1932

Abstract

Statistical methods and various models in time-space-magnitude parameter space of earthquakes are being developed to analyze seismic activity based on earthquake hypocenter catalogs that are routinely accumulated. Considering complex geophysical environments and uncertainties, we seek proper stochastic modeling that depends on the history of earthquake occurrences and relevant geophysical information for describing and forecasting earthquake activity. Also, we need empirical Bayesian models with many parameters in order to describe nonstationary or nonhomogeneous seismic activity. This review is concerned with earthquake predictability research aimed at realizing practical operational forecasting. In particular, uncertainty lies in identifying whether abnormal phenomena are precursors to large earthquakes. The predictability of such models can be examined by certain statistical criteria.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-063016-015918
2017-08-30
2024-06-20
Loading full text...

Full text loading...

/deliver/fulltext/earth/45/1/annurev-earth-063016-015918.html?itemId=/content/journals/10.1146/annurev-earth-063016-015918&mimeType=html&fmt=ahah

Literature Cited

  1. Agnew DC, Jones LM. 1991. Prediction probabilities from foreshocks. J. Geophys. Res. 96:B711959–71 [Google Scholar]
  2. Akaike H. 1974. A new look at the statistical model identification. IEEE Trans. Autom. Control 19:716–23 [Google Scholar]
  3. Akaike H. 1978a. A new look at the Bayes procedure. Biometrika 65:53–59 [Google Scholar]
  4. Akaike H. 1978b. On the likelihood of a time series model. Statistician 27:217–35 [Google Scholar]
  5. Akaike H. 1980. Likelihood and Bayes procedure. Bayesisn Statistics JM Bernard, MH De Groot, DU Lindley, AFM Smith 143–66 (discussion 185–203) Valencia, Spain: Univ. Press [Google Scholar]
  6. Akaike H. 1985. Prediction and entropy. A Celebration of Statistics: The ISI Centenary Volume AC Atkinson, SE Fienberg 1–24 New York: Springer-Verlag [Google Scholar]
  7. Aki K. 1956. A review on statistical seismology. Zisin II [J. Seismol. Soc. Jpn.] 8:205–28 [Google Scholar]
  8. Aki K. 1965. Maximum likelihood estimate of b in the formula logN = abM and its confidence limits. Bull. Earthq. Res. Inst. Univ. Tokyo 43:237–39 [Google Scholar]
  9. Aki K. 1981. A probabilistic synthesis of precursory phenomena. Earthquake Prediction, ed. DW Simpson, PG Richards, 566–74 Washington, DC: Am. Geophys.Union
  10. Bansal AR, Ogata Y. 2013. A non-stationary epidemic type aftershock sequence model for seismicity prior to the December 26, 2004 M9.1 Sumatra-Andaman Islands mega-earthquake. J. Geophys. Res. Solid Earth 118:616–29 [Google Scholar]
  11. Bebbington M, Harte D. 2003. The linked stress release model for spatio-temporal seismicity: formulations, procedure and applications. Geophys. J. Int. 154:925–46 [Google Scholar]
  12. Boltzmann L. 1878. Weitere Bemerkungen uber einige Probleme der mechanischen Warmetheorie. Wiener Ber 78:7–46 [Google Scholar]
  13. Cao T, Aki K. 1983. Assigning probability gain for precursors of four large Chinese earthquakes. J. Geophys. Res. 88:B32185–90 [Google Scholar]
  14. Console R, Murru M, Alessandrini B. 1993. Foreshock statistics and their possible relationship to earthquake prediction in the Italian region. Bull. Seismol. Soc. Am. 83:1248–63 [Google Scholar]
  15. Cox DR, Lewis PAW. 1966. The Statistical Analysis of Series of Events London: Methuen [Google Scholar]
  16. Cox DR, Snell EJ. 1989. Analysis of Binary Data London: Chapman & Hall/CRC. , 2nd ed.. [Google Scholar]
  17. Daley DJ, Vere-Jones D. 2003. An Introduction to the Theory of Point Processes. Vol 1: Elementary Theory and Methods New York: Springer, 2nd ed.. [Google Scholar]
