1932

Abstract

The Grand Canyon provides a deeply dissected view of the aquifers of the Colorado Plateau and its public and tribal lands. Stacked sandstone and karst aquifers are vertically connected by a network of faults and breccia pipes creating a complex groundwater network. Hydrochemical variations define structurally controlled groundwater sub-basins, each with main discharging springs. North Rim (N-Rim), South Rim (S-Rim), and far-west springs have different stable isotope fingerprints, reflecting different mean recharge elevations. Variation within each region reflects proportions of fast/slow aquifer pathways. Often considered perched, the upper Coconino (C) aquifer has a similar compositional range as the regional Redwall-Muav (R-M) karst aquifer, indicating connectivity. Natural and anthropogenic tracers show that recharge can travel 2 km vertically and tens of kilometers laterally in days to months via fracture conduits to mix with older karst baseflow. Six decades of piping N-Rim water to S-Rim Village and infiltration of effluent along the Bright Angel fault have sustained S-Rim groundwaters and likely induced S-Rim microseismicity. Sustainable groundwater management and uranium mining threats require better monitoring and application of hydrotectonic concepts.

  • ▪  Hydrotectonic concepts include distinct structural sub-basins, fault fast conduits, confined aquifers, karst aquifers, upwelling geothermal fluids, and induced seismicity.
  • ▪  N-Rim, S-Rim, and far-west springs have different stable isotope fingerprints reflecting different mean recharge elevations and residence times.
  • ▪  The upper C and lower R-M aquifers have overlapping stable isotope fingerprints in a given region, indicating vertical connectivity between aquifers.
  • ▪  S-Rim springs and groundwater wells are being sustained by ∼60 years of piping of N-Rim water to S-Rim, possibly inducing seismicity.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-080723-083513
2024-07-23
2024-10-10
Loading full text...

Full text loading...

/deliver/fulltext/earth/52/1/annurev-earth-080723-083513.html?itemId=/content/journals/10.1146/annurev-earth-080723-083513&mimeType=html&fmt=ahah

Literature Cited

  1. Bane L, Kruse A. 2021.. Keeping tabs on Canyon uranium mine. Rep. , Grand Canyon Trust, Flagstaff, AZ:
    [Google Scholar]
  2. Beisner KR, Davidson C, Tillman F. 2023a.. Anthropogenic influence on groundwater geochemistry in Horn Creek Watershed near the Orphan Mine in Grand Canyon National Park, Arizona, USA. . Geochem. Explor. Environ. Anal. 23:(3):geochem2023-007
    [Crossref] [Google Scholar]
  3. Beisner KR, Paretti NV, Jasmann JR, Barbar LB. 2023b.. Utilizing anthropogenic compounds and geochemical tracers to identify preferential structurally controlled groundwater pathways influencing springs in Grand Canyon National Park, Arizona, USA. . J. Hydrol. 48::101461
    [Google Scholar]
  4. Beisner KR, Solder JE, Tillman FD, Anderson JR, Antweiler RC. 2020.. Geochemical characterization of groundwater evolution south of Grand Canyon, Arizona (USA). . Hydrogeol. J. 28:(5):161533
    [Crossref] [Google Scholar]
  5. Beisner KR, Tillman FD, Anderson JR, Antweiler RC, Bills DJ. 2017.. Geochemical characterization of groundwater discharging from springs north of the Grand Canyon, Arizona, 2009–2016. Sci. Invest. Rep. 2017-5068 , US Geol. Surv., Reston, VA:. https://doi.org/10.3133/sir20175068
    [Google Scholar]
