1932

Abstract

Jupiter's Galilean satellite Io is one of the most remarkable objects in our Solar System. The tidal heating Io undergoes through its orbital resonance with Europa and Ganymede has resulted in a body rich in active silicate volcanism. Over the past decades, Io has been observed from ground-based and Earth-orbiting telescopes and by several spacecraft. In this review we summarize the progress made toward our understanding of the physical and chemical processes related to Io and its environment since the era. Io science has been revolutionized by the use of adaptive optics techniques on large, 8- to 10-m telescopes. The resultant ever-increasing database, mapping the size, style, and spatial distribution of Io's diverse volcanoes, has improved our understanding of Io's interior structure, its likely composition, and the tidal heating process. Additionally, new observations of Io's atmosphere obtained with these large optical/infrared telescopes and the Atacama Large Millimeter/submillimeter Array reveal the presence of volcanic plumes, the (at times) near-collapse of Io's atmosphere during eclipse, and the interactions of plumes with the sublimation atmosphere.

  • ▪   Extensive new data sets of Io at ultraviolet, mid- to near-infrared, and radio wavelengths have been gathered since the era.
  • ▪   New data and models inform us about tidal heating, surface properties, and magma composition across Io—although key questions remain.
  • ▪   Atmospheric observations indicate a dominant sublimation-supported component and reinforce the presence of stealth volcanism.
  • ▪   Observations of volcanic plumes show high gas velocities (up to ∼1 km/s) and their effect on Io's atmosphere.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-082420-095244
2021-05-30
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/earth/49/1/annurev-earth-082420-095244.html?itemId=/content/journals/10.1146/annurev-earth-082420-095244&mimeType=html&fmt=ahah

Literature Cited

  1. Ahern AA, Radebaugh J, Christiansen EH, Harris RA, Tass S. 2017. Lineations and structural mapping of Io's paterae and mountains: implications for internal stresses. Icarus 297:14–32
    [Google Scholar]
  2. Aksnes K, Franklin FA. 2001. Secular acceleration of Io derived from mutual satellite events. Astron. J. 122:2734–39
    [Google Scholar]
  3. Anderson JD, Jacobson RA, Lau EL, Moore WB, Schubert G. 2000. Io's gravity field and interior structure. J. Geophys. Res. 106:E1232963–69
    [Google Scholar]
  4. Bagenal F, Dols V. 2019. The space environment of Io and Europa. J. Geophys. Res. Space Phys. 125:e2019JA027485
    [Google Scholar]
  5. Bagenal F, Dowling TE, McKinnon WB. 2004. Jupiter: The Planet, Satellites and Magnetosphere Cambridge, UK: Cambridge Univ. Press
  6. Bierson CJ, Nimmo F. 2016. A test for Io's magma ocean: modeling tidal dissipation with a partially molten mantle. J. Geophys. Res. Planets 121:2211–24
    [Google Scholar]
  7. Binder AP, Cruikshank DP. 1964. Evidence for an atmosphere on Io. Icarus 3:299–305
    [Google Scholar]
  8. Bland MT, McKinnon WB. 2016. Mountain building on Io driven by deep faulting. Nat. Geosci. 9:429–32
    [Google Scholar]
  9. Blöcker A, Saur J, Roth L, Strobel DF. 2018. MHD modeling of the plasma interaction with Io's asymmetric atmosphere. J. Geophys. Res. Space Phys. 123:9286–311
    [Google Scholar]
  10. Brown ME. 2001. Potassium in Europa's atmosphere. Icarus 151:190–95
    [Google Scholar]
