1932

Abstract

Accelerating global climate change drives new climate risks. People around the world are researching, designing, and implementing strategies to manage these risks. Identifying and implementing sound climate risk management strategies poses nontrivial challenges including () linking the required disciplines, () identifying relevant values and objectives, () identifying and quantifying important uncertainties, () resolving interactions between decision levers and the system dynamics, () quantifying the trade-offs between diverse values under deep and dynamic uncertainties, () communicating to inform decisions, and () learning from the decision-making needs to inform research design. Here we review these challenges and avenues to overcome them.

  • ▪   People and institutions are confronted with emerging and dynamic climate risks.
  • ▪   Stakeholder values are central to defining the decision problem.
  • ▪   Mission-oriented basic research helps to improve the design of climate risk management strategies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-080320-055847
2021-05-30
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/earth/49/1/annurev-earth-080320-055847.html?itemId=/content/journals/10.1146/annurev-earth-080320-055847&mimeType=html&fmt=ahah

Literature Cited

  1. Adams P, Eitland E, Hewitson B, Vaughan C, Wilby R, Zebiak S 2015. Toward an ethical framework for climate services. White Pap., Clim. Serv. Partnersh Copenhagen, Den: https://cgspace.cgiar.org/bitstream/handle/10568/68833/CS%20Ethics%20White%20Paper%20Oct%202015.pdf?sequence=1&isAllowed=y
  2. Addor N, Melsen LA. 2019. Legacy, rather than adequacy, drives the selection of hydrological models. Water Resour. Res. 55:1378–90
    [Google Scholar]
  3. AghaKouchak A, Chiang F, Huning LS, Love CA, Mallakpour I et al. 2020. Climate extremes and compound hazards in a warming world. Annu. Rev. Earth Planet. Sci. 48:519–48
    [Google Scholar]
  4. Anderson GB, Bell ML. 2011. Heat waves in the United States: mortality risk during heat waves and effect modification by heat wave characteristics in 43 U.S. communities. Environ. Health Perspect. 119:2210–18
    [Google Scholar]
  5. Avery CW, Reidmiller DR, Carter TS, Lewis KLM, Reeves K 2018. Report development process. Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment 2 DR Reidmiller, CW Avery, DR Easterling, KE Kunkel, KLM Lewis, et al 1387–409 Washington, DC: US Glob. Change Res. Program
    [Google Scholar]
  6. Bakker AMR, Wong TE, Ruckert KL, Keller K 2017. Sea-level projections representing the deeply uncertain contribution of the West Antarctic ice sheet. Sci. Rep. 7:13880
    [Google Scholar]
  7. Bamber JL, Oppenheimer M, Kopp RE, Aspinall WP, Cooke RM 2019. Ice sheet contributions to future sea-level rise from structured expert judgment. PNAS 116:2311195–200
    [Google Scholar]
  8. Bedford T, Cooke R. 2001. Probabilistic inversion techniques for uncertainty analysis. Probabilistic Risk Analysis: Foundations and Methods T Bedford, R Cooke 316–25 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  9. Bessette DL, Mayer LA, Cwik B, Vezér M, Keller K et al. 2017. Building a values-informed mental model for New Orleans climate risk management. Risk Anal 37:101993–2004
    [Google Scholar]
  10. Beven KJ, Aspinall WP, Bates PD, Borgomeo E, Goda K et al. 2018. Epistemic uncertainties and natural hazard risk assessment—part 2: What should constitute good practice. ? Nat. Hazards Earth Syst. Sci. 18:102769–83
    [Google Scholar]
  11. Bodman RW, Rayner PJ, Karoly DJ 2013. Uncertainty in temperature projections reduced using carbon cycle and climate observations. Nat. Clim. Change 3:8725–29
    [Google Scholar]
  12. Borsuk M, Clemen R, Maguire L, Reckhow K 2001. Stakeholder values and scientific modeling in the Neuse River watershed. Group Decis. Negot. 10:355–73
    [Google Scholar]