  18. De Natale G, Musmeci F, Zollo A. 1988. A linear intensity model to investigate the causal relation between Calabrian and North-Aegean earthquake sequences. Geophys. J. 95:285–93 [Google Scholar]
  19. Delaunay B. 1934. Sur la sphère vide. Bull. Acad. Sci.URSS 6:793–800 [Google Scholar]
  20. ERC (Earthq. Res. Comm.). 2001. Regarding methods for evaluating long-term probability of earthquake occurrence Rep., Hqrs. Earthq. Res. Promot Tokyo: http://www.jishin.go.jp/main/choukihyoka/01b/chouki020326.pdf [Google Scholar]
  21. Evison FF. 1977. The precursory earthquake swarm. Phys. Earth Planet. Inter. 15:19–23 [Google Scholar]
  22. Frohlich C, Davis SD. 1990. Single-link cluster analysis as a method to evaluate spatial and temporal properties of earthquake catalogs. Geophys. J. Int. 100:19–32 [Google Scholar]
  23. Gerstenberger M, Wiemer S, Jones R. 2005. Real-time forecasts of tomorrow's earthquakes in California. Nature 435:328–31 [Google Scholar]
  24. Good IJ, Gaskins RA. 1971. Nonparametric roughness penalties for probability densities. Biometrika 58:255–77 [Google Scholar]
  25. Gutenberg R, Richter CF. 1944. Frequency of earthquakes in California. Bull. Seismol. Soc. Am. 34:185–88 [Google Scholar]
  26. Hawkes AG. 1971. Point spectra of some mutually exciting point processes. J. R. Stat. Soc. B 33:438–43 [Google Scholar]
  27. Hawkes AG, Adamopoulos L. 1973. Cluster models for earthquakes—regional comparisons. Bull. Int. Stat. Inst. 45:Book 3454–61 [Google Scholar]
  28. Hawkes AG, Oakes DA. 1974. A cluster process representation of a self-exciting process. J. Appl. Probab. 11:493–503 [Google Scholar]
  29. Helmstetter A, Sornette D. 2003. Foreshocks explained by cascades of triggered seismicity. J. Geophys. Res. 108:B102457 [Google Scholar]
  30. Inouye W. 1965. On the seismicity in the epicentral region and its neighborhood before the Niigata earthquake. Kenshin-jiho [Q. J. Seismol.] 29:139–144 [Google Scholar]
  31. Iwata T. 2015. Earthquake forecasting based on the correlation between earth tides and earthquake occurrences. Proc. Inst. Stat. Math. 63:1129–44 [Google Scholar]
  32. Iwata T, Katao H. 2006a. Correlation between the phase of the moon and the occurrences of microearthquakes in the Tamba region by a modified conditional intensity model Presented at Seismol. Soc. Jpn. Fall Meet., Oct 31–Nov 2 Nagoya, Jpn., Abstr. P212 [Google Scholar]
  33. Iwata T, Katao H. 2006b. Correlation between the phase of the moon and the occurrences of microearthquakes in the Tamba region through point-process modeling. Geophys. Res. Lett. 33:L07302 [Google Scholar]
  34. Jones LM. 1985. Foreshocks and time-dependent earthquake hazard assessment in southern California. Bull. Seismol. Soc. Am. 75:1669–79 [Google Scholar]
  35. Jones LM. 1994. Foreshocks, aftershocks and earthquake probabilities: accounting for Landers earthquakes. Bull. Seismol. Soc. Am. 85:892–99 [Google Scholar]
  36. Jones LM, Molnar P. 1979. Some characteristics of foreshocks and their possible relationship to earthquake prediction and premonitory slip on faults. J. Geophys. Res. 84:B73596–608 [Google Scholar]
  37. Jordan TH, Chen YT, Gasparini P, Madariaga R, Marzocchi W. et al. 2011. Operational earthquake forecasting: state of knowledge and guidelines for utilization. Ann. Geophys. 54:4315–91 [Google Scholar]
  38. Kagan YY. 1991. Likelihood analysis of earthquake catalogues. Geophys. J. Int. 106:135–48 [Google Scholar]
  39. Kagan YY. 2014. Earthquakes: Models, Statistics, Testable Forecasts Chichester, UK: Wiley [Google Scholar]
  40. Kagan YY, Jackson D. 1995. New seismic gap hypothesis—5 years after. J. Geophys. Res. 100:B33943–59 [Google Scholar]