  6. Belitz K, Fram MS, Lindsey BD, Stackelberg PE, Bexfield LM, et al. 2022.. Quality of groundwater used for public supply in the continental United States: a comprehensive assessment. . ACS ES&T Water 2:(12):264556
    [Crossref] [Google Scholar]
  7. Billingsley GH, Block DL, Dyer HC. 2006a.. Geologic Map of the Peach Springs 30′ × 60′ Quadrangle, Mohave and Coconino Counties, Northwestern Arizona. US Geol. Surv. Map SIM 2900
    [Google Scholar]
  8. Billingsley GH, Felger TJ, Priest SS. 2006b.. Geologic map of the Valle 30′ × 60′ quadrangle, Coconino County, northern Arizona. US Geol. Surv. Map SIM 2895
    [Google Scholar]
  9. Billingsley GH, Hampton HM. 2000.. Geologic map of the Grand Canyon 30′ × 60′ quadrangle, Coconino and Mohave Counties, northwestern Arizona. US Geol. Surv. Map I-2688
    [Google Scholar]
  10. Billingsley GH, Priest SS. 2013.. Geologic map of the Glen Canyon Dam 30′ × 60′ quadrangle, Coconino County, northern Arizona. US Geol. Surv. Map SIM 3268
    [Google Scholar]
  11. Billingsley GH, Priest SS, Felger TJ. 2007.. Geologic map of the Cameron 30′ × 60′ quadrangle, Coconino County, northern Arizona. US Geol. Surv. Map SIM 2977
    [Google Scholar]
  12. Billingsley GH, Priest SS, Felger TJ. 2008.. Geologic map of the Fredonia 30′ × 60′ quadrangle, Mohave and Coconino Counties, northwestern Arizona. US Geol. Surv. Map SIM 3035
    [Google Scholar]
  13. Billingsley GH, Stoffer PW, Priest SS. 2013.. Geologic map of the Tuba City 30′ × 60′ quadrangle, Coconino County, northern Arizona. US Geol. Surv. Map SIM 3227
    [Google Scholar]
  14. Billingsley GH, Wellmeyer JL. 2003.. Geologic map of the Mount Trumbull 30′ × 60′ quadrangle, Mohave and Coconino Counties, northwestern Arizona, version 1.2. US Geol. Surv. Map I-2766
    [Google Scholar]
  15. Billingsley GH, Workman JB. 2000.. Geologic map of the Littlefield 30′ × 60′ quadrangle, Mohave County, northwestern Arizona. US Geol. Surv. Map I-2628
    [Google Scholar]
  16. Bills DJ, Flynn ME, Monroe SA. 2007.. Hydrogeology of the Coconino Plateau and adjacent areas, Coconino and Yavapai Counties, Arizona. Sci. Invest. Rep. 2005-5222 , US Geol. Surv., Reston, VA:. https://doi.org/10.3133/sir20055222
    [Google Scholar]
  17. Bills DJ, Truini M, Flynn ME, Pierce HA, Catchings RD, Rymer MJ. 2000.. Hydrogeology of the regional aquifer near Flagstaff, Arizona, 1994–97. Water-Res. Invest. Rep. 2000-4122 , US Geol. Surv., Tucson, AZ:. https://doi.org/10.3133/wri004122
    [Google Scholar]
  18. Brown C. 2011.. Physical, geochemical, and isotopic analyses of Redwall-Aquifer springs, North Rim, Grand Canyon, Arizona. MSc Thesis , North. Ariz. Univ., Flagstaff:
    [Google Scholar]
  19. Brumbaugh DS. 2005.. Active faulting and seismicity in a prefractured terrane: Grand Canyon, Arizona. . Bull. Seismol. Soc. Am. 95:(4):156166
    [Crossref] [Google Scholar]
  20. Brumbaugh DS. 2019.. Seismotectonics of the Grand Wash Arizona area. . Bull. Seismol. Soc. Am. 109:(6):227787
    [Crossref] [Google Scholar]
  21. Brumbaugh DS. 2008.. Seismicity and active faulting of the Kanab-Fredonia area of the southern Colorado Plateau. . J. Geophys. Res. 113:(B5):B05309
    [Crossref] [Google Scholar]
  22. Brumbaugh DS, Hodge BE, Linville L, Cohen A. 2014.. Analysis of the 2009 earthquake swarm near Sunset Crater volcano, Arizona. . J. Volcanol. Geotherm. Res. 285::1828
    [Crossref] [Google Scholar]
  23. Chambless HE, Springer AE, Evans M, Jones N. 2023.. Deep-karst aquifer spring flow trends in a water limited system, Grand Canyon National Park. . Hydrogeol. J. 31:(7):175571
    [Crossref] [Google Scholar]