  13. Bridges TS, Kovacs D, Wood MD, Baker K, Butte G et al. 2013. Climate change risk management: a Mental Modeling application. Environ. Syst. Decis. 33:3376–90
    [Google Scholar]
  14. Brown G, Reed P. 2000. Validation of a forest values typology for use in national forest planning. Forest Sci 46:2240–47
    [Google Scholar]
  15. Budescu DV, Broomell SB, Lempert RJ, Keller K 2014. Aided and unaided decisions with imprecise probabilities in the domain of losses. EURO J. Decis. Process. 2:1–231–62
    [Google Scholar]
  16. Caldeira K, Bala G, Cao L 2013. The science of geoengineering. Annu. Rev. Earth Planet. Sci. 41:231–56
    [Google Scholar]
  17. Caldeira K, Wickett ME. 2003. Anthropogenic carbon and ocean pH. Nature 425:6956365
    [Google Scholar]
  18. Chen C, Tavoni M. 2013. Direct air capture of CO2 and climate stabilization: a model based assessment. Climat. Change 118:159–72
    [Google Scholar]
  19. Clar C, Steurer R. 2018. Why popular support tools on climate change adaptation have difficulties in reaching local policy-makers: qualitative insights from the UK and Germany. Environ. Policy Gov. 28:3172–82
    [Google Scholar]
  20. Clemen RT, Reilly T. 2013. Making Hard Decisions with DecisionTools Mason, OH: Cengage
    [Google Scholar]
  21. Coello Coello CA, Lamont GB, Van Veldhuizen DA 2007. Evolutionary Algorithms for Solving Multi-Objective Problems New York: Springer
    [Google Scholar]
  22. Colten CE, Kates RW, Laska SB 2008. Three years after Katrina: lessons for community resilience. Environ. Sci. Policy Sustain. Dev. 50:536–47
    [Google Scholar]
  23. Colvin RM, Witt GB, Lacey J 2016. Approaches to identifying stakeholders in environmental management: insights from practitioners to go beyond the ‘usual suspects. .’ Land Use Policy 52:266–76
    [Google Scholar]
  24. Conti S, O'Hagan A. 2010. Bayesian emulation of complex multi-output and dynamic computer models. J. Stat. Plan. Inference 140:3640–51
    [Google Scholar]
  25. Crowley K, Head BW. 2017. The enduring challenge of ‘wicked problems’: revisiting Rittel and Webber. Policy Sci 50:4539–47
    [Google Scholar]
  26. DeConto RM, Pollard D. 2016. Contribution of Antarctica to past and future sea-level rise. Nature 531:7596591–97
    [Google Scholar]
  27. Di Baldassarre G, Viglione A, Carr G, Kuil L, Salinas JL, Blöschl G 2013. Socio-hydrology: conceptualising human-flood interactions. Hydrol. Earth Syst. Sci. 17:83295–303
    [Google Scholar]
  28. Donat MG, Alexander LV, Yang H, Durre I, Vose R et al. 2013. Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: the HadEX2 dataset. J. Geophys. Res. Atmos. 118:52098–118
    [Google Scholar]
  29. Dykema JA, Keith DW, Anderson JG, Weisenstein D 2014. Stratospheric controlled perturbation experiment: a small-scale experiment to improve understanding of the risks of solar geoengineering. Philos. Trans. R. Soc. A 372:203120140059
    [Google Scholar]
  30. Economist 2019. Climate policy needs negative carbon-dioxide emissions. Economist Dec. 5. https://www.economist.com/briefing/2019/12/05/climate-policy-needs-negative-carbon-dioxide-emissions
    [Google Scholar]
  31. Elwyn G, Miron-Shatz T. 2010. Deliberation before determination: the definition and evaluation of good decision making. Health Expect 13:2139–47
    [Google Scholar]
  32. Few R, Brown K, Tompkins EL 2007. Public participation and climate change adaptation: avoiding the illusion of inclusion. Clim. Policy 7:146–59
    [Google Scholar]
  33. Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD et al. 2014. Summary for policymakers. Climate Change 2014: Impacts, Adaptation, and Vulnerability CB Field, VR Barros, DJ Dokken, KJ Mach, MD Mastrandrea, et al 1–32 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  34. Fischbach JR, Johnson DR, Groves DG 2019. Flood damage reduction benefits and costs in Louisiana's 2017 Coastal Master Plan. Environ. Res. Commun. 1:11111001