  41. Kagan YY, Knopoff L. 1987. Random stress and earthquake statistics: time dependence. Geophys. J. R. Astron. Soc. 88:723–31 [Google Scholar]
  42. Karr AN. 1986. Point Processes and Their Statistical Inference New York: Marcel Dekker [Google Scholar]
  43. Kendall DG. 1949. Stochastic processes and population growth. J. R. Stat. Soc. B 11:230–64 [Google Scholar]
  44. Kumazawa T, Ogata Y. 2013. Quantitative description of induced seismic activity before and after the 2011 Tohoku-Oki earthquake by non-stationary ETAS models. J. Geophys. Res. Solid Earth 118:6165–82 [Google Scholar]
  45. Kumazawa T, Ogata Y, Kimura K, Maeda K, Kobayashi A. 2016a. Background rates of swarm earthquakes that are synchronized with volumetric strain changes. Earth Planet. Sci. Lett. 442:51–60 [Google Scholar]
  46. Kumazawa T, Ogata Y, Toda S. 2010. Precursory seismic anomalies and transient crustal deformation prior to the 2008 Mw = 6.9 Iwate-Miyagi Nairiku, Japan, earthquake. J. Geophys. Res. 115:B10312 [Google Scholar]
  47. Kumazawa T, Ogata Y, Tsuruoka H. 2016b. Statistical monitoring of seismicity in Kyushu District before the occurrence of the 2016 Kumamoto earthquakes of M6.5 and M7.3. Rep. Coord. Comm. Earthq. Predic. 96:12-8412–23 [Google Scholar]
  48. Kutoyants YU. 1984. Parameter Estimation for Stochastic Processes Berlin: Heldermann [Google Scholar]
  49. Laplace PS. 1774 (1986). Memoir on the probability of causes of events. 6: transl. SM Stigler Stat. Sci. 1:19364–78 [Google Scholar]
  50. Lewis PAW, Shedler GS. 1979. Simulation of nonhomogeneous Poisson processes by thinning. Nav. Res. Logist. Q. 26:3403–13 [Google Scholar]
  51. Li M, Vere-Jones D. 1997. Application of M8 and Lin-Lin algorithms to New Zealand earthquake data. N. Z. J. Geol. Geophys. 40:77–89 [Google Scholar]
  52. Lomnitz C, Hax A. 1966. Clustering in aftershock sequences. The Earth Beneath the Continents JS Steinhart, TJ Smith 502–8 Washington, DC: Am. Geophys. Union [Google Scholar]
  53. Lomnitz C, Nava FA. 1983. The predictive value of seismic gaps. Bull. Seismol. Soc. Am. 73:1815–24 [Google Scholar]
  54. Lu C, Harte D, Bebbington M. 1999. A linked stress release for historical Japan earthquakes: coupling among major seismic regions. Earth Planets Space 51:907–16 [Google Scholar]
  55. Maeda K. 1993. An empirical alarm criterion based on immediate foreshocks: a case study for the Izu region. Zisin II [J. Seismol. Soc. Jpn.] 45:373–83 [Google Scholar]
  56. Mantovani E, Albarello D, Mucciarelli M. 1986. Seimic activity in North Aegean region as middle-term precursor of Calabrian earthquakes. Phys. Earth Planet. Int. 44:264–73 [Google Scholar]
  57. Matsumura K. 1986. On regional characteristics of seasonal variation of shallow earthquake activities in the world. Bull. Disaster Prev. Res. Inst. Kyoto Univ. 36:43–98 [Google Scholar]
  58. Matthews MV, Ellsworth WL, Reasenberg PA. 2002. A Brownian model for recurrent earthquakes. Bull. Seismol. Soc. Am. 92:2233–50 [Google Scholar]
  59. Mogi K. 1962. Magnitude frequency relations for elastic shocks accompanying fractures of various materials and some related problems in earthquakes. Bull. Earthq. Res. Inst. Univ. Tokyo 40:831–53 [Google Scholar]
  60. Mogi K. 1963. Some discussions on aftershocks, foreshocks, and earthquake swarms—the fracture of a semi-infinite body caused by an inner stress origin and its relation to the earthquake phenomena. Bull. Earthq. Res. Inst. Univ. Tokyo 41:615–58 [Google Scholar]
  61. Mogi K. 1973. Relationship between shallow and deep seismicity in the western Pacific region. Tectonophysics 17:1–22 [Google Scholar]
  62. Musmeci F, Vere-Jones D. 1992. A space-time clustering model for historical earthquakes. Ann. Inst. Stat. Math. 44:1–11 [Google Scholar]
