1932

Abstract

The Cassini-Huygens mission that explored the Saturn system during the period 2004–2017 revolutionized our understanding of Titan, the only known moon with a dense atmosphere and the only body, besides Earth, with stable surface liquids. Its predominantly nitrogen atmosphere also contains a few percent of methane that is photolyzed on short geological timescales to form ethane and more complex organic molecules. The presence of a significant amount of methane and 40Ar, the decay product of 40K, argues for exchange processes from the interior to the surface. Here we review the information that constrains Titan's interior structure. Gravity and orbital data suggest that Titan is an ocean world, which implies differentiation into a hydrosphere and a rocky core. The mass and gravity data complemented by equations of state constrain the ocean density and composition as well as the hydrosphere thickness. We present end-member models, review the dynamics of each layer, and discuss the global evolution consistent with the Cassini-Huygens data.

  • ▪   Titan is the only moon with a dense atmosphere where organic molecules are synthesized and have sedimented at the surface.
  • ▪   The Cassini-Huygens mission demonstrated that Titan is an ocean world with an internal water shell and liquid hydrocarbon seas at the poles.
  • ▪   Interactions between water, rock, and organics may have occurred during most of Titan's evolution, which has strong astrobiological implications.
  • ▪   Data collected by the Dragonfly mission and comparison with the JUpiter ICy moons Explorer (JUICE) data for Ganymede will further reveal Titan's astrobiology potential.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-072920-052847
2021-05-30
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/earth/49/1/annurev-earth-072920-052847.html?itemId=/content/journals/10.1146/annurev-earth-072920-052847&mimeType=html&fmt=ahah

Literature Cited

  1. Amit H, Choblet G, Tobie G, Terra-Nova F, Čadek O, Bouffard M 2020. Cooling patterns in rotating thin spherical shells—application to Titan's subsurface ocean. Icarus 338:113509
    [Google Scholar]
  2. Baland R-M, Tobie G, Lefevre A, Van Hoolst T 2014. Titan's internal structure inferred from its gravity field, shape, and rotation state. Icarus 237:29–41
    [Google Scholar]
  3. Baland R-M, Van Hoolst T, Yseboodt M, Karatekin Ö. 2011. Titan's obliquity as evidence of a subsurface ocean?. Astron. Astrophys. 530:A141
    [Google Scholar]
  4. Barnes JW, Brown RH, Radebaugh J, Buratti BJ, Sotin C et al. 2006. Cassini observations of flow-like features in western Tui Regio, Titan. Geophys. Res. Lett. 33:16L16204
    [Google Scholar]
  5. Barr AC, Citron RI, Canup RM. 2010. Origin of a partially differentiated Titan. Icarus 209:2858–62
    [Google Scholar]
  6. Barr AC, McKinnon WB. 2007. Convection in ice I shells and mantles with self-consistent grain size. J. Geophys. Res. 112:E2E02012
    [Google Scholar]
  7. Béghin C, Randriamboarison O, Hamelin M, Karkoschka E, Sotin C et al. 2012. Analytic theory of Titan's Schumann resonance: constraints on ionospheric conductivity and buried water ocean. Icarus 218:21028–42
    [Google Scholar]
  8. Béghin C, Simoes F, Krasnoselskikh V, Schwingenschuh K, Berthelier JJ et al. 2007. A Schumann-like resonance on Titan driven by Saturn's magnetosphere possibly revealed by the Huygens Probe. Icarus 191:1251–66
    [Google Scholar]