    [Google Scholar]
  35. Freeth R, Caniglia G. 2020. Learning to collaborate while collaborating: advancing interdisciplinary sustainability research. Sustain. Sci. 15:1247–61
    [Google Scholar]
  36. Fridahl M, Lehtveer M. 2018. Bioenergy with carbon capture and storage (BECCS): global potential, investment preferences, and deployment barriers. Energy Res. Soc. Sci. 42:155–65
    [Google Scholar]
  37. Fuller RW, Wong TE, Keller K 2017. Probabilistic inversion of expert assessments to inform projections about Antarctic ice sheet responses. PLOS ONE 12:12e0190115
    [Google Scholar]
  38. Garner G, Reed P, Keller K 2016. Climate risk management requires explicit representation of societal trade-offs. Clim. Change 134:4713–23
    [Google Scholar]
  39. Gaziulusoy AI, Ryan C, McGrail S, Chandler P, Twomey P 2016. Identifying and addressing challenges faced by transdisciplinary research teams in climate change research. J. Clean. Prod. 123:55–64
    [Google Scholar]
  40. Goes M, Tuana N, Keller K 2011. The economics (or lack thereof) of aerosol geoengineering. Clim. Change 109:3719–44
    [Google Scholar]
  41. Graham S, Barnett J, Mortreux C, Hurlimann A, Fincher R 2018. Local values and fairness in climate change adaptation: insights from marginal rural Australian communities. World Dev 108:332–43
    [Google Scholar]
  42. Grinsted A, Moore JC, Jevrejeva S 2013. Projected Atlantic hurricane surge threat from rising temperatures. PNAS 110:145369–73
    [Google Scholar]
  43. Groves DG, Sharon C. 2013. Planning tool to support planning the future of coastal Louisiana. J. Coast. Res. 67:147–61
    [Google Scholar]
  44. Haasnoot M, Kwakkel JH, Walker WE, ter Maat J 2013. Dynamic adaptive policy pathways: a method for crafting robust decisions for a deeply uncertain world. Glob. Environ. Change 23:2485–98
    [Google Scholar]
  45. Haasnoot M, van Deursen WPA, Guillaume JHA, Kwakkel JH, van Beek E, Middelkoop H 2014. Fit for purpose? Building and evaluating a fast, integrated model for exploring water policy pathways. Environ. Model. Softw. 60:99–120
    [Google Scholar]
  46. Hadjimichael A, Reed PM, Quinn JD 2020. Navigating deeply uncertain tradeoffs in harvested predator-prey systems. Complexity 2020:4170453
    [Google Scholar]
  47. Hekkert MP, Janssen MJ, Wesseling JH, Negro SO 2020. Mission-oriented innovation systems. Environ. Innov. Soc. Transit. 34:76–79
    [Google Scholar]
  48. Held IM. 2005. The gap between simulation and understanding in climate modeling. Bull. Am. Meteorol. Soc. 86:111609–14
    [Google Scholar]
  49. Helgeson C, Srikrishnan V, Keller K, Tuana N 2021. Why simpler computer simulation models can be epistemically better for informing decisions. Philos. Sci. 88:2): In press
    [Google Scholar]
  50. Herman JD, Reed PM, Zeff HB, Characklis GW 2015. How should robustness be defined for water systems planning under change. ? J. Water Resour. Plan. Manag. 141:1004015012
    [Google Scholar]
  51. Hilaire J, Minx JC, Callaghan MW, Edmonds J, Luderer G et al. 2019. Negative emissions and international climate goals—learning from and about mitigation scenarios. Climat. Change 157:2189–219
    [Google Scholar]
  52. Hinkel J, Lincke D, Vafeidis AT, Perrette M, Nicholls RJ et al. 2014. Coastal flood damage and adaptation costs under 21st century sea-level rise. PNAS 111:93292–97
    [Google Scholar]
  53. Ho E, Budescu DV, Bosetti V, van Vuuren DP, Keller K 2019. Not all carbon dioxide emission scenarios are equally likely: a subjective expert assessment. Climat. Change 155:4545–61
    [Google Scholar]
  54. Hoerling M, Eischeid J, Perlwitz J, Quan X, Zhang T, Pegion P 2012. On the increased frequency of Mediterranean drought. J. Clim. 25:62146–61
    [Google Scholar]
  55. Holz C, Siegel LS, Johnston E, Jones AP, Sterman J 2018. Ratcheting ambition to limit warming to 1.5°C–trade-offs between emission reductions and carbon dioxide removal. Environ. Res. Lett. 13:6064028