  24. Colman DR, Garcia JR, Crossey L, Karlstrom KE, Jackson-Weaver O, Takacs-Vesbach T. 2014.. An analysis of geothermal and carbonic springs in the western United States sustained by deep fluid inputs. . Geobiology 12::8398
    [Crossref] [Google Scholar]
  25. Cooley ME, Harshbarger JW, Akers JP, Hardt WF. 1969.. Regional hydrogeology of the Navajo and Hopi Indian reservations, Arizona, New Mexico, and Utah. Prof. Pap. 521-A:1-61 , US Geol. Surv., Washington, DC:
    [Google Scholar]
  26. Craig H. 1961.. Isotopic variations in meteoric waters. . Am. Assoc. Adv. Sci. 133::17023
    [Google Scholar]
  27. Crossey LJ, Karlstrom KE. 2012.. Travertines and travertine springs in eastern Grand Canyon: What they tell us about groundwater, paleoclimate, and incision of Grand Canyon. . In Grand Canyon Geology: Two Billion Years of Earth's History, ed. JM Timmons, KE Karlstrom , pp. 13143. Boulder, CO:: Geol. Soc. Am.
    [Google Scholar]
  28. Crossey LJ, Fischer TB, Patchett PJ, Karlstrom KE, Hilton DR, et al. 2006.. Dissected hydrologic system at the Grand Canyon: interaction between deeply derived fluids and plateau aquifer waters in modern springs and travertine. . Geology 34::2528
    [Crossref] [Google Scholar]
  29. Crossey LJ, Karlstrom KE, Schmandt B, Crow RR, Colman DR, et al. 2016.. Continental smokers couple mantle degassing and distinctive microbiology within continents. . Earth Planet. Sci. Lett. 435::2230
    [Crossref] [Google Scholar]
  30. Crossey LJ, Karlstrom KE, Springer AE, Newell D, Hilton DR, Fischer T. 2009.. Degassing of mantle-derived CO2 and He from springs in the southern Colorado Plateau region—neotectonic connections and implications for groundwater systems. . Geol. Soc. Am. Bull. 121:(7–8):103453
    [Crossref] [Google Scholar]
  31. Crow R, Karlstrom KE, Darling A, Crossey LJ, Polyak V, et al. 2014.. Steady incision of Grand Canyon at the million year timeframe: a case for mantle-driven differential uplift. . Earth Planet. Sci. Lett. 397::15973
    [Crossref] [Google Scholar]
  32. Curry BH, Crossey LJ, Karlstrom KE. 2023.. The Grand Canyon National Park (USA) water corridor: water supply, water quality, and recharge along the Bright Angel Fault. . Hydrogeol. J. 31::177394
    [Crossref] [Google Scholar]
  33. Doelling HH, Blackett RE, Hamblin AH, Powell D, Pollock GL. 2000.. Geology of Grand Staircase-Escalante National Monument, Utah. . Utah Geol. Assoc. 28::143
    [Google Scholar]
  34. Earthq. Hazards Program. 2023.. National Earthquake Information Center. . U.S. Geological Survey. https://www.usgs.gov/programs/earthquake-hazards/national-earthquake-information-center-neic
    [Google Scholar]
  35. Errol L. Montgomery & Assoc. 1999.. Supplemental assessment of hydrogeologic conditions and potential effects of proposed groundwater withdrawal Coconino Plateau Groundwater Subbasin, Coconino County, Arizona. Rep. , US Dept. Agric., Scottsdale, AZ:
    [Google Scholar]
  36. Faulkner DR, Jackson CAL, Lunn RJ, Schlische RW, Shipton ZK, et al. 2010.. A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. . J. Struct. Geol. 32:(11):155775
    [Crossref] [Google Scholar]
  37. Fitzgerald J. 1996.. Subsurface residence time and geochemical evolution of spring waters issuing from the South Rim Aquifer in the Eastern Grand Canyon Arizona. MSc Thesis , Univ. Nevada, Las Vegas:
    [Google Scholar]
  38. Glasgow M, Schmandt B, Wang R, Zhang M, Bilek SL, Kiser E. 2021.. Raton Basin induced seismicity is hosted by networks of short basement faults and mimics tectonic earthquake statistics. . J. Geophys. Res. Solid Earth 126:(11):e2021JB022839