  11. Brozović M, Nolan MC, Magri C, Folkner WM, Jacobson RA, et al. 2020. Arecibo radar astronometry of the Galilean satellites from 1999 to 2016. Astron. J. 159:149
    [Google Scholar]
  12. Cantrall C, de Kleer K, de Pater I, Williams DA, Davies AG, Nelson D. 2018. Variability and geologic associations of volcanic activity on Io in 2001–2016. Icarus 312:267–94
    [Google Scholar]
  13. Carlson RW, Kargel JS, Douté S, Soderblom LA, Dalton B. 2007. Io's surface composition. See Lopes & Spencer 2007 193–229
  14. Carlson RW, Smythe WD, Lopes-Gautier RMC, Davies AG, Kamp LW, et al. 1997. Distribution of sulfur dioxide and other infrared absorbers on the surface of Io. Geophys. Res. Lett. 24:2479–82
    [Google Scholar]
  15. Carr MH. 1986. Silicate volcanism on Io. J. Geophys. Res. 91:B33521–32
    [Google Scholar]
  16. Cheng AF, Johnson RE 1989. Effects of magnetospheric interactions on origin and evolution of atmospheres. Origin and Evolution of Planetary and Satellites Atmospheres SK Atreya, JB Pollack, MS Matthews 683–722 Tucson: Univ. Ariz. Press
    [Google Scholar]
  17. Conrad A, de Kleer K, Leisenring J, La Camera A, Arcidiacomo C, et al. 2015. Spatially resolved M-band emission from Io's Loki Patera–Fizeau imaging at the 22.8 m LBT. Astron. J. 149:175
    [Google Scholar]
  18. Constable S, Constable C. 2004. Observing geomagnetic induction in magnetic satellite measurements and associated implications for mantle conductivity. Geochem. Geophys. Geosyst. 5:Q01006
    [Google Scholar]
  19. Cruikshank DP, Nelson RM. 2007. A history of the exploration of Io. See Lopes & Spencer 2007 5–33
  20. Darwin GH. 1899. The theory of the figure of the Earth carried to the second order of small quantities. MNRAS 60:82–124
    [Google Scholar]
  21. Davies AG. 1996. Io's volcanism: thermo-physical models of silicate lavas compared with observations of thermal emission. Icarus 124:45–61
    [Google Scholar]
  22. Davies AG. 2003. Temperature, age and crust thickness distributions of Loki Patera on Io from Galileo NIMS data: implications for resurfacing mechanism. Geophys. Res. Lett. 30:2133–36
    [Google Scholar]
  23. Davies AG. 2007. Volcanism on Io: A Comparison with Earth Cambridge, UK: Cambridge Univ. Press
  24. Davies AG, Davies RL, Veeder GJ, de Kleer K, de Pater I, et al. 2018. Discovery of a powerful, transient, explosive thermal event at Marduk Fluctus, Io, in Galileo NIMS data. Geophys. Res. Lett. 45:2926–33
    [Google Scholar]
  25. Davies AG, Keszthelyi LP, Harris AJL. 2010. The thermal signature of volcanic eruptions on Io and Earth. J. Volcanol. Geotherm. Res. 194:75–99
    [Google Scholar]
  26. Davies AG, Keszthelyi LP, McEwen AS. 2016. Determination of eruption temperature of Io's lavas using lava tube skylights. Icarus 278:266–78
    [Google Scholar]
  27. Davies AG, Keszthelyi LP, Williams DA, Phillips CB, McEwen AS et al. 2001. Thermal signature, eruption style, and eruption evolution at Pele and Pillan on Io. J. Geophys. Res. 106:E1233079–104
    [Google Scholar]
  28. Davies AG, Lopes-Gautier R, Smythe WD, Carlson RW. 2000. Silicate cooling model fits to Galileo NIMS data of volcanism on Io. Icarus 148:211–25
    [Google Scholar]
  29. Davies AG, Veeder GJ, Matson DL, Johnson TV. 2012. Io: charting thermal emission variability with the Galileo NIMS Io Thermal Emission Database (NITED): Loki Patera. Geophys. Res. Lett. 39:L01201
    [Google Scholar]
  30. Davies AG, Veeder GJ, Matson DL, Johnson TV. 2015. Map of Io's volcanic heat flow. Icarus 262:67–78
    [Google Scholar]