    [Google Scholar]
  56. Howard RA, Matheson JE. 2005. Influence diagrams. Decis. Anal. 2:3127–43
    [Google Scholar]
  57. Hultman NE, Hassenzahl DM, Rayner S 2010. Climate risk. Annu. Rev. Environ. Resour. 35:283–303
    [Google Scholar]
  58. Huntingford C, Lowe JA, Booth BB, Jones CD, Harris GR et al. 2009. Contributions of carbon cycle uncertainty to future climate projection spread. Tellus B 61:2355–60
    [Google Scholar]
  59. IPCC (Intergov. Panel Clim. Change) 2013. Summary for policy makers. Climate Change 2013: The Physical Science Basis TF Stocker, D Qin, G-K Plattner, M Tignor, SK Allen, et al 3–29 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  60. IPCC (Intergov. Panel Clim. Change) 2018. Summary for policymakers. Global Warming of 1.5°C V Masson-Delmotte, P Zhai, HO Pörtner, D Roberts, J Skea, et al 3–24 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  61. Johnson DR. 2019. Integrated risk assessment and management methods are necessary for effective implementation of natural hazards policy. Risk Anal 2019. https://doi.org/10.1111/risa.13268
    [Crossref] [Google Scholar]
  62. Jonkman SN, Maaskant B, Boyd E, Levitan ML 2009. Loss of life caused by the flooding of New Orleans after Hurricane Katrina: analysis of the relationship between flood characteristics and mortality. Risk Anal 29:5676–98
    [Google Scholar]
  63. Kasprzyk JR, Nataraj S, Reed PM, Lempert RJ 2013. Many objective robust decision making for complex environmental systems undergoing change. Environ. Model. Softw. 42:55–71
    [Google Scholar]
  64. Kates RW, Travis WR, Wilbanks TJ 2012. Transformational adaptation when incremental adaptations to climate change are insufficient. PNAS 109:197156–61
    [Google Scholar]
  65. Keeney RL. 1992. Value-Focused Thinking: A Path to Creative Decision Making Cambridge, MA: Harvard Univ. Press
    [Google Scholar]
  66. Keller K, Robinson A, Bradford DF, Oppenheimer M 2007. The regrets of procrastination in climate policy. Environ. Res. Lett. 2:2024004
    [Google Scholar]
  67. Kopp RE, Gilmore EA, Little CM, Lorenzo‐Trueba J, Ramenzoni VC, Sweet WV 2019. Usable science for managing the risks of sea‐level rise. Earth's Future 7:121235–69
    [Google Scholar]
  68. Kravitz B, Rasch PJ, Wang H, Robock A, Gabriel C et al. 2018. The climate effects of increasing ocean albedo: an idealized representation of solar geoengineering. Atmos. Chem. Phys. 18:1713097–113
    [Google Scholar]
  69. Kreibich H, Thieken AH. 2008. Coping with floods in the city of Dresden, Germany. Nat. Hazards 51:3423
    [Google Scholar]
  70. Kreibich H, Thieken AH, Petrow T, Müller M, Merz B 2005. Flood loss reduction of private households due to building precautionary measures—lessons learned from the Elbe flood in August 2002. Nat. Hazards Earth Syst. Sci. 5:1117–26
    [Google Scholar]
  71. Krueger T, Page T, Hubacek K, Smith L, Hiscock K 2012. The role of expert opinion in environmental modelling. Environ. Model. Softw. 36:4–18
    [Google Scholar]
  72. Kunreuther H, Heal G, Allen M, Edenhofer O, Field CB, Yohe G 2013. Risk management and climate change. Nat. Clim. Change 3:5447–50
    [Google Scholar]
  73. Kwakkel JH, Walker WE, Haasnoot M 2016. Coping with the wickedness of public policy problems: approaches for decision making under deep uncertainty. J. Water Resour. Plan. Manag. 142:301816001
    [Google Scholar]
  74. Lackner KS. 2013. The thermodynamics of direct air capture of carbon dioxide. Energy 50:38–46
    [Google Scholar]
  75. Lal R. 2008. Carbon sequestration. Philos. Trans. R. Soc. B 363:1492815–30
    [Google Scholar]
  76. Lamontagne JR, Reed PM, Marangoni G, Keller K, Garner GG 2019. Robust abatement pathways to tolerable climate futures require immediate global action. Nat. Clim. Change 9:4290–94
    [Google Scholar]