    [Crossref] [Google Scholar]
  39. Grand Canyon Natl. Park. 2023.. Grand Canyon National Park announces Transcanyon Waterline construction-related closures. News Release, Sept. 18. https://www.nps.gov/grca/learn/news/announcement-of-tcwl-construction-closures-september-2023.htm
    [Google Scholar]
  40. Grand Canyon Trust. 2023.. Water. . Grand Canyon Trust. https://www.grandcanyontrust.org/waters
    [Google Scholar]
  41. Han LF, Plummer LN. 2013.. Revision of Fontes & Garnier's model for the initial 14C content of dissolved inorganic carbon used in groundwater dating. . Chem. Geo. 351::10514
    [Crossref] [Google Scholar]
  42. Hudak PF. 2000.. Principles of Hydrogeology. Boca Raton, FL:: Lewis. , 2nd ed..
    [Google Scholar]
  43. Huntoon PW. 1968.. Hydrology of the Tapeats Amphitheater and Deer Basin, Grand Canyon, Arizona. MS Thesis , Univ. Ariz., Tucson:
    [Google Scholar]
  44. Huntoon PW. 1970.. The hydromechanics of the groundwater system in the southern portion of the Kaibab Plateau, AZ. PhD Diss. , Univ. Ariz., Tucson:
    [Google Scholar]
  45. Huntoon PW. 1974.. The karstic groundwater basin of the Kaibab plateau, Arizona. . Water Resour. Res. 10::57990
    [Crossref] [Google Scholar]
  46. Huntoon PW. 1981.. Fault controlled ground-water circulation under the Colorado River, Marble Canyon, Arizona. . Groundwater 19:(1):2027
    [Crossref] [Google Scholar]
  47. Huntoon PW. 1982.. The Ground Water Systems That Drain to the Grand Canyon of Arizona. Laramie:: Univ. Wyo.
    [Google Scholar]
  48. Huntoon PW. 1996.. Large basin ground water circulation and Paleo-reconstruction of circulation leading to uranium mineralization in Grand Canyon breccia pipes, Arizona. . Mt. Geol. 33::7184
    [Google Scholar]
  49. Huntoon PW. 2000.. Variability of karstic permeability between unconfined and confined aquifers, Grand Canyon region Arizona. . Environ. Eng. Sci. 6:(2):15570
    [Google Scholar]
  50. Ingraham N, Zukosky KA, Kreamer DK. 2001.. The application of stable isotopes to identify problems in large-scale water transfer in Grand Canyon National Park. . Environ. Sci. Technol. 35:(7):1299302
    [Crossref] [Google Scholar]
  51. Johnson PW, Sanderson RB. 1968.. Spring flow into the Colorado River, Lees Ferry to Lake Mead, Arizona. Rep. 34 , Ariz. State Land Dept. Water Resour., Phoenix:
    [Google Scholar]
  52. Jones CJR, Springer AE, Tobin BW, Zappitello SJ, Jones NA. 2018.. Characterization and hydraulic behavior of the complex karst of the Kaibab Plateau and Grand Canyon National Park, USA. . Geol. Soc. Lond. Spec. Publ. 466::23760
    [Crossref] [Google Scholar]
  53. Jones NA, Hansen J, Springer AE, Valle C, Tobin BW. 2019.. Modeling intrinsic vulnerability of complex karst aquifers: modifying the COP method to account for sinkhole density and fault location. . Hydrogeol. J. 27:(8):285768
    [Crossref] [Google Scholar]
  54. Karlstrom KE, Crossey LJ. 2023.. Our common geoheritage: the first 100 international geoheritage sites from the Basque Coast to Grand Canyon. . Boatman's Q. Rev. 36::46
    [Google Scholar]
  55. Karlstrom KE, Lee J, Kelley S, Crow R, Crossey LJ, et al. 2014.. Formation of the Grand Canyon 5 to 6 million years ago through integration of older palaeocanyons. . Nat. Geosci. 7::23944
    [Crossref] [Google Scholar]