  31. de Kleer K, Butler B, de Pater I, Gurwell MA, Moullet A, et al. 2021. Ganymede's surface properties from millimeter and infrared thermal emission. Planet. Sci. J. 2:5
    [Google Scholar]
  32. de Kleer K, de Pater I. 2016a. Spatial distribution of Io's volcanic activity from Near-IR adaptive optics observations on 100 nights in 2013–2015. Icarus 280:405–14
    [Google Scholar]
  33. de Kleer K, de Pater I. 2016b. Time variability of Io's volcanic activity from near-IR adaptive optics observations on 100 nights in 2013–2015. Icarus 280:378–404
    [Google Scholar]
  34. de Kleer K, de Pater I. 2017. Io's Loki Patera: modeling of three brightening events in 2013–2016. Icarus 289:181–98
    [Google Scholar]
  35. de Kleer K, de Pater I, Ádámkovics M. 2019a. Emission from volcanic SO gas on Io at high spectral resolution. Icarus 317:104–20
    [Google Scholar]
  36. de Kleer K, de Pater I, Davies AG, Ádámkovics M. 2014. Near-infrared monitoring of Io & detection of a violent outburst on 29 August 2013. Icarus 242:352–64
    [Google Scholar]
  37. de Kleer K, de Pater I, Molter E, Banks E, Davies AG, et al. 2019b. Io's volcanic activity from time-domain adaptive optics observations: 2013–2018. Astron. J. 158:29
    [Google Scholar]
  38. de Kleer K, Nimmo F, Kite E. 2019c. Variability in Io's volcanism on timescales of periodic orbital changes. Geophys. Res. Lett. 46:6327–32
    [Google Scholar]
  39. de Kleer K, Park R, McEwen AS. 2019d. Tidal heating: lessons from Io and the Jovian system Final Rep. Keck Inst. Space Stud .
  40. de Kleer K, Skrutskie M, Leisenring J, Davies AG, Conrad A, et al. 2017. Complex volcanic resurfacing at Io's Loki Patera. Nature 545:199–202
    [Google Scholar]
  41. de Pater I, Butler B, Sault RJ, Moullet A, Moeckel C et al. 2018. Potential for solar system science with the ngVLA. Science with a Next-Generation VLA EJ Murphy 49–72 San Francisco: ASP
    [Google Scholar]
  42. de Pater I, Davies AG, Ádámkovics M, Ciardi DR. 2014. Two new, rare, high-effusion outburst eruptions at Rarog and Heno Paterae on Io. Icarus 242:365–78
    [Google Scholar]
  43. de Pater I, Davies AG, Marchis F. 2016. Keck observations of eruptions on Io in 2003–2005. Icarus 274:284–96
    [Google Scholar]
  44. de Pater I, de Kleer K, Ádámkovics M. 2020a. High spatial and spectral resolution observations of the forbidden 1.707 μm Rovibronic SO emissions on Io: evidence for widespread stealth volcanism. Planet. Sci. J. 1:29
    [Google Scholar]
  45. de Pater I, de Kleer K, Davies AG, Ádámkovics M. 2017. Three decades of Loki Patera observations. Icarus 297:265–81
    [Google Scholar]
  46. de Pater I, Luszcz-Cook S, Rojo P, Redwing E, de Kleer K, Moullet A. 2020b. ALMA observations of Io going into and coming out of eclipse. Planet. Sci. J. 1:60
    [Google Scholar]
  47. de Pater I, Marchis F, Macintosh BA, Roe HG, Le Mignant D, et al. 2004. Keck AO observations of Io in and out of eclipse. Icarus 169:250–63
    [Google Scholar]
  48. de Pater I, Roe HG, Graham JR, Strobel DF, Bernath P. 2002. Detection of the forbidden SO a1Δ → X3Σ Rovibronic transition on Io at 1.7 μm. Icarus 156:296–301
    [Google Scholar]
  49. Douté S, Schmitt B, Lopes-Gautier R, Carlson R, Soderblom L, et al. 2001. Mapping SO2 frost on Io by the modeling of NIMS hyperspectral images. Icarus 149:107–32
    [Google Scholar]
  50. Fanale FP, Banerdt W, Elson L, Johnson TV, Zurek R 1982. Io's surface: its phase composition and influence on Io's atmosphere and Jupiter's magnetosphere. Satellites of Jupiter D Morrison 756–81 Tucson: Univ. Ariz. Press