  9. Bézard B. 2014. The methane mole fraction in Titan's stratosphere from DISR measurements during the Huygens probe's descent. Icarus 242:64–73
    [Google Scholar]
  10. Bills BG, Nimmo F. 2008. Forced obliquity and moments of inertia of Titan. Icarus 196:1293–97
    [Google Scholar]
  11. Bills BG, Nimmo F. 2011. Rotational dynamics and internal structure of Titan. Icarus 214:1351–55
    [Google Scholar]
  12. Bollengier O, Brown JM, Shaw GH. 2019. Thermodynamics of pure liquid water: sound speed measurements to 700 MPa down to the freezing point, and an equation of state to 2300 MPa from 240 to 500 K. J. Chem. Phys. 151:5054501
    [Google Scholar]
  13. Bonnet-Gibet V, Choblet G, Sotin C, Vance SD, Guignard J, Tobie G 2020. Thermal and chemical evolution of Ganymede's primitive core Paper presented at the European Planetary Science Congress 2020, online, Sept. 21–Oct. 9
  14. Brown JM. 2018. Local basis function representations of thermodynamic surfaces: water at high pressure and temperature as an example. Fluid Phase Equilib 463:18–31
    [Google Scholar]
  15. Buono AS, Walker D. 2011. The Fe-rich liquidus in the Fe-FeS system from 1 bar to 10 GPa. Geochim. Cosmochim. Acta 75:82072–87
    [Google Scholar]
  16. Castillo-Rogez JC, Lunine JI. 2010. Evolution of Titan's rocky core constrained by Cassini observations. Geophys. Res. Lett. 37:L20205
    [Google Scholar]
  17. Chen E, Nimmo F, Glatzmaier G. 2014. Tidal heating in icy satellite oceans. Icarus 229:11–30
    [Google Scholar]
  18. Choblet G, Tobie G, Sotin C, Běhounková M, Čadek O et al. 2017a. Powering prolonged hydrothermal activity inside Enceladus. Nat. Astron. 12:841–47
    [Google Scholar]
  19. Choblet G, Tobie G, Sotin C, Kalousová K, Grasset O. 2017b. Heat transport in the high-pressure ice mantle of large icy moons. Icarus 285:252–62
    [Google Scholar]
  20. Choukroun M, Grasset O. 2010. Thermodynamic data and modeling of the water and ammonia-water phase diagrams up to 2.2 GPa for planetary geophysics. J. Chem. Phys. 133:14133402
    [Google Scholar]
  21. Choukroun M, Grasset O, Tobie G, Sotin C 2010. Stability of methane clathrate hydrates under pressure: influence on outgassing processes of methane on Titan. Icarus 205:2581–93
    [Google Scholar]
  22. Choukroun M, Kieffer SW, Lu X, Tobie G 2013. Clathrate hydrates: implications for exchange processes in the outer Solar System. The Science of Solar System Ices. Astrophysics and Space Science Library 356 M Gudipati, J Castillo-Rogez 409–54 New York: Springer
    [Google Scholar]
  23. Choukroun M, Sotin C. 2012. Is Titan's shape caused by its meteorology and carbon cycle?. Geophys. Res. Lett. 39:L04201
    [Google Scholar]
  24. Cockell CS, Bush T, Bryce C, Direito S, Fox-Powell M et al. 2016. Habitability: a review. Astrobiology 16:189–117
    [Google Scholar]
  25. Connolly JAD. 1990. Multivariable phase diagrams—an algorithm based on generalized thermodynamics. Am. J. Sci. 290:6666–718
    [Google Scholar]
  26. Corlies P, Hayes AG, Birch SPD, Lorenz R, Stiles BW et al. 2017. Titan's topography and shape at the end of the Cassini mission. Geophys. Res. Lett. 44:2311754–61
    [Google Scholar]
  27. Croft SK 1982. A first-order estimate of shock heating and vaporization in oceanic impacts. Geological Implications of Impacts of Large Asteroids and Comets on Earth TL Silver, PH Schultz 143–52 Geol. Soc. Am. Spec. Pap . 90 Boulder, CO: Geol. Soc. Am.