  63. Nadeau RM, McEvilly TV. 1999. Fault slip rates at depth from recurrence intervals of repeating microearthquakes. Science 285:718–21 [Google Scholar]
  64. Nanjo KZ, Tsuruoka H, Yokoi S, Ogata Y, Falcone G. et al. 2012. Predictability study on the aftershock sequence following the 2011 Tohoku-Oki, Japan, earthquake: first results. Geophys. J. Int. 191:2653–58 [Google Scholar]
  65. Nishizawa O, Lei X, Nagao T. 1994. Hazard function analysis of seismo-electric signals in Greece. Electromagnetic Phenomena Related to Earthquake Prediction M Hayakawa, Y Fujinawa 459–74 Tokyo: Terra [Google Scholar]
  66. Nomura S. 2015. Real-time classifier of foreshocks using probability density ratio estimation Presented at Jpn. Geosci. Union Meet., May 24, Chiba City, Jpn., Abstr. SSS01-01 [Google Scholar]
  67. Nomura S, Ogata Y. 2015a. Foreshock discrimination with probability density ratio estimation and its implementation for short-term forecast Presented at Seismol Soc. Jpn. Fall Meet. Oct. 27 Kobe City, Jpn. [Google Scholar]
  68. Nomura S, Ogata Y. 2015b. Spatial distribution of the coefficient of variation for the paleo-earthquakes in Japan Presented at AGU Fall Meet., Dec. 15 San Francisco: Abstr. S21D-05 [Google Scholar]
  69. Nomura S, Ogata Y, Komaki F, Toda S. 2011. Bayesian forecasting of the recurrent earthquakes and its predictive performance for a small sample size. J. Geophys. Res. 116:B04315 [Google Scholar]
  70. Nomura S, Ogata Y, Nadeau RM. 2014. Space-time model for repeating earthquakes and analysis of recurrence intervals on the San Andreas Fault near Parkfield, California. J. Geophys. Res. Solid Earth 119:97092–122 [Google Scholar]
  71. Nomura S, Ogata Y, Uchida N, Matu'ura M. 2016. Spatiotemporal variations of interplate slip rates in northeast Japan inverted from recurrence intervals of repeating earthquakes. Geophys. J. Int. 208:468–81 [Google Scholar]
  72. Ogata Y. 1978. The asymptotic behavior of maximum likelihood estimator of stationary point processes. Ann. Inst. Stat. Math. 30:243–61 [Google Scholar]
  73. Ogata Y. 1981. On Lewis’ simulation method for point processes. IEEE Trans. Inf. Theory 27:23–31 [Google Scholar]
  74. Ogata Y. 1983a. Estimation of the parameters in the modified Omori formula for aftershock frequencies by the maximum likelihood procedure. J. Phys. Earth. 31:115–24 [Google Scholar]
  75. Ogata Y. 1983b. Likelihood analysis of point processes and its applications to seismological data. Bull. Int. Stat. Inst. 50:2943–61 [Google Scholar]
  76. Ogata Y. 1988. Statistical models for earthquake occurrences and residual analysis for point processes. J. Am. Stat. Assoc. 83:9–27 [Google Scholar]
  77. Ogata Y. 1989. Statistical model for standard seismicity and detection of anomalies by residual analysis. Tectonophysics 169:159–74 [Google Scholar]
  78. Ogata Y. 1991. Space and time variations of detection rate and the magnitude frequency of earthquakes. Tokei Suri [Proc. Inst. Stat. Math.] 39:2245–56 [Google Scholar]
  79. Ogata Y. 1992. Detection of precursory relative quiescence before great earthquakes through a statistical model. J. Geophys. Res. 97:B1319845–71 [Google Scholar]
  80. Ogata Y. 1995. Evaluation of probability forecasts of events. Int. J. Forecast. 11:539–41 [Google Scholar]
  81. Ogata Y. 1998a. Quiescence relative to the ETAS model. Zisin II [J. Seismol. Soc. Jpn.] 50:115–27 [Google Scholar]
  82. Ogata Y. 1998b. Space-time point-process models for earthquake occurrences. Ann. Inst. Stat. Math. 50:379–402 [Google Scholar]
  83. Ogata Y. 1999a. Seismicity analysis through point-process modeling—a review. Pure Appl. Geophys. 155:471–507 [Google Scholar]