    [Google Scholar]
  51. Feaga LM, McGrath M, Feldman PD. 2009. Io's dayside SO2 atmosphere. Icarus 201:570–84
    [Google Scholar]
  52. Fegley B, Zolotov MY. 2000. Chemistry of sodium, potassium, and chlorine in volcanic gases on Io. Icarus 148:193–210
    [Google Scholar]
  53. Gaskell RW, Synnott SP, McEwen AS, Schaber GG. 1988. Large-scale topography of Io: implications for internal structure and heat transfer. Geophys. Res. Lett. 15:581–84
    [Google Scholar]
  54. Geissler P, McEwen AS, Keszthelyi L, Lopes-Gautier R, Granahan J, Simonelli P. 1999. Global color variations on Io. Icarus 140:265–82
    [Google Scholar]
  55. Geissler P, McEwen AS, Phillips CB, Keszthelyi LP, Spencer J. 2004a. Surface changes on Io during the Galileo mission. Icarus 169:29–64
    [Google Scholar]
  56. Geissler P, McEwen AS, Phillips CB, Simonelli D, Lopes RMC, Douté S. 2001. Galileo imaging of SO2 frost on Io. J. Geophys. Res. 16:E1233253–66
    [Google Scholar]
  57. Geissler P, McEwen AS, Porco C, Strobel DF, Saur J, et al. 2004b. Cassini observations of Io's visible aurorae. Icarus 172:127–40
    [Google Scholar]
  58. Goldstein SJ, Jacobs KC. 1995. A recalculation of the secular acceleration of Io. Astron. J. 110:3054–57
    [Google Scholar]
  59. Gratiy SL, Walker AC, Levin DA, Goldstein DB, Verghese PL, et al. 2010. Multi-wavelength simulations of atmospheric radiation from Io with a 3-D spherical-shell backward Monte Carlo radiative transfer model. Icarus 207:394–408
    [Google Scholar]
  60. Grava C, Schneider NM, Leblanc F, Morgenthaler JP, Mangano V, Barbieri C. 2014. Solar control of sodium escape from Io. J. Geophys. Res. Planets 119:404–15
    [Google Scholar]
  61. Hamilton CW, Beggan CD, Still S, Beuthe M, Lopes RM, et al. 2013. Spatial distribution of volcanoes on Io: implications for tidal heating and magma ascent. Earth Planet. Sci. Lett. 361:272–86
    [Google Scholar]
  62. Hay HCFC, Matsuyama I. 2019. Nonlinear tidal dissipation in the subsurface oceans of Enceladus and other icy satellites. Icarus 319:68–85
    [Google Scholar]
  63. Hood LL, Herbert F, Sonett CP. 1982. The deep lunar electrical conductivity profile: structural and thermal inferences. J. Geophys. Res. 87:B75311–26
    [Google Scholar]
  64. Howell RR. 1997. Thermal emission from lava flows on Io. Icarus 127:394–407
    [Google Scholar]
  65. Howell RR, Spencer J, Goguen J, Marchis F, Prangé Ret al 2001. Ground-based observations of volcanism on Io in 1999 and early 2000. J. Geophys. Res. 106:E1233129–40
    [Google Scholar]
  66. Ingersoll AP, Summers ME, Schlipf SG. 1985. Supersonic meteorology of Io: sublimation-driven flow of SO2. Icarus 64:375–90
    [Google Scholar]
  67. Jacobson RA. 2013. The gravitational fields of the Galilean satellites—revisited. Div. Planet. Sci. 45:418.06
    [Google Scholar]
  68. Jessup KL, Spencer JR, Yelle R. 2007. Sulfur volcanism on Io. Icarus 192:24–40
    [Google Scholar]
  69. Johnson TV, Matson DL, Blaney DL, Veeder GJ, Davies A. 1995. Stealth plumes on Io. Geophys. Res. Lett. 22:3293–96
    [Google Scholar]
  70. Johnson TV, Veeder GJ, Matson DL, Brown RH, Nelson RM, Morrison D. 1988. Io: evidence for silicate volcanism in 1986. Science 242:1280–83
    [Google Scholar]
  71. Keane JT, de Kleer K, Rathbun J, Radebaugh J. 2018. Comprehensive spherical harmonic analysis of the distribution of Io's volcanoes, mountains, heat flow, and other geologic phenomena Abstract #P53C-2983, Am. Geophys. Union, Fall Meet .