  56. Keppel MN, Karlstrom KE, Crossey L, Love AJ, Priestley S. 2019.. Evidence for intra-plate seismicity from spring-carbonate mound springs in the Kati Thanda–Lake Eyre region, South Australia: implications for groundwater discharge from the Great Artesian Basin. . Hydrogeol. J. 28:(1):297311
    [Crossref] [Google Scholar]
  57. Kessler JA. 2002.. Grand Canyon springs and the Redwall-Muav aquifer—comparison of geologic framework and groundwater flow models. MS Thesis , North. Ariz. Univ., Flagstaff:
    [Google Scholar]
  58. Klemperer SL, Ping Z, Whyte CJ, Darrah TH, Crossey LJ, et al. 2022.. Limited underthrusting of India below Tibet: 3He/4He analysis of thermal springs locates the mantle suture in continental collision. . PNAS 119:(12):e2113877119
    [Crossref] [Google Scholar]
  59. Knight J, Huntoon PW. 2022.. Conceptual models of groundwater flow in the Grand Canyon region, Arizona. Sci. Investig. Rep. 2022-5037 , US Geol. Surv., Reston, VA:. https://doi.org/10.3133/sir20225037
    [Google Scholar]
  60. Kreamer DK, Springer AE. 2008.. The hydrology of desert springs in North America. . In Aridland Springs in North America, Ecology and Conservation, ed. LE Stevens, VJ Meretsky , pp. 3548. Tucson:: Univ. Ariz. Press
    [Google Scholar]
  61. Kreamer DK, Stevens LE, Ledbetter JD. 2015.. Groundwater dependent ecosystems: policy challenges and technical solutions. . In Groundwater: Hydrochemistry, Environmental Impacts, and Management Practices, ed. SE Adelana , pp. 20530. Hauppauge, NY:: Nova
    [Google Scholar]
  62. Kreemer C, Blewitt G, Bennett RA. 2010a.. Present-day motion and deformation of the Colorado Plateau. . Geophys. Res. Lett. 37:(10):L10311
    [Crossref] [Google Scholar]
  63. Kreemer C, Blewitt G, Hammond WC. 2010b.. Evidence for an active shear zone in southern Nevada linking the Wasatch fault to the Eastern California shear zone. . Geology 38:(5):47578
    [Crossref] [Google Scholar]
  64. Lachniet MS, Du X, Dee SG, Asmerom Y, Polyak VJ, Tobin BW. 2023.. Elevated Grand Canyon groundwater recharge during the warm Early Holocene. . Nat. Geosci. 16::91521
    [Crossref] [Google Scholar]
  65. Lattimore GM, Carden RS, Fischer T. 1987.. Grand Canyon directional drilling and waterline project. Paper presented at the SPE/IADC Drilling Conference, New Orleans, LA:, March 15–18. https://doi.org/10.2118/16169-MS
    [Google Scholar]
  66. Lay T, Ritsema J, Ammon CJ, Wallace T. 1994.. Rapid source-mechanism analysis of the April 29, 1993 Cataract Creek (Mw = 5.3), northern Arizona earthquake. . Bull. Seismol. Soc. Am. 84:(2):45157
    [Google Scholar]
  67. Liebe D. 2003.. The use of the234U/238U activity ratio for the characterization of springs and surface streams in Grand Canyon National Park, Arizona. MSc Thesis , Hochsch. Tech. Wirtsch., Dresden, Ger.:
    [Google Scholar]
  68. Lockridge JS, Fouch MJ, Arrowsmith JR. 2012.. Seismicity within Arizona during the deployment of the EarthScope USArray Transportable Array. . Bull. Seismol. Soc. Am. 102:(4):185063
    [Crossref] [Google Scholar]
  69. Loughlin WD, Huntoon PW. 1983.. Compilation of available ground water quality data for sources within the Grand Canyon of Arizona. Rep. PX821020883 , US Natl. Park Serv., Grand Canyon, AZ:
    [Google Scholar]
  70. Mason JP, Kennedy JR, Macy JP, Gungle B. 2023.. Hydrologic framework and characterization of the Little Colorado River alluvial aquifer near Leupp, Arizona. Sci. Invest. Rep. 2023-5052 , US Geol. Surv., Reston, VA:
    [Google Scholar]
  71. Maxon JH. 1968.. Geologic Map of the Bright Angel Quadrangle, Grand Canyon National Park, Arizona. Grand Canyon, AZ:: Grand Canyon Nat. Hist. Assoc.