    [Google Scholar]
  28. Croft SK, Lunine JI, Kargel J. 1988. Equation of state of ammonia-water liquid: derivation and planetological applications. Icarus 73:2279–93
    [Google Scholar]
  29. Durante D, Hemingway D, Racioppa P, Iess L, Stevenson D. 2019. Titan's gravity field and interior structure after Cassini. Icarus 326:123–32
    [Google Scholar]
  30. Durham WB, Stern LA. 2001. Rheological properties of water ice—applications to satellites of the outer planets. Annu. Rev. Earth Planet. Sci. 29:295–330
    [Google Scholar]
  31. Durham WB, Stern LA, Kirby SH. 1996. Rheology of water ices V and VI. J. Geophys. Res. 101:B22989–3001
    [Google Scholar]
  32. Durham WB, Stern LA, Kirby SH. 1997. Creep of water ices at planetary conditions: a compilation. J. Geophys. Res. 102:E716293–302
    [Google Scholar]
  33. Durham WB, Stern LA, Kirby SH. 2001. Rheology of ice I at low stress and elevated confining pressure. J. Geophys. Res. 106:B611031–42
    [Google Scholar]
  34. Elachi C, Allison MD, Borgarelli L, Encrenaz P, Im E et al. 2004. Radar: the Cassini Titan RADAR mapper. Space Sci. Rev. 115:1–471–110
    [Google Scholar]
  35. Fischer G, Gurnett DA. 2011. The search for Titan lightning radio emissions. Geophys. Res. Lett. 38:L08206
    [Google Scholar]
  36. Fortes AD. 2012. Titan's internal structure and the evolutionary consequences. Planet. Space Sci. 60:110–17
    [Google Scholar]
  37. Fortes AD, Grindrod PM, Trickett SK, Vočadlo L. 2007. Ammonium sulfate on Titan: possible origin and role in cryovolcanism. Icarus 188:1139–53
    [Google Scholar]
  38. Friedson AJ, Stevenson DJ. 1983. Viscosity of rock-ice mixtures and applications to the evolution of icy satellites. Icarus 56:11–14
    [Google Scholar]
  39. Fulchignoni M, Ferri F, Angrilli F, Ball AJ, Bar-Nun A et al. 2005. In situ measurements of the physical characteristics of Titan's environment. Nature 438:7069785–91
    [Google Scholar]
  40. Gao P, Stevenson DJ. 2013. Nonhydrostatic effects and the determination of icy satellites’ moment of inertia. Icarus 226:21185–91
    [Google Scholar]
  41. Gastine T, Wicht W, Aubert J 2016. Scaling regimes in spherical shell rotating convection. J. Fluid Mech. 808:690–732
    [Google Scholar]
  42. Glein CR. 2015. Noble gases, nitrogen, and methane from the deep interior to the atmosphere of Titan. Icarus 250:570–86
    [Google Scholar]
  43. Goldsby DL, Kohlstedt DL. 2001. Superplastic deformation of ice: experimental observations. J. Geophys. Res. 106:B611017–30
    [Google Scholar]
  44. Grasset O, Pargamin J. 2005. The ammonia-water system at high pressures: implications for the methane of Titan. Planet. Space Sci. 53:4371–84
    [Google Scholar]
  45. Grasset O, Sotin C. 1996. The cooling rate of a liquid shell in Titan's interior. Icarus 123:1101–12
    [Google Scholar]
  46. Griffith C, Mitchell JL, Lavvas P, Tobie G 2013. Titan's evolving climate. Comparative Climatology of Terrestrial Planets SJ Mackwell, AA Simon-Miller, JW Harder, MA Bullock, R Dotson 91–119 Tucson: Univ. Ariz. Press
    [Google Scholar]
  47. Griffith CA, Penteado PF, Rannou P, Brown R, Boudon V et al. 2006. Evidence for a polar ethane cloud on Titan. Science 313:57931620–22
    [Google Scholar]
  48. Griffith CA, Penteado PF, Turner JD, Neish CD, Mitri G et al. 2019. A corridor of exposed ice-rich bedrock across Titan's tropical region. Nat. Astron. 3:7642–48
