. Stoddard PR, Jurdy DM. 2002. Distribution of Io's volcanoes: possible influence on spin axis. Geophys. Res. Lett. 29:1349 [Google Scholar]
  91. Strom RG, Trask NJ, Guest JE. 1975. Tectonism and volcanism on Mercury. J. Geophys. Res. 80:2478–507 [Google Scholar]
  92. Thomas PC, Burns JA, Helfenstein P, Squyres S, Veverka J. et al. 2007. Shapes of the saturnian icy satellites and their significance. Icarus 190:573–84 [Google Scholar]
  93. Tsai VC, Stevenson DJ. 2007. Theoretical constraints on true polar wander. J. Geophys. Res. 112:B05415 [Google Scholar]
  94. Turcotte DL, Schubert G. 2002. Geodynamics Cambridge, UK: Cambridge Univ. Press
  95. van Heck HJ, Tackley PJ. 2011. Plate tectonics on super-Earths: equally or more likely than on Earth. Earth Planet. Sci. Lett. 310:252–61 [Google Scholar]
  96. Vening-Meinesz FA. 1947. Shear patterns of the Earth's crust. Trans. AGU 28:1–61 [Google Scholar]
  97. Wieczorek MA. 2007. Gravity and topography of the terrestrial planets. Treatise Geophys. 10:165–201 [Google Scholar]
  98. Wieczorek MA, Le Feuvre M. 2009. Did a large impact reorient the Moon?. Icarus 200:358–66 [Google Scholar]
  99. Willemann RJ. 1984. Reorientation of planets with elastic lithospheres. Icarus 60:701–9 [Google Scholar]
  100. Zhong S. 2008. Migration of Tharsis volcanism on Mars caused by differential rotation of the lithosphere. Nat. Geosci. 5:19–23 [Google Scholar]
  101. Zimmer C, Khurana KK, Kivelson MG. 2000. Subsurface oceans on Europa and Callisto: constraints from Galileo magnetometer observations. Icarus 147:329–47 [Google Scholar]
  102. Zuber MT, Smith DE. 1997. Mars without Tharsis. J. Geophys. Res. 102:E1228673–85 [Google Scholar]
  103. Zuber MT, Smith DE, Watkins MM, Asmar SW, Konopliv AS. et al. 2013. Gravity field of the Moon from the Gravity Recovery and Interior Laboratory (GRAIL) mission. Science 339:668–71 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error