  84. Ogata Y. 1999b. Estimating the hazard of rupture using uncertain occurrence times of paleoearthquakes. J. Geophys. Res. 104:B817995–8014 [Google Scholar]
  85. Ogata Y. 2001a. Exploratory analysis of earthquake clusters by likelihood-based trigger models. J. Appl. Probab. 38:A202–12 [Google Scholar]
  86. Ogata Y. 2001b. Increased probability of large earthquakes near aftershock regions with relative quiescence. J. Geophys. Res. 106:B58729–44 [Google Scholar]
  87. Ogata Y. 2002. Slip-size-dependent renewal processes and Bayesian inferences for uncertainties. J. Geophys. Res. 107:B112268 [Google Scholar]
  88. Ogata Y. 2004. Space-time model for regional seismicity and detection of crustal stress changes. J. Geophys. Res. 109:B3B03308 [Google Scholar]
  89. Ogata Y. 2006a. Monitoring of anomaly in the aftershock sequence of the 2005 earthquake of M7.0 off coast of the western Fukuoka, Japan, by the ETAS model. Geophys. Res. Lett. 33:L01303 [Google Scholar]
  90. Ogata Y. 2006b. Statistical Analysis of Seismicity—Updated Version (SASeis2006) Comput. Sci. Monogr. 33 Tokyo: Inst. Stat. Math http://www.ism.ac.jp/∼ogata/Ssg/ssg_softwaresE.html [Google Scholar]
  91. Ogata Y. 2007. Seismicity and geodetic anomalies in a wide area preceding the Niigata-Ken-Chuetsu earthquake of 23 October 2004, central Japan. J. Geophys. Res. 112:B10301 [Google Scholar]
  92. Ogata Y. 2010a. Anomalies of seismic activity and transient crustal deformations preceding the 2005 M7.0 earthquake west of Fukuoka. Pure Appl. Geophys. 167:8–91115–27 [Google Scholar]
  93. Ogata Y. 2010b. Space-time heterogeneity in aftershock activity. Geophys. J. Int. 181:31575–92 [Google Scholar]
  94. Ogata Y. 2011a. Pre-seismic anomalies in seismicity and crustal deformation: case studies of the 2007 Noto Hanto earthquake of M6.9 and the 2007 Chuetsu-oki earthquake of M6.8 after the 2004 Chuetsu earthquake of M6.8. Geophys. J. Int. 186:331–48 [Google Scholar]
  95. Ogata Y. 2011b. Significant improvements of the space-time ETAS model for forecasting of accurate baseline seismicity. Earth Planets Space 63:217–29 [Google Scholar]
  96. Ogata Y. 2017. Forecasting of a large earthquake: an outlook of the research. Seismol. Res. Lett. 88:41117–26 [Google Scholar]
  97. Ogata Y, Abe K. 1991. Some statistical features of the long term variation of the global and regional seismic activity. Int. Stat. Rev. 59:139–61 [Google Scholar]
  98. Ogata Y, Akaike H. 1982. On linear intensity models for mixed doubly stochastic Poisson and self-exciting point process. J. R. Stat. Soc. B 44:102–7 [Google Scholar]
  99. Ogata Y, Akaike H, Katsura K. 1982. The application of linear intensity models to the investigation of causal relations between a point process and another stochastic process. Ann. Inst. Stat. Math. 34:373–87 [Google Scholar]
  100. Ogata Y, Imoto M, Katsura K. 1991. 3-D spatial variation of b-values of magnitude-frequency distribution beneath the Kanto District, Japan. Geophys. J. Int. 104:135–46 [Google Scholar]
  101. Ogata Y, Jones LM, Toda S. 2003a. When and where the aftershock activity was depressed: contrasting decay patterns of the proximate large earthquakes in southern California. J. Geophys. Res 108:B62318 [Google Scholar]
  102. Ogata Y, Katsura K. 1986. Point process model with linearly parameterized intensity for the application to earthquake data. J. Appl. Probab. 23:A291–310 [Google Scholar]
  103. Ogata Y, Katsura K. 1988. Likelihood analysis of spatial inhomogeneity for marked point patterns. Ann. Inst. Stat. Math. 40:29–39 [Google Scholar]
  104. Ogata Y, Katsura K. 1993. Analysis of temporal and spatial heterogeneity of magnitude frequency distribution inferred from earthquake catalogues. Geophys. J. Int. 113:727–38 [Google Scholar]