    [Google Scholar]
  49. Hay HCFC, Matsuyama I. 2017. Numerically modelling tidal dissipation with bottom drag in the oceans of Titan and Enceladus. Icarus 281:342–56
    [Google Scholar]
  50. Hilairet N, Reynard B, Wang YB, Daniel I, Merkel S et al. 2007. High-pressure creep of serpentine, interseismic deformation, and initiation of subduction. Science 318:58581910–13
    [Google Scholar]
  51. Hogenboom DL, Kargel JS, Consolmagno GJ, Holden TC, Lee L, Buyyounouski M. 1997. The ammonia-water system and the chemical differentiation of icy satellites. Icarus 128:1171–80
    [Google Scholar]
  52. Hörst SM. 2017. Titan's atmosphere and climate. J. Geophys. Res. Planets 122:3432–82
    [Google Scholar]
  53. Hussmann H, Choblet G, Lainey V, Matson DL, Sotin C et al. 2010. Implications of rotation, orbital states, energy sources, and heat transport for internal processes in icy satellites. Space Sci. Rev. 153:1–4317–48
    [Google Scholar]
  54. Iess L, Jacobson RA, Ducci M, Stevenson DJ, Lunine JI et al. 2012. The tides of Titan. Science 337:6093457–59
    [Google Scholar]
  55. Iess L, Rappaport NJ, Jacobson RA, Racioppa P, Stevenson DJ et al. 2010. Gravity field, shape, and moment of inertia of Titan. Science 327:59711367–69
    [Google Scholar]
  56. Jaumann R, Brown RH, Stephan K, Barnes JW, Soderblom LA et al. 2008. Fluvial erosion and post-erosional processes on Titan. Icarus 197:2526–38
    [Google Scholar]
  57. Journaux B, Brown JM, Pakhomova A, Collings IE, Petitgirard S et al. 2020a. Holistic approach for studying planetary hydrospheres: Gibbs representation of ices thermodynamics, elasticity, and the water phase diagram to 2,300 MPa. J. Geophys. Res. Planets 125:1e2019JE006176
    [Google Scholar]
  58. Journaux B, Kalousová K, Sotin C, Tobie G, Vance S et al. 2020b. Large ocean worlds with high-pressure ices. Space Sci. Rev. 216:7
    [Google Scholar]
  59. Kalousová K, Sotin C. 2018. Melting in high-pressure ice layers of large ocean worlds—implications for volatiles transport. Geophys. Res. Lett. 45:168096–103
    [Google Scholar]
  60. Kalousová K, Sotin C 2020a. Dynamics of Titan's high-pressure ice layer. Earth Planet. Sci. Lett. 545:116416
    [Google Scholar]
  61. Kalousová K, Sotin C 2020b. The insulating effect of methane clathrate crust on Titan's thermal evolution. Geophys. Res. Lett. 47:13e2020GL087481
    [Google Scholar]
  62. Kalousová K, Sotin C, Choblet G, Tobie G, Grasset O 2018. Two-phase convection in Ganymede's high-pressure ice layer—implications for its geological evolution. Icarus 299:133–47
    [Google Scholar]
  63. Khurana KK, Kivelson MG, Stevenson DJ, Schubert G, Russell CT et al. 1998. Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto. Nature 395:6704777–80
    [Google Scholar]
  64. Kirk RL, Howington-Kraus E, Redding B, Aharonson O, Bills BG et al. 2013. Topographic mapping of Titan: completion of a global radargrammetric control network opens the floodgates for stereo DTM production Paper presented at the 44th Lunar and Planetary Science Conference, The Woodlands, Texas, Mar 18–22
  65. Kirk RL, Stevenson DJ. 1987. Thermal evolution of a differentiated Ganymede and implications for surface features. Icarus 69:191–134
    [Google Scholar]
  66. Kivelson MG, Khurana KK, Russell CT, Walker RJ, Warnecke J et al. 1996. Discovery of Ganymede's magnetic field by the Galileo spacecraft. Nature 384:6609537–41