    [Google Scholar]
  72. McGibbon C, Crossey LJ, Karlstrom KE. 2022.. Fence springs system of Grand Canyon: insight into the karst aquifer system of the Colorado Plateau Region. . Hydrogeol. J. 30:(8):237998
    [Crossref] [Google Scholar]
  73. McKee ED. 1969.. Stratified rocks of the Grand Canyon. . In The Colorado River Region and John Wesley Powell, pp. 2358. Washington, DC:: US Geol. Surv.
    [Google Scholar]
  74. Melis TS, Phillips WM, Webb RH, Bills DJ. 1996.. When the blue-green waters turn red: historical flooding in Havasu Creek, AZ. Sci. Invest. Rep. 96—4059 , US Geol. Surv., Tucson, AZ:
    [Google Scholar]
  75. Metzger DG. 1961.. Geology in relation to water availability along the South Rim Grand Canyon National Park Arizona. Water-Supply Pap. 1475-c , US Geol. Surv., Washington, DC:
    [Google Scholar]
  76. Miller MP, Buto SG, Susong DD, Rumsey CA. 2016.. The importance of base flow in sustaining surface water flow in the Upper Colorado River Basin. . Water Resour. Res. 52::354762
    [Crossref] [Google Scholar]
  77. Miller MP, Stevens LE, Busch JD, Sorensen JA, Keim P. 2000.. Amplified fragment length polymorphism and mitochondrial sequence data detect genetic differentiation and relationships in endangered southwestern USA ambersnails (Oxyloma spp.). . Can. J. Zool. 78:(10):184554
    [Crossref] [Google Scholar]
  78. Mohammed AM, Crossey LJ, Karlstrom KE, Krishnamurthy RV, Kehew AE, et al. 2022.. Mantle-derived fluids in the continental-scale Nubian aquifer. . Chem. Geol. 608::121023
    [Crossref] [Google Scholar]
  79. Monroe SA, Antweiler RC, Hart RJ, Taylor HE, Truini M, et al. 2005.. Chemical characteristics of ground-water discharge at selected springs, South Rim Grand Canyon, Arizona. Sci. Invest. Rep. 2004-5146 , US Geol. Surv., Reston, VA:
    [Google Scholar]
  80. Natl. Park Serv. 1995.. Trans-Canyon water pipeline, Rep. HAER AZ-95 , Natl. Park Serv., Denver, CO:. https://memory.loc.gov/master/pnp/habshaer/az/az0600/az0661/data/az0661data.pdf
    [Google Scholar]
  81. Ordens CM, McIntye N, Underschulltz JR, Ransley T, Moore C, Mallants D. 2020.. Preface: advances in hydrogeologic understanding of Australia's Great Artesian Basin. . Hydrogeol. J. 28::111
    [Crossref] [Google Scholar]
  82. Parkhurst D. 1995.. Users Guide to PHREEQC: A Computer Program for Speciation, Reaction-Path, Advective-Transport, and Inverse Geochemical Calculations. Reason, VA:: US Geol. Surv.