  72. Kerton CR, Fanale FP, Salvail JR. 1996. The state of SO2 on Io's surface. J. Geophys. Res. 101:E37555–63
    [Google Scholar]
  73. Keszthelyi L, McEwen AS, Phillips CB, Milazzo M, Geissler P et al. 2001. Imaging of volcanic activity on Jupiter's moon Io by Galileo during the Galileo Europa Mission and the Galileo Millennium Mission. J. Geophys. Res. 106:E1233025–52
    [Google Scholar]
  74. Keszthelyi L, McEwen AS, Taylor GJ. 1999. Revisiting the hypothesis of a mushy global magma ocean in Io. Icarus 141:2415–19
    [Google Scholar]
  75. Khan A, Connolly JAD, Pommier A, Noir J. 2014. Geophysical evidence for melt in the deep lunar interior and implications for lunar evolution. J. Geophys. Res. Planets 119:2197–221
    [Google Scholar]
  76. Khurana KK, Jia X, Kivelson MG, Nimmo F, Schubert G, Russell CT. 2011. Evidence of a global magma ocean in Io's interior. Science 332:1186–89
    [Google Scholar]
  77. Khurana KK, Kivelson MG, Stevenson DJ, Schubert G, Russell CT, et al. 1998. Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto. Nature 395:777–80
    [Google Scholar]
  78. Kirchoff MR, McKinnon WB. 2009. Formation of mountains on Io: variable volcanism and thermal stresses. Icarus 201:598–614
    [Google Scholar]
  79. Kirchoff MR, McKinnon WB, Bland MT. 2020. Effects of faulting on crustal stresses during mountain formation on Io. Icarus 335:113326
    [Google Scholar]
  80. Kirchoff MR, McKinnon WB, Schenk PM. 2011. Global distribution of volcanic centers and mountains on Io: control by asthenospheric heating and implications for mountain formation. Earth Planet. Sci. Lett. 301:22–30
    [Google Scholar]
  81. Kivelson MG, Khurana KK, Russell CT, Volwerk M, Walker RJ, Zimmer C. 2000. Galileo magnetometer measurements: a stronger case for a subsurface ocean at Europa. Science 289:1340–43
    [Google Scholar]
  82. Kivelson MG, Khurana KK, Volwerk M. 2002. The permanent and inductive magnetic moments of Ganymede. Icarus 157:507–22
    [Google Scholar]
  83. Kliore A, Cain DL, Fjeldbo G, Seidel BL, Rasool SI. 1974. Preliminary results on the atmospheres of Io and Jupiter from the Pioneer 10 S-Band occultation experiment. Science 183:323–24
    [Google Scholar]
  84. Lainey V, Arlot J, Karatekin Ö, van Hoolst T. 2009. Strong tidal dissipation in Io and Jupiter from astrometric observations. Nature 459:957–59
    [Google Scholar]
  85. Laver C, de Pater I. 2009. The global distribution of sulfur dioxide ice on Io, observed with OSIRIS on the W.M. Keck telescope. Icarus 201:172–81
    [Google Scholar]
  86. Lellouch E. 1996. Urey Prize Lecture. Io's atmosphere: not yet understood. Icarus 124:1–21
    [Google Scholar]
  87. Lellouch E, Ali-Dib M, Jessup K-L, Smette A, Käufl H-U, Marchis F. 2015. Detection and characterization of Io's atmosphere from high-resolution 4-μm spectroscopy. Icarus 253:99–114
    [Google Scholar]
  88. Lellouch E, Belton MJS, de Pater I, Gulkis S, Encrenaz T. 1990. Io's atmosphere from microwave detection of SO2. Nature 346:639–41
    [Google Scholar]
  89. Lellouch E, Belton MJS, de Pater I, Paubert G, Gulkis S, Encrenaz T. 1992. The structure, stability, and global distribution of Io's atmosphere. Icarus 98:271–95
    [Google Scholar]
  90. Lellouch E, McGrath MA, Jessup KL. 2007. Io's atmosphere. See Lopes & Spencer 2007 231–64
  91. Lellouch E, Paubert G, Moses JI, Schneider NM, Strobel DF. 2003. Volcanically emitted sodium chloride as a source for Io's neutral clouds and plasma torus. Nature 421:45–47