  105. Ogata Y, Katsura K. 2006. Immediate and updated forecasting of aftershock hazard. Geophys. Res. Lett. 33:10L10305 [Google Scholar]
  106. Ogata Y, Katsura K. 2012. Prospective foreshock forecast experiment during the last 17 years. Geophys. J. Int. 191:31237–44 [Google Scholar]
  107. Ogata Y, Katsura K. 2014. Comparing foreshock characteristics and foreshock forecasting in observed and simulated earthquake catalogs. J. Geophys. Res. Solid Earth 119:118457–77 [Google Scholar]
  108. Ogata Y, Katsura K, Falcone G, Nanjo KZ, Zhuang J. 2013. Comprehensive and topical evaluations of earthquake forecasts in terms of number, time, space, and magnitude. Bull. Seismol. Soc. Am. 103:1692–708 [Google Scholar]
  109. Ogata Y, Katsura K, Tanemura M. 2003b. Modelling heterogeneous space-time occurrences of earthquakes and its residual analysis. J. R. Stat. Soc. C 52:4499–509 [Google Scholar]
  110. Ogata Y, Kobayashi A, Mikami N, Murata Y, Katsura K. 1998. Correction of earthquake location estimation in a small-seismic-array system. Bernoulli 4:167–84 [Google Scholar]
  111. Ogata Y, Matsu'ura RS, Katsura K. 1993. Fast likelihood computation of epidemic type aftershock-sequence model. Geophys. Res. Lett. 20:2143–46 [Google Scholar]
  112. Ogata Y, Utsu T, Katsura K. 1995. Statistical features of foreshocks in comparison with other earthquake clusters. Geophys. J. Int. 121:233–54 [Google Scholar]
  113. Ogata Y, Utsu T, Katsura K. 1996. Statistical discrimination of foreshocks from other earthquake clusters. Geophys. J. Int. 127:17–30 [Google Scholar]
  114. Ogata Y, Zhuang J. 2001. Statistical examination of anomalies for the precursor to earthquakes, and the multi-element prediction formula: hazard rate changes of strong earthquakes (M ≥ 4) around Beijing area based on the ultra-low frequency ground electric observation (1982–1997). Rep. Coord. Comm. Earthq. Predict. 66:562–70 [Google Scholar]
  115. Ogata Y, Zhuang J. 2006. Space-time ETAS models and an improved extension. Tectonophysics 413:13–23 [Google Scholar]
  116. Omi T, Ogata Y, Hirata Y, Aihara K. 2013. Forecasting large aftershocks within one day after the main shock. Sci. Rep. 3:2218 [Google Scholar]
  117. Omi T, Ogata Y, Hirata Y, Aihara K. 2014a. Estimating the ETAS model from an early aftershock sequence. Geophys. Res. Lett. 41:850–57 [Google Scholar]
  118. Omi T, Ogata Y, Hirata Y, Aihara K. 2014b. Intermediate-term forecasting of aftershocks from an early aftershock sequence: Bayesian and ensemble forecasting approaches. J. Geophys. Res. Solid Earth 120:2561–78 [Google Scholar]
  119. Omori F. 1894. On the aftershocks of earthquake. J. Coll. Sci. Imp. Univ. Tokyo 7:111–200 [Google Scholar]
  120. Papangelou F. 1972. Integrability of expected increments of point processes and related random change of scale. Trans. Am. Math. Soc. 165:483–506 [Google Scholar]
  121. Papazachos BC. 1974. On certain aftershock and foreshock parameters in the area of Greece. Ann. Geophys. 27:497–515 [Google Scholar]
  122. Parzen E, Tanabe K, Kitagawa G. 1998. Selected Papers of Hirotugu Akaike Tokyo: Springer-Verlag [Google Scholar]
  123. Rathbun SL. 1993. Modeling marked spatio-temporal point patterns. Bull. Int. Stat. Inst. 55:379–96 [Google Scholar]
  124. Reasenberg PA, Jones LM. 1989. Earthquake hazard after a main shock in California. Science 243:1173–76 [Google Scholar]
  125. Rhoades DA, Evison FF. 2004. Long-range earthquake forecasting with every earthquake a precursor according to scale. Pure Appl. Geophys. 161:147–72 [Google Scholar]
  126. Ringdal F. 1975. On the estimation of seismic detection thresholds. Bull. Seismol. Soc. Am. 65:1631–42 [Google Scholar]