    [Google Scholar]
  83. Piper AM. 1944.. A graphic procedure in the geochemical interpretation of water-analyses. . Eos Trans. Am. Geophys. Union 25::91428
    [Crossref] [Google Scholar]
  84. Polyak VJ, Hill CA, Asmerom Y, Decker DD. 2017.. A conceptual model for hypogene speleogenesis in Grand Canyon, Arizona. . In Hypogene Karst Regions and Caves of the World, ed. A Klimchouk, AN Palmer, J De Waele, AS Auler, P Audra , pp. 55564. Cham, Switz:.: Springer
    [Google Scholar]
  85. Porter R, Reid M. 2021.. Mapping the thermal lithosphere and melting across the continental US. . Geophys. Res. Lett. 48:(7):e2020GL092197
    [Crossref] [Google Scholar]
  86. Reimondo A. 2020.. Canyon Mine: why no uranium mine is “safe” for the Grand Canyon. Rep. , Grand Canyon Trust, Flagstaff, AZ:
    [Google Scholar]
  87. Ross LE. 2005.. Interpretive three-dimensional numerical groundwater flow modeling: Roaring Springs, Grand Canyon. MSc Thesis , North. Ariz. Univ., Flagstaff:
    [Google Scholar]
  88. Rumsey CA, Miller MP, Schwarz GE, Hirsch RM, Susong DD. 2017.. The role of baseflow in dissolved solids delivery to streams in the Upper Colorado River Basin. . Hydrol. Process. 31::470518
    [Crossref] [Google Scholar]
  89. Schindel GM. 2015.. Determining groundwater residence times of the Kaibab plateau, R-Aquifer using temperature, Grand Canyon National Park, Arizona. MSc Thesis , North. Ariz. Univ., Flagstaff:
    [Google Scholar]
  90. Sharp Z. 2017.. Principles of Stable Isotope Geochemistry. Upper Saddle River, NJ:: Pearson. , 2nd ed..
    [Google Scholar]
  91. Solder JE, Beisner KR. 2020.. Critical evaluation of stable isotope mixing end-members for estimating groundwater recharge sources: case study from the South Rim of the Grand Canyon, Arizona, USA. . Hydrogeol. J. 28::157591
    [Crossref] [Google Scholar]
  92. Solder JE, Beisner KR, Anderson J, Bills DJ. 2020.. Rethinking groundwater flow on the South Rim of the Grand Canyon, USA: characterizing recharge sources and flow paths with environmental tracers. . Hydrogeol. J. 28::1593613
    [Crossref] [Google Scholar]
  93. Springer AE, Schaller EM, Junghans KM. 2017.. Local versus regional groundwater flow from stable isotopes at western North America springs. . Groundwater 55:(1):1009
    [Crossref] [Google Scholar]
  94. Stegner W. 1992.. Beyond the Hundredth Meridian: John Wesley Powell and the Second Opening of the West. Lincoln:: Univ. Nebraska Press
    [Google Scholar]
  95. Stevens L, ed. 2023.. Springs of the World: Distribution, Ecology, and Conservation Status. Flagstaff, AZ:: Springs Steward. Inst.