  77. Lark J. 2015. ISO 31000: Risk Management: A Practical Guide for SMEs Geneva: Intern. Organ. Stand.
    [Google Scholar]
  78. Lee BS, Haran M, Fuller R, Pollard D, Keller K 2020. A fast particle-based approach for calibrating a 3-D model of the Antarctic ice sheet. Ann. Appl. Stat. 14:2605–34
    [Google Scholar]
  79. Lempert RJ. 2002. A new decision sciences for complex systems. PNAS 99:Suppl. 37309–13
    [Google Scholar]
  80. Lempert RJ. 2014. Embedding (some) benefit-cost concepts into decision support processes with deep uncertainty. J. Benefit-Cost Anal. 5:3487–514
    [Google Scholar]
  81. Lempert RJ, Popper SW, Bankes SC 2003. Shaping the Next One Hundred Years: New Methods for Quantitative, Long-Term Policy Analysis Santa Monica, CA: RAND
    [Google Scholar]
  82. Lempert RJ, Turner S. 2020. Engaging multiple worldviews with quantitative decision support: a robust decision‐making demonstration using the lake model. Risk Anal 2020. https://doi.org/10.1111/risa.13579
    [Crossref] [Google Scholar]
  83. Levermann A, Clark PU, Marzeion B, Milne GA, Pollard D et al. 2013. The multimillennial sea-level commitment of global warming. PNAS 110:3413745–50
    [Google Scholar]
  84. Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A et al. 2010. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecol. Manag. 259:4698–709
    [Google Scholar]
  85. Matthews HD, Caldeira K. 2007. Transient climate-carbon simulations of planetary geoengineering. PNAS 104:249949–54
    [Google Scholar]
  86. Matthews HD, Graham TL, Keverian S, Lamontagne C, Seto D, Smith TJ 2014. National contributions to observed global warming. Environ. Res. Lett. 9:1014010
    [Google Scholar]
  87. Matthews HD, Weaver AJ. 2010. Committed climate warming. Nat. Geosci. 3:142–43
    [Google Scholar]
  88. Matthies M, Giupponi C, Ostendorf B 2007. Environmental decision support systems: current issues, methods and tools. Environ. Model. Softw. 22:2123–27
    [Google Scholar]
  89. Mayer LA, Loa K, Cwik B, Tuana N, Keller K et al. 2017. Understanding scientists’ computational modeling decisions about climate risk management strategies using values-informed mental models. Glob. Environ. Change 42:107–16
    [Google Scholar]
  90. McDaniels TL, Gregory R. 2004. Learning as an objective within a structured risk management decision process. Environ. Sci. Technol. 38:71921–26
    [Google Scholar]
  91. McDaniels TL, Gregory RS, Fields D 1999. Democratizing risk management: successful public involvement in local water management decisions. Risk Anal 19:3497–510
    [Google Scholar]
  92. Moallemi EA, Zare F, Reed PM, Elsawah S, Ryan MJ, Bryan BA 2019. Structuring and evaluating decision support processes to enhance the robustness of complex human–natural systems. Environ. Model. Softw. 123:104551
    [Google Scholar]
  93. Moftakhari HR, Salvadori G, AghaKouchak A, Sanders BF, Matthew RA 2017. Compounding effects of sea level rise and fluvial flooding. PNAS 114:379785–90
    [Google Scholar]
  94. Moore JC, Grinsted A, Guo X, Yu X, Jevrejeva S et al. 2015. Atlantic hurricane surge response to geoengineering. PNAS 112:4513794–99
    [Google Scholar]
  95. Moreno-Cruz JB, Keith DW. 2013. Climate policy under uncertainty: a case for solar geoengineering. Climat. Change 121:3431–44
    [Google Scholar]
  96. Morgan MG. 2014. Use (and abuse) of expert elicitation in support of decision making for public policy. PNAS 111:207176–84
    [Google Scholar]
  97. Morgan MG. 2017. Theory and Practice in Policy Analysis: Including Applications in Science and Technology Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  98. Morgan MG, Fischhoff B, Bostrom A, Atman CJ 2002. Risk Communication: A Mental Models Approach Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  99. Moser SC, Jeffress Williams S, Boesch DF 2012. Wicked challenges at land's end: managing coastal vulnerability under climate change. Annu. Rev. Environ. Resour. 37:51–78
    [Google Scholar]
  100. Moss RH, Fisher-Vanden K, Delgado A, Backhaus S, Barrett CL et al. 2016. Understanding Dynamics and Resilience in Complex Interdependent Systems: Prospects for a Multi-Model Framework and Community of Practice Washington, DC: US Glob. Change Res. Program https://climatemodeling.science.energy.gov/sites/default/files/Multi-Model_Framework_WorkshopReport_Dec_2016_Final_web_0.pdf
    [Google Scholar]
  101. Muratori M, Calvin K, Wise M, Kyle P, Edmonds J 2016. Global economic consequences of deploying bioenergy with carbon capture and storage (BECCS). Environ. Res. Lett. 11:9095004
    [Google Scholar]