  127. Savage MK, de Polo DM. 1993. Foreshock probabilities in the western Great-Basin eastern Sierra Nevada. Bull. Seismol. Soc. Am. 83:1910–38 [Google Scholar]
  128. Schoenberg FP. 2004. Testing separability in spatial-temporal marked point processes. Biometrics 60:471–81 [Google Scholar]
  129. Scholz C. 1968. The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. Bull. Seismol. Soc. Am. 58:1399–415 [Google Scholar]
  130. Schorlemmer D, Zechar J, Werner M, Field E, Jackson D. et al. 2010. First results of the Regional Earthquake Likelihood Models experiment. Pure Appl. Geophys. 167:8–9859–76 [Google Scholar]
  131. Sekiya H. 1976. The seismicity preceding earthquakes and its significance to earthquake prediction. Zisin II [J. Seismol. Soc. Jpn.] 29:299–312 [Google Scholar]
  132. Smith WD. 1986. Evidence for precursory changes in the frequency magnitude b-value. Geophys. J. Int. 86:815–38 [Google Scholar]
  133. Smyth C, Mori J. 2011. Statistical models for temporal variations of seismicity parameters to forecast seismicity rates in Japan. Earth Planets Space 63:231–38 [Google Scholar]
  134. Suyehiro S. 1966. Difference between aftershocks and foreshocks in the relationship of magnitude to frequency of occurrence for the great Chilean earthquake of 1960. Bull. Seismol. Soc. Am. 56:185–200 [Google Scholar]
  135. Utsu T. 1961. A statistical study on the occurrence of aftershocks. Geophys. Mag. 30:521–605 [Google Scholar]
  136. Utsu T. 1965. A method for determining the value of b in a formula log n = a − bM showing the magnitude-frequency relation for earthquakes. Geophys. Bull. Hokkaido Univ 1399–103 [Google Scholar]
  137. Utsu T. 1969. Aftershocks and earthquake statistics (I): some parameters which characterize an aftershock sequence and their interaction. J. Fac. Sci. Hokkaido Univ. Ser 7, 3:129–95 [Google Scholar]
  138. Utsu T. 1970. Aftershocks and earthquake statistics (II): further investigation of aftershocks and other earthquake sequences based on a new classification of earthquake sequences. J. Fac. Sci. Hokkaido Univ., Ser 7, 3:197–266 [Google Scholar]
  139. Utsu T. 1971. Aftershock and earthquake statistic (III): analyses of the distribution of earthquakes in magnitude, time and space with special consideration to clustering characteristics of earthquake occurrence (1). J. Fac. Sci. Hokkaido Univ. Ser 7, 3:379–441 [Google Scholar]
  140. Utsu T. 1972. Aftershocks and earthquake statistics (IV): analyses of the distribution of earthquakes in magnitude, time, and space with special consideration to clustering characteristics to earthquake occurrence (2). J. Fac. Sci. Hokkaido Univ. Ser 7, 3:379–441 [Google Scholar]
  141. Utsu T. 1975. Correlation between shallow earthquakes in Kwanto region and intermediate earthquakes in Hida region, central Japan. Zisin II [J. Seismol. Soc. Jpn.] 28:303–11 [Google Scholar]
  142. Utsu T. 1977. Probability in earthquake prediction. Zisin II [J. Seismol. Soc. Jpn.] 30:179–85 [Google Scholar]
  143. Utsu T. 1978. An investigation into the discrimination of foreshock sequences from earthquake swarms. Zisin II [J. Seismol. Soc. Jpn.] 31:129–35 [Google Scholar]
  144. Utsu T. 1979. Calculation of the probability of success of an earthquake prediction (In the case of Izu-Oshima-Kinkai earthquake of 1978). Rep. Coord. Comm. Earthq. Predict. 21:164–66 [Google Scholar]
  145. Utsu T. 1984. Estimation of parameters for recurrence models of earthquakes. Bull. Earthq. Res. Inst. Univ. Tokyo 59:53–66 [Google Scholar]
  146. Utsu T. 1999a. Representation and analysis of the earthquake size distribution: a historical review and some new approaches. Pure Appl. Geophys. 155:2509–35 [Google Scholar]
  147. Utsu T. 1999b. Seismicity Studies: A Conprehensive Review Tokyo: Univ. Tokyo Press [Google Scholar]