    [Google Scholar]
  96. Swanson RK, Springer AE, Kreamer DK, Tobin BW, Perry DM. 2021.. Quantifying the base flow of the Colorado River: its importance in sustaining perennial flow in northern Arizona and southern Utah (USA). . Hydrogeol. J. 29::72336
    [Crossref] [Google Scholar]
  97. Talwani P, Chen L, Gahalaut K. 2007.. Seismogenic permeability, ks. . J. Geophys. Res. 112:(B7):B07309
    [Crossref] [Google Scholar]
  98. Tillman FD, Beisner KR, Anderson JR, Unema JA. 2021.. An assessment of uranium in groundwater in the Grand Canyon region. . Sci. Rep. 11::22157
    [Crossref] [Google Scholar]
  99. Tillman FD, Beisner KR, Jones CJR. 2023.. Arsenic in groundwater in the Grand Canyon region and an evaluation of potential pathways for arsenic contamination of groundwater from breccia pipe uranium mining. . PLOS Water 2:(6):e0000109
    [Crossref] [Google Scholar]
  100. Tillman FD, Gangopadhyay S, Pruitt T. 2020.. Recent and projected precipitation and temperature changes in the Grand Canyon area with implications for groundwater resources. . Sci. Rep. 10::19740
    [Crossref] [Google Scholar]
  101. Tobin BW, Springer AE, Ballensky J, Armstrong A. 2021.. Caves and karst of the Grand Canyon World Heritage Site. . Z. Geomorphol. 62:(Suppl. 3):12544
    [Crossref] [Google Scholar]
  102. Tobin BW, Springer AE, Kreamer DK, Schenk E. 2018.. Review: the distribution, flow, and quality of Grand Canyon Springs, Arizona (USA). . Hydrogeol. J. 26::72132
    [Crossref] [Google Scholar]
  103. Tilousi C, Hinck JE. 2024.. Expanded conceptual risk framework for uranium mining in Grand Canyon watershed—inclusion of the Havasupai Tribe perspective. . Rep. 2023-1092, US Geol. Surv., Reston, VA. https://doi.org/10.3133/ofr20231092
    [Google Scholar]
  104. USGS (US Geol. Surv.). 2018.. USGS National Hydrography Dataset Plus High Resolution (NHDPlus HR) for 4-digit Hydrologic Unit. National Hydrography Dataset Plus High Resolution (NHDPlus HR), US Geol. Surv:. https://www.sciencebase.gov/catalog/item/57645ff2e4b07657d19ba8e8
    [Google Scholar]
  105. USGS (US Geol. Surv.). 2020.. National Water Information System: Mapper. https://maps.waterdata.usgs.gov/mapper/index.html
    [Google Scholar]
  106. Weiss R. 1971.. Solubility of helium and neon in water and seawater. . J. Chem. Eng. Data 16::23541
    [Crossref] [Google Scholar]
  107. Wilgus JT, Brumbaugh DS. 2014.. Seismicity and tectonics of the West Kaibab Fault Zone, AZ. Presented at AGU Fall Meet., Dec. 15–19 , San Francisco, Abstr:. T13B-4641
    [Google Scholar]
  108. Williams-Grand Canyon News. 2001.. Peck discovers GC Caverns in 1927 on way to poker game. . Williams-Grand Canyon News, June 13, https://www.williamsnews.com/news/2001/jun/13/peck-discovers-gc-cavernsbrin-1927-on-way-to-poke/
    [Google Scholar]
  109. Wilson E. 2000.. Geologic framework and numerical groundwater models of the South Rim of the Grand Canyon, Arizona. MSc Thesis , North. Ariz. Univ., Flagstaff:
    [Google Scholar]
  110. Wilson JW, Erhardt AM, Tobin BW. 2022.. Isotopic and geochemical tracers of groundwater flow in the Shivwits Plateau, Grand Canyon National Park, USA. . Hydrogeol. J. 30:(2):495510
    [Crossref] [Google Scholar]
  111. Wood AJ, Springer AE, Tobin BW. 2020.. Geochemical variability in karst-siliciclastic aquifer spring discharge, Kaibab Plateau, Grand Canyon. . Environ. Eng. Geosci. 26:(3):36781
    [Crossref] [Google Scholar]
  112. Zukosky K. 1995.. An assessment of the potential to use water chemistry parameters to define ground water flow pathways at Grand Canyon National Park, Arizona. MS Thesis , Univ. Nevada, Las Vegas:
    [Google Scholar]
/content/journals/10.1146/annurev-earth-080723-083513
Loading
/content/journals/10.1146/annurev-earth-080723-083513
Loading

Data & Media loading...

Supplemental Materials

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error