  102. Natl. Acad. Sci. Eng. Med 2005. Facilitating Interdisciplinary Research Washington, DC: Natl. Acad.
    [Google Scholar]
  103. Natl. Acad. Sci. Eng. Med 2019. Fostering the Culture of Convergence in Research Washington, DC: Natl. Acad.
    [Google Scholar]
  104. Natl. Res. Counc 1999. Making Climate Forecasts Matter Washington, DC: Natl. Acad.
    [Google Scholar]
  105. Natl. Res. Counc 2009. Informing Decisions in a Changing Climate Washington, DC: Natl. Acad.
    [Google Scholar]
  106. Natl. Res. Counc 2014. Convergence: Facilitating Transdisciplinary Integration of Life Sciences, Physical Sciences, Engineering, and Beyond Washington, DC: Natl. Acad.
    [Google Scholar]
  107. Nauels A, Rogelj J, Schleussner C-F, Meinshausen M, Mengel M 2017. Linking sea level rise and socioeconomic indicators under the Shared Socioeconomic Pathways. Environ. Res. Lett. 12:11114002
    [Google Scholar]
  108. Needham HF, Keim BD, Sathiaraj D 2015. A review of tropical cyclone-generated storm surges: global data sources, observations, and impacts. Rev. Geophys. 53:2545–91
    [Google Scholar]
  109. Nordén A, Coria J, Jönsson AM, Lagergren F, Lehsten V 2017. Divergence in stakeholders’ preferences: evidence from a choice experiment on forest landscapes preferences in Sweden. Ecol. Econ. 132:179–95
    [Google Scholar]
  110. Nordhaus WD. 1992. An optimal transition path for controlling greenhouse gases. Science 258:50861315–19
    [Google Scholar]
  111. Norström AV, Cvitanovic C, Löf MF, West S, Wyborn C et al. 2020. Principles for knowledge co-production in sustainability research. Nat. Sustain. 3:3182–90
    [Google Scholar]
  112. Oddo PC, Lee BS, Garner GG, Srikrishnan V, Reed PM et al. 2017. Deep uncertainties in sea-level rise and storm surge projections: implications for coastal flood risk management. Risk Anal 40:153–68
    [Google Scholar]
  113. Oppenheimer M, Campos M, Warren R, Birkmann J, Luber G et al. 2014. Emergent risks and key vulnerabilities. Climate Change 2014: Impacts, Adaptation and Vulnerability CB Field, VR Barros, DJ Dokken, KJ Mach, MD Mastrandrea, et al 1039–99 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  114. Oppenheimer M, O'Neill BC, Webster M 2008. Negative learning. Climat. Change 89:1155–72
    [Google Scholar]
  115. Otto J, Brown C, Buontempo C, Doblas-Reyes F, Jacob D et al. 2016. Uncertainty: lessons learned for climate services. Bull. Am. Meteorolog. Soc. 97:12ES265–69
    [Google Scholar]
  116. Phillipson J, Lowe P, Proctor A, Ruto E 2012. Stakeholder engagement and knowledge exchange in environmental research. J. Environ. Manag. 95:156–65
    [Google Scholar]
  117. Raymond C, Horton RM, Zscheischler J, Martius O, AghaKouchak A et al. 2020. Understanding and managing connected extreme events. Nat. Clim. Change 10:611–12
    [Google Scholar]
  118. Reed MS, Graves A, Dandy N, Posthumus H, Hubacek K et al. 2009. Who's in and why? A typology of stakeholder analysis methods for natural resource management. J. Environ. Manag. 90:51933–49
    [Google Scholar]