    [Google Scholar]
  92. Linde AT, Sacks IS. 1998. Triggering of volcanic eruptions. Nature 395:888–90
    [Google Scholar]
  93. Lopes RMC, Spencer JReds 2007. Io After Galileo: A New View of Jupiter's Volcanic Moon Berlin: Springer
  94. Macintosh B, Gavel D, Gibbard SG, Max CE, de Pater I, et al. 2003. Speckle imaging of volcanic hot spots on Io with the Keck telescope. Icarus 165:137–43
    [Google Scholar]
  95. Marchis F, de Pater I, Davies AG, Roe HG, Fusco T, et al. 2002. High-resolution Keck adaptive optics imaging of violent volcanic activity on Io. Icarus 160:124–31
    [Google Scholar]
  96. Matson DL, Davies AG, Veeder GJ, Rathbun JA, Johnson TV, Castillo JC. 2006. Io: Loki Patera as a magma sea. J. Geophys. Res. 111:E9E09002
    [Google Scholar]
  97. Matson DL, Ransford GA, Johnson TV. 1981. Heat flow from Io (JI). J. Geophys. Res. 86:B31664–72
    [Google Scholar]
  98. Matsuyama I, Beuthe M, Hay HCFC, Nimmo F, Kamata S. 2018. Ocean tidal heating in icy satellites with solid shells. Icarus 312:208–30
    [Google Scholar]
  99. McDoniel WJ, Goldstein DB, Varghese PL, Trafton LM. 2017. The interaction of Io's plumes and sublimation atmosphere. Icarus 294:81–97
    [Google Scholar]
  100. McEwen AS, Keszthelyi L, Spencer JR, Schubert G, Matson DL, et al. 1998. High-temperature silicate volcanism on Jupiter's moon Io. Science 281:87–90
    [Google Scholar]
  101. McEwen AS, Soderblom LA, Johnson TV, Matson DL. 1988. The global distribution, abundance, and stability of SO2 on Io. Icarus 75:450–78
    [Google Scholar]
  102. McGrath MA, Belton MJS, Spencer JR, Sartoretti P. 2000. Spatially resolved spectroscopy of Io's Pele plume and SO2 atmosphere. Icarus 146:476–93
    [Google Scholar]
  103. McKinnon WB, Schenk PM, Dombard AJ. 2001. Chaos on Io: a model for formation of mountain blocks by crustal heating, melting, and tilting. Geology 29:103–6
    [Google Scholar]
  104. Mendillo M, Baumgardner J, Flynn B, Hughes WJ. 1990. The extended sodium nebula of Jupiter. Nature 348:312–14
    [Google Scholar]
  105. Moore C, Goldstein DB, Varghese P, Trafton L, Stewart B. 2009. 1-D DSMC simulation of Io's atmospheric collapse in eclipse. Icarus 201:585–97
    [Google Scholar]
  106. Moore WB, Schubert G, Anderson JD, Spencer JR. 2007. The interior of Io. See Lopes & Spencer 2007 90–108
  107. Morabito LA, Synnott SP, Kupferman PN, Collins SA. 1979. Discovery of currently active extraterrestrial volcanism. Science 204:972
    [Google Scholar]
  108. Morrison D, Cruikshank DP. 1973. Thermal properties of the Galilean satellites. Icarus 18:224–36
    [Google Scholar]
  109. Moses JI, Nash DB. 1991. Phase transformations and the spectral reflectance of solid sulfur—Can metastable sulfur allotropes exist on Io?. Icarus 89:277–304
    [Google Scholar]
  110. Moses JI, Zolotov MY, Fegley B. 2002a. Alkali and chlorine photochemistry in a volcanically driven atmosphere on Io. Icarus 156:107–35
    [Google Scholar]
  111. Moses JI, Zolotov MY, Fegley B. 2002b. Photochemistry of a volcanically driven atmosphere on Io: sulfur and oxygen species from a Pele-type eruption. Icarus 156:76–106
    [Google Scholar]
  112. Moullet A, Gurwell MA, Lellouch E, Moreno R. 2010. Simultaneous mapping of SO2, SO, NaCl in Io's atmosphere with the Submillimeter Array. Icarus 208:353–65
    [Google Scholar]
  113. Moullet A, Lellouch E, Gurwell M, Moreno R, Black J, Butler B. 2015. Distribution of alkali gases in Io's atmosphere Abstract #311.31, AAS Div. Planet. Sci. Meet .