    [Google Scholar]
  67. Kivelson MG, Khurana KK, Volwerk M. 2002. The permanent and inductive magnetic moments of Ganymede. Icarus 157:2507–22
    [Google Scholar]
  68. Kruijer TS, Burkhardt C, Budde G, Kleine T 2017. Age of Jupiter inferred from the distinct genetics and formation times of meteorites. PNAS 114:266712–16
    [Google Scholar]
  69. Kuramoto K, Matsui T. 1994. Formation of a hot proto-atmosphere on the accreting giant icy satellite: implications for the origin and evolution of Titan, Ganymede, and Callisto. J. Geophys. Res. 99:E1021183–200
    [Google Scholar]
  70. Kvorka J, Čadek O, Tobie G, Choblet G 2018. Does Titan's long-wavelength topography contain information about subsurface ocean dynamics?. Icarus 310:149–64
    [Google Scholar]
  71. Lainey V, Casajus LG, Fuller J, Zannoni M, Tortora P et al. 2020. Resonance locking in giant planets indicated by the rapid orbital expansion of Titan. Nat. Astron. 4:1053–58
    [Google Scholar]
  72. Lavvas PP, Coustenis A, Vardavas IM. 2008. Coupling photochemistry with haze formation in Titan's atmosphere, Part II: results and validation with Cassini/Huygens data. Planet. Space Sci. 56:167–99
    [Google Scholar]
  73. Le Mouélic S, Cornet T, Rodriguez S, Sotin C, Seignovert B et al. 2019. The Cassini VIMS archive of Titan: from browse products to global infrared color maps. Icarus 319:121–32
    [Google Scholar]
  74. Le Mouélic S, Paillou P, Janssen MA, Barnes JW, Rodriguez S et al. 2008. Mapping and interpretation of Sinlap crater on Titan using Cassini VIMS and RADAR data. J. Geophys. Res. 113:E4E04003
    [Google Scholar]
  75. Lefevre A, Tobie G, Choblet G, Čadek O. 2014. Structure and dynamics of Titan's outer icy shell constrained from Cassini data. Icarus 237:16–28
    [Google Scholar]
  76. Leitner MA, Lunine JI. 2019. Modeling early Titan's ocean composition. Icarus 333:61–70
    [Google Scholar]
  77. Lopes RMC, Kirk RL, Mitchell KL, LeGall A, Barnes JW et al. 2013. Cryovolcanism on Titan: new results from Cassini RADAR and VIMS. J. Geophys. Res. Planets 118:416–35
    [Google Scholar]
  78. Lorenz RD, Le Gall A 2020. Schumann resonance on Titan: a critical Re-assessment. Icarus 351:113942
    [Google Scholar]
  79. Lorenz RD, Panning M, Staehler SC, Shiraishi H, Yamada R, Turtle EP. 2019. Titan seismology with Dragonfly: probing the internal structure of the most accessible ocean world Paper presented at the 50th Lunar and Planetary Science Conference, The Woodlands, Texas, Mar 18–22
  80. Lorenz RD, Stiles BW, Kirk RL, Allison MD, del Marmo PP et al. 2008. Titan's rotation reveals an internal ocean and changing zonal winds. Science 319:58701649–51
    [Google Scholar]
  81. Loveday JS, Nelmes RJ, Guthrie M, Belmonte SA, Allan DR et al. 2001. Stable methane hydrate above 2 GPa and the source of Titan's atmospheric methane. Nature 410:661–63
    [Google Scholar]
  82. Lunine JI, Stevenson DJ. 1987. Clathrate and ammonia hydrates at high pressure: application to the origin of methane on Titan. Icarus 70:161–77
    [Google Scholar]
  83. Marounina N, Grasset O, Tobie G, Carpy S 2018. Role of the global water ocean on the evolution of Titan's primitive atmosphere. Icarus 310:127–39
    [Google Scholar]