  119. Renn O. 1999. A model for an analytic-deliberative process in risk management. Environ. Sci. Technol. 33:183049–55
    [Google Scholar]
  120. Ricke KL, Caldeira K. 2014. Maximum warming occurs about one decade after a carbon dioxide emission. Environ. Res. Lett. 9:12124002
    [Google Scholar]
  121. Rittel HWJ, Webber MM. 1973. Dilemmas in a general theory of planning. Policy Sci 4:2155–69
    [Google Scholar]
  122. Robock A. 2020. Benefits and risks of stratospheric solar radiation management for climate intervention (geoengineering). Bridge 50:59–67
    [Google Scholar]
  123. Sakao T, Brambila-Macias SA. 2018. Do we share an understanding of transdisciplinarity in environmental sustainability research. ? J. Clean. Prod. 170:1399–403
    [Google Scholar]
  124. Saltelli A, Aleksankina K, Becker W, Fennell P, Ferretti F et al. 2019. Why so many published sensitivity analyses are false: a systematic review of sensitivity analysis practices. Environ. Model. Softw. 114:29–39
    [Google Scholar]
  125. Satterfield T, Gregory R, Klain S, Roberts M, Chan KM 2013. Culture, intangibles and metrics in environmental management. J. Environ. Manag. 117:103–14
    [Google Scholar]
  126. Schelfaut K, Pannemans B, van der Craats I, Krywkow J, Mysiak J, Cools J 2011. Bringing flood resilience into practice: the FREEMAN project. Environ. Sci. Policy 14:7825–33
    [Google Scholar]
  127. Schneider SH. 2002. Can we estimate the likelihood of climatic changes at 2100. ? Climat. Change 52:4441–51
    [Google Scholar]
  128. Schultz PA, Kasting JF. 1997. Optimal reductions in CO2 emissions. Energy Policy 25:5491–500
    [Google Scholar]
  129. Scolobig A. 2015. The dark side of risk and crisis communication: legal conflicts and responsibility allocation. Nat. Hazards Earth Syst. Sci. 15:61449–56
    [Google Scholar]
  130. Singh R. 2010. Delays and cost overruns in infrastructure projects: extent, causes and remedies. Econ. Political Wkly. 45:2143–54
    [Google Scholar]
  131. Singh R, Reed PM, Keller K 2015. Many-objective robust decision making for managing an ecosystem with a deeply uncertain threshold response. Ecol. Soc. 20:312
    [Google Scholar]
  132. Sippel S, Meinshausen N, Fischer EM, Székely E, Knutti R 2020. Climate change now detectable from any single day of weather at global scale. Nat. Clim. Change 10:135–41
    [Google Scholar]
  133. Slangen ABA, Church JA, Agosta C, Fettweis X, Marzeion B, Richter K 2016. Anthropogenic forcing dominates global mean sea-level rise since 1970. Nat. Clim. Change 6:7701–5
    [Google Scholar]
  134. Soc. Risk Anal 2018. Society for Risk Analysis Glossary McLean, VA: Soc. Risk Anal https://www.sra.org/wp-content/uploads/2020/04/SRA-Glossary-FINAL.pdf
    [Google Scholar]
  135. Srikrishnan V, Alley RB, Keller K 2019. Investing in science and using the results to improve climate risk management. EOS Aug. 16. https://eos.org/opinions/investing-in-science-to-improve-climate-risk-management
    [Google Scholar]
  136. Stock P, Burton RJF. 2011. Defining terms for integrated (multi-inter-trans-disciplinary) sustainability research. Sustainability 3:81090–113
    [Google Scholar]