  148. Utsu T. 2002. Relationships between magnitude scales. International Handbook of Earthquake and Engineering Seismology 81 Part A, ed. WHK Lee, H Kanamori, PC Jennings, C Kisslinger 733–46 London/San Diego: Academic/Elsevier [Google Scholar]
  149. Utsu T, Ogata Y, Matsu'ura RS. 1995. The centenary of the Omori formula for a decay law of aftershock activity. J. Phys. Earth 43:1–33 [Google Scholar]
  150. Varotsos P, Alexopoulos K, Nomicos K, Lazaridou M. 1986. Earthquake predictions and electric signals. Nature 322:120 [Google Scholar]
  151. Vere-Jones D. 1970. Stochastic models for earthquake occurrence. J. R. Stat. Soc. B 32:1–62 [Google Scholar]
  152. Vere-Jones D. 1978. Earthquake prediction—a statistician's view. J. Phys. Earth 26:129–46 [Google Scholar]
  153. Vere-Jones D. 1999. Probabilities and in formation gain for earthquake forecasting. Comput. Seismol. 30:248–63 [Google Scholar]
  154. Vere-Jones D, Davies RB. 1966. A statistical survey of earthquakes in the main seismic region of New Zealand: Part 2—Time series analyses. N. Zealand J. Geol. Geophys. 9:251–84 [Google Scholar]
  155. von Seggern D, Alexander SS, Baag CE. 1981. Seismicity parameters preceding moderate to major earthquakes. J. Geophys. Res. 86:B109325–51 [Google Scholar]
  156. Wang T, Zhuang J, Kato T, Bebbington M. 2013. Assessing the potential improvement in short-term earthquake forecasts from incorporation of GPS data. Geophys. Res. Lett. 40:2631–35 [Google Scholar]
  157. Whittle P. 1962. Gaussian estimation in stationary time series. Bull. Int. Stat. Inst. 39:105–29 [Google Scholar]
  158. Wiemer S, Wyss M. 1997. Mapping the frequency-magnitude distribution in asperities: an improved technique to calculate recurrence times?. J. Geophys. Res. 102:B715115–28 [Google Scholar]
  159. Woessner J, Hainzl S, Marzocchi W, Werner MJ, Lombardi AM. et al. 2011. A retrospective comparative forecast test on the 1992 Landers sequence. J. Geophys. Res. 116:B05305 [Google Scholar]
  160. Wong KC, Wyss M. 1985. Clustering of foreshocks and preshocks in the Circum-Aegean region. Earthq. Predict. Res. 1:121–40 [Google Scholar]
  161. Wyss M, Shimazaki K, Wiemer S. 1997. Mapping active magma chambers by b values beneath the off-Ito volcano, Japan. J. Geophys. Res. 102:B920413–22 [Google Scholar]
  162. Yamashina K. 1981a. A method of probability prediction for earthquakes in Japan. J. Phys. Earth 29:9–22 [Google Scholar]
  163. Yamashina K. 1981b. Some empirical rules on foreshocks and earthquake prediction. Earthquake Prediction: An International Review DW Simpson, PG Richards 517–26 Washington, DC: Am. Geophys. Union [Google Scholar]
  164. Zhuang J, Jiang C. 2012. Scoring annual earthquake predictions in China. Tectonophysics 524:155–64 [Google Scholar]
  165. Zhuang J, Ogata Y, Vere-Jones D. 2002. Stochastic declustering of space-time earthquake occurrences. J. Am. Stat. Assoc. 97:369–80 [Google Scholar]
  166. Zhuang J, Ogata Y, Vere-Jones D, Ma L, Guan H. 2014. Statistical modeling of earthquake occurrences based on external geophysical observations: with an illustrative application to the ultra-low frequency ground electric signals observed in the Beijing region. Seismic Imaging, Fault Rock Damage and Healing Y Li 351–76 Berlin/Boston: de Gruyter/High. Educ. Press [Google Scholar]
  167. Zhuang J, Vere-Jones D, Guan H, Ogata Y, Ma L. 2005. Preliminary analysis of observations on the ultra-low frequency electric field in a region around Beijing. Pure Appl. Geophys. 162:1367–96 [Google Scholar]
/content/journals/10.1146/annurev-earth-063016-015918
Loading
/content/journals/10.1146/annurev-earth-063016-015918
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error