  84. Meriggiola R, Iess L. 2012. A new rotational model of Titan from Cassini SAR data Paper presented at the European Planetary Science Congress 2012, Madrid, Spain, Sept 23–28
  85. Merrigiola R, Iess L, Stiles BW, Lunine JI, Mitri G 2016. The rotational dynamics of Titan from Cassini RADAR images. Icarus 275:18392
    [Google Scholar]
  86. Miller KE, Glein CR, Waite JH Jr. 2019. Contributions from accreted organics to Titan's atmosphere: new insights from cometary and chondritic data. Astrophys. J. 871:59
    [Google Scholar]
  87. Mitchell JL, Lora JM. 2016. The climate of Titan. Annu. Rev. Earth Planet. Sci. 44:353–80
    [Google Scholar]
  88. Mitri G, Meriggiola R, Hayes A, Lefevre A, Tobie G et al. 2014. Shape, topography, gravity anomalies and tidal deformation of Titan. Icarus 236:169–77
    [Google Scholar]
  89. Mitri G, Showman AP, Lunine JI, Lopes RMC. 2008. Resurfacing of Titan by ammonia-water cryomagma. Icarus 196:1216–24
    [Google Scholar]
  90. Monteux J, Coltice N, Dubuffet F, Ricard Y 2007. Thermo-mechanical adjustment after impacts during planetary growth. Geophys. Res. Lett. 34:24L24201
    [Google Scholar]
  91. Monteux J, Tobie G, Choblet G, Le Feuvre M 2014. Can large icy moons accrete undifferentiated?. Icarus 237:377–87
    [Google Scholar]
  92. Mueller S, McKinnon WB. 1988. Three-layered models of Ganymede and Callisto: compositions, structures, and aspects of evolution. Icarus 76:3437–64
    [Google Scholar]
  93. Murshed MM, Schmidt BC, Kuhs WF. 2010. Kinetics of methane-ethane gas replacement in clathrate-hydrates studied by time-resolved neutron diffraction and Raman spectroscopy. J. Phys. Chem. A 114:247–55
    [Google Scholar]
  94. Nagel K, Breuer D, Spohn T. 2004. A model for the interior structure, evolution, and differentiation of Callisto. Icarus 169:2402–12
    [Google Scholar]
  95. Neish CD, Lorenz RD. 2012. Titan's global crater population: a new assessment. Planet. Space Sci. 60:26–33
    [Google Scholar]
  96. Néri A, Guyot F, Reynard B, Sotin C 2020. A carbonaceous chondrite and cometary origin for icy moons of Jupiter and Saturn. Earth Planet. Sci. Lett. 530:115920
    [Google Scholar]
  97. Niemann HB, Atreya SK, Bauer SJ, Carignan GR, Demick JE et al. 2005. The abundances of constituents of Titan's atmosphere from the GCMS instrument on the Huygens probe. Nature 438:7069779–84
    [Google Scholar]
  98. Niemann HB, Atreya SK, Demick JE, Gautier D, Haberman JA et al. 2010. Composition of Titan's lower atmosphere and simple surface volatiles as measured by the Cassini-Huygens probe gas chromatograph mass spectrometer experiment. J. Geophys. Res. 115:E12E12006
    [Google Scholar]
  99. Nimmo F, Bills BG. 2010. Shell thickness variations and the long-wavelength topography of Titan. Icarus 208:2896–904
    [Google Scholar]
  100. O'Rourke JG, Stevenson DJ 2014. Stability of ice/rock mixtures with application to a partially differentiated Titan. Icarus 227:67–77
    [Google Scholar]
  101. Rekier J, Trinh A, Triana SA, Dehant V. 2019. Internal energy dissipation in Enceladus's subsurface ocean from tides and libration and the role of inertial waves. J. Geophys. Res. Planets 124:82198–212
    [Google Scholar]
  102. Rovira-Navarro M, Rieutord M, Gerkema T, Maas LRM, van der Wal W, Vermeersen B. 2019. Do tidally-generated inertial waves heat the subsurface oceans of Europa and Enceladus?. Icarus 321:126–40
    [Google Scholar]