  137. Stockes DE. 1997. Pasteur's Quadrant Washington, DC: Brookings Inst.
    [Google Scholar]
  138. Tadaki M, Sinner J, Chan KMA 2017. Making sense of environmental values: a typology of concepts. Ecol. Soc. 22:17
    [Google Scholar]
  139. Tebaldi C, Friedlingstein P. 2013. Delayed detection of climate mitigation benefits due to climate inertia and variability. PNAS 110:4317229–34
    [Google Scholar]
  140. Travis WR, Bates B. 2014. What is climate risk management. ? Clim. Risk Manag. 1:1–4
    [Google Scholar]
  141. Trisos CH, Amatulli G, Gurevitch J, Robock A, Xia L, Zambri B 2018. Potentially dangerous consequences for biodiversity of solar geoengineering implementation and termination. Nat. Ecol. Evol. 2:3475–82
    [Google Scholar]
  142. Tuana N. 2018. Understanding coupled ethical‐epistemic issues relevant to climate modeling and decision support science. Scientific Integrity and Ethics in the Geoscience LC Gundersen 157–74 Hoboken, NJ: Wiley
    [Google Scholar]
  143. Tuana N. 2020. Values-informed decision support: the place of philosophy. A Guide to Field Philosophy E Brister, R Frodeman 143–59 New York: Routledge
    [Google Scholar]
  144. US Glob. Change Res. Program 2018. Sector interactions, multiple stressors, and complex systems. Fourth national climate assessment. Vol. 2. Impacts, risks, and adaptation in the United States Rep., US Glob. Change Res. Program, US Gov. Publ. Off Washington, DC:638–68
    [Google Scholar]
  145. van Dantzig D. 1956. Economic decision problems for flood prevention. Econometrica 24:3276–87
    [Google Scholar]
  146. van den Brink HW, Konnen GP, Opsteegh JD 2005. Uncertainties in extreme surge level estimates from observational records. Philos. Trans. R. Soc. A 363:18311377–86
    [Google Scholar]
  147. van Ruijven BJ, De Cian E, Sue Wing I 2019. Amplification of future energy demand growth due to climate change. Nat. Commun. 10:12762
    [Google Scholar]
  148. Vaughan C, Dessai S, Hewitt C 2018. Surveying climate services: What can we learn from a bird's-eye view. ? Weather Clim. Soc. 10:2373–95
    [Google Scholar]
  149. Vega‐Westhoff B, Sriver RL, Hartin C, Wong TE, Keller K 2020. The role of climate sensitivity in upper‐tail sea level rise projections. Geophys. Res. Lett. 47:6e2019GL085792
    [Google Scholar]
  150. Vezér M, Bakker A, Keller K, Tuana N 2018. Epistemic and ethical trade-offs in decision analytical modelling. Climat. Change 147:11–10
    [Google Scholar]
  151. von Wehrden H, Guimarães MH, Bina O, Varanda M, Lang DJ et al. 2019. Interdisciplinary and transdisciplinary research: finding the common ground of multi-faceted concepts. Sustain. Sci. 14:3875–88
    [Google Scholar]
  152. Wahl T, Jain S, Bender J, Meyers SD, Luther ME 2015. Increasing risk of compound flooding from storm surge and rainfall for major US cities. Nat. Clim. Change 5:121093–97
    [Google Scholar]
  153. Walker WE, Haasnoot M, Kwakkel JH 2013. Adapt or perish: a review of planning approaches for adaptation under deep uncertainty. Sustainability 5:3955–79
    [Google Scholar]
  154. Wolf J, Alice I, Trevor B 2013. Values, climate change, and implications for adaptation: evidence from two communities in Labrador, Canada. Glob. Environ. Change 23:2548–62
    [Google Scholar]
  155. Wong TE. 2018. An integration and assessment of multiple covariates of nonstationary storm surge statistical behavior by Bayesian model averaging. Adv. Stat. Climatol. Meteorol. Oceanogr. 4:1/253–63
    [Google Scholar]
  156. Wong TE, Keller K. 2017. Deep uncertainty surrounding coastal flood risk projections: a case study for New Orleans. Earth's Future 5:101015–26
    [Google Scholar]
  157. Wong TE, Klufas A, Srikrishnan V, Keller K 2018. Neglecting model structural uncertainty underestimates upper tails of flood hazard. Environ. Res. Lett. 13:7074019
    [Google Scholar]
  158. Wong-Parodi G, Krishnamurti T, Davis A, Schwartz D, Fischhoff B 2016. A decision science approach for integrating social science in climate and energy solutions. Nat. Clim. Change 6:6563–69
    [Google Scholar]
  159. Work PA, Rogers SM, Osborne R 1999. Flood retrofit of coastal residential structures: Outer Banks, North Carolina. J. Water Resour. Plan. Manag. 125:288–93
    [Google Scholar]
  160. Xian S, Lin N, Kunreuther H 2017. Optimal house elevation for reducing flood-related losses. J. Hydrol. 548:63–74
    [Google Scholar]
  161. Zickfeld K, Morgan MG, Frame DJ, Keith DW 2010. Expert judgments about transient climate response to alternative future trajectories of radiative forcing. PNAS 107:2812451–56
    [Google Scholar]
  162. Zscheischler J, Westra S, van den Hurk BJJM, Seneviratne SI, Ward PJ et al. 2018. Future climate risk from compound events. Nat. Clim. Change 8:6469–77
    [Google Scholar]
/content/journals/10.1146/annurev-earth-080320-055847
Loading
/content/journals/10.1146/annurev-earth-080320-055847
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error