  103. Sagan C, Dermott SF. 1982. The tide in the seas of Titan. Nature 300:5894731–33
    [Google Scholar]
  104. Sasaki T, Stewart GR, Ida S 2010. Origin of the different architectures of the Jovian and Saturnian satellite systems. Astrophys. J. 714:21052–64
    [Google Scholar]
  105. Saur J, Neubauer FM, Glassmeier KH. 2010. Induced magnetic fields in solar system bodies. Space Sci. Rev. 152:1–4391–421
    [Google Scholar]
  106. Sears WD. 1995. Tidal dissipation in oceans on Titan. Icarus 113:139–56
    [Google Scholar]
  107. Senshu H, Kuramoto K, Matsui T. 2002. Thermal evolution of a growing Mars. J. Geophys. Res. 107:E125118
    [Google Scholar]
  108. Showman AP, Malhotra R 1999. The Galilean satellites. Science 286:543777–84
    [Google Scholar]
  109. Simoes F, Grard R, Hamelin M, Lopez-Morenoc JJ, Schwingenschuh K et al. 2007. A new numerical model for the simulation of ELF wave propagation and the computation of eigenmodes in the atmosphere of Titan: Did Huygens observe any Schumann resonance?. Planet. Space Sci. 55:131978–89
    [Google Scholar]
  110. Sloan E, Koh CA. 2007. Clathrate Hydrates of Natural Gases Boca Raton, FL: CRC
  111. Soderlund KM. 2019. Ocean dynamics of outer solar system satellites. Geophys. Res. Lett. 46:158700–10
    [Google Scholar]
  112. Soderlund KM, Kalousová K, Buffo JJ, Glein CR, Goodman JC et al. 2020. Ice-ocean exchange processes in the Jovian and Saturnian satellites. Space Sci. Rev. 216:80
    [Google Scholar]
  113. Sohl F, Sears WD, Lorenz RD. 1995. Tidal dissipation on Titan. Icarus 115:2278–94
    [Google Scholar]
  114. Sohl F, Spohn T, Breuer D, Nagel K 2002. Implications from Galileo observations on the interior structure and chemistry of the Galilean satellites. Icarus 157:1104–19
    [Google Scholar]
  115. Sotin C, Gillet P, Poirier J-P 1985. Creep of high-pressure ice VI. Ices in the Solar System J Klinger, D Benest, A Dollfus, R Smoluchowski 109–18 Dordrecht, Neth: Reidel
    [Google Scholar]
  116. Sotin C, Poirier J-P. 1987. Viscosity of ice V. J. Phys. Colloq. 48:C1233–38
    [Google Scholar]
  117. Stiles BW, Kirk RL, Lorenz RD, Hensley S, Lee E et al. 2008. Determining Titan's spin state from Cassini radar images. Astron. J. 135:51669–80 Erratum 2010. Astron. J 139:1311
    [Google Scholar]
  118. Stofan ER, Elachi C, Lunine JI, Lorenz RD, Stiles B et al. 2007. The lakes of Titan. Nature 445:61–64
    [Google Scholar]
  119. Tobie G, Choukroun M, Grasset O, Le Mouélic S, Lunine JI et al. 2009. Evolution of Titan and implications for its hydrocarbon cycle. Philos. Trans. R. Soc. A 367: 1889.617–31
    [Google Scholar]
  120. Tobie G, Gautier D, Hersant F. 2012. Titan's bulk composition constrained by Cassini-Huygens: implication for internal outgassing. Astrophys. J. 752:2125
    [Google Scholar]
  121. Tobie G, Grasset O, Lunine JI, Mocquet A, Sotin C. 2005a. Titan's internal structure inferred from a coupled thermal-orbital model. Icarus 175:2496–502
    [Google Scholar]
  122. Tobie G, Lunine J, Monteux J, Mousis O, Nimmo F 2014. The origin and evolution of Titan. Titan: Interior, Surface, Atmosphere, and Space Environment I Müller-Wodarg, C Griffith, E Lellouch, T Cravens 29–62 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  123. Tobie G, Lunine JI, Sotin C. 2006. Episodic outgassing as the origin of atmospheric methane on Titan. Nature 440:61–64
    [Google Scholar]
  124. Tobie G, Mocquet A, Sotin C. 2005b. Tidal dissipation within large icy satellites: applications to Europa and Titan. Icarus 177:2534–49
    [Google Scholar]
  125. Tomasko MG, Archinal B, Becker T, Bézard B., Bushroe M et al. 2005. Rain, winds and haze during the Huygens probe's descent to Titan's surface. Nature 438:7069765–78
    [Google Scholar]
  126. Turtle EP, Barnes JW, Trainer MG, Lorenz RD, MacKenzie SM et al. 2017. Dragonfly: exploring Titan's prebiotic organic chemistry and habitability Paper presented at the 48th Lunar and Planetary Science Conference, The Woodlands, Texas, Mar 20–24
  127. Tyler RH. 2008. Strong ocean tidal flow and heating on moons of the outer planets. Nature 456:7223770–72
    [Google Scholar]
  128. Vance SD, Bouffard M, Choukroun M, Sotin C. 2014. Ganymede's internal structure including thermodynamics of magnesium sulfate oceans in contact with ice. Planet. Space Sci. 96:62–70
    [Google Scholar]
  129. Vance SD, Brown JM. 2013. Thermodynamic properties of aqueous MgSO4 to 800 MPa at temperatures from −20 to 100°C and concentrations to 2.5 mol kg−1 from sound speeds, with applications to icy world oceans. Geochim. Cosmochim. Acta 110:176–89
    [Google Scholar]
  130. Vance SD, Panning MP, Stahler S, Cammarano F, Bills BG et al. 2018. Geophysical investigations of habitability in ice-covered ocean worlds. J. Geophys. Res. Planets 123:1180–205
    [Google Scholar]
  131. Van Hoolst T, Baland R-M, Trinh A 2013. On the librations and tides of large icy satellites. Icarus 226:1299–315
    [Google Scholar]
  132. Van Hoolst T, Rambaux N, Karatekin O, Baland R-M. 2009. The effect of gravitational and pressure torques on Titan's length-of-day variations. Icarus 200:1256–64
    [Google Scholar]
  133. Vu TH, Choukroun M, Sotin C, Muñoz-Iglesias V, Maynard-Casely HE. 2020. Rapid formation of clathrate hydrate from liquid ethane and water ice on Titan. Geophys. Res. Lett. 47:e2019GL086265
    [Google Scholar]
  134. Wagner W, Riethmann T, Feistel R, Harvey AH. 2011. New equations for the sublimation pressure and melting pressure of H2O ice Ih. J. Phys. Chem. Ref. Data 40:4043103
    [Google Scholar]
  135. Wagner W, Saul A, Pruss A. 1994. International equations for the pressure along the melting and along the sublimation curve of ordinary water substance. J. Phys. Chem. Ref. Data 23:3515–27
    [Google Scholar]
  136. Wasson JT, Kallemeyn GW. 1988. Composition of chondrites. Philos. Trans. R. Soc. A 325: 1587.535–44
    [Google Scholar]
  137. Werynski A, Neish C, Gall AL, Janssen M. 2019. Compositional variations of Titan's impact craters indicates active surface erosion. Icarus 321:508–21
    [Google Scholar]
  138. Yung YL, Allen M, Pinto JP 1984. Photochemistry of the atmosphere of Titan: comparison between model and observations. Astrophys. J. Suppl. Ser. 55:465–506
    [Google Scholar]
  139. Zahnle KJ, Korycansky DG, Nixon CA. 2014. Transient climate effects of large impacts on Titan. Icarus 229:378–91
    [Google Scholar]
  140. Zebker HA, Gim Y, Callahan P, Hensley S, Lorenz R, Team Cassini Radar 2009. Analysis and interpretation of Cassini Titan radar altimeter echoes. Icarus 200:1240–55
    [Google Scholar]
/content/journals/10.1146/annurev-earth-072920-052847
Loading
/content/journals/10.1146/annurev-earth-072920-052847
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error