  114. Moullet A, Lellouch E, Moreno R, Gurwell MA, Black JH, Butler B. 2013. Exploring Io's atmospheric composition with APEX: first measurement of 34SO2 and tentative detection of KCl. Astrophys. J. 776:32
    [Google Scholar]
  115. Moullet A, Lellouch E, Moreno R, Gurwell MA, Moore C. 2008. First disk-resolved millimeter observations of Io's surface and SO2 atmosphere. Astrophys. Astron. 482:279–92
    [Google Scholar]
  116. Mura A, Adriani A, Tosi F, Lopes RMC, Sindoni G et al. Infrared observations of Io from Juno. Icarus 341:113607
    [Google Scholar]
  117. Murray CD, Dermott SF. 1999. Solar System Dynamics Cambridge, UK: Cambridge Univ. Press
  118. Nimmo F, Pappalardo RT. 2016. Ocean worlds in the outer solar system. J. Geophys. Res. Planets 121:1378–99
    [Google Scholar]
  119. Oberst J, Schuster P. 2004. Vertical control point network and global shape of Io. J. Geophys. Res. 109:E4E04003
    [Google Scholar]
  120. O'Reilly TC, Davies GF. 1981. Magma transport of heat on Io: a mechanism allowing a thick lithosphere. Geophys. Res. Lett. 8:313–16
    [Google Scholar]
  121. Peale SJ, Cassen P, Reymolds RT. 1979. Melting of Io by tidal dissipation. Science 203:892–94
    [Google Scholar]
  122. Pearl JC, Hanel R, Kunde V, Maguire W, Fox K, et al. 1979. Identification of gaseous SO2 and new upper limits for other gases on Io. Nature 288:757–58
    [Google Scholar]
  123. Pommier A, Leinenweber K, Tasaka M. 2015. Experimental constraints on the electrical anisotropy of the lithosphere–asthenosphere system. Nature 522:7555202–6
    [Google Scholar]
  124. Rathbun JA, Spencer JR. 2006. Loki, Io: new ground-based observations and a model describing the change from periodic overturn. Geophys. Res. Lett. 33:L17201
    [Google Scholar]
  125. Rathbun JA, Spencer JR, Davies AG, Howell RR, Wilson L. 2002. Loki, Io: a periodic volcano. Geophys. Res. Lett. 29:84–184-4
    [Google Scholar]
  126. Rathbun JA, Spencer JR, Tamppari LK, Martin TZ, Barnard L, Travis LD. 2004. Mapping of Io's thermal radiation by the Galileo photopolarimeter-radiometer (PPR) instrument. Icarus 169:127–39
    [Google Scholar]
  127. Redwing E, de Pater I, Luszcz-Cook S, Moullet A, Rojo P, de Kleer K. 2020. Observations and analysis of NaCl and KCl in Io's atmosphere. Abstract P031-06, Am. Geophys. Union, Fall Meet .
  128. Renaud JP, Henning WG. 2018. Increased tidal dissipation using advanced rheological models: implications for Io and tidally active exoplanets. Astrophys. J. 857:98
    [Google Scholar]
  129. Ross MN, Schubert G, Spohn T, Gaskell RW. 1990. Internal structure of Io and the global distribution of its topography. Icarus 85:309–25
    [Google Scholar]
  130. Roth L, Boissier B, Moullet A, Sánchez-Monge Á, de Kleer K, et al. 2020. An attempt to detect transient changes in Io's SO2 and NaCl atmosphere. Icarus 350:113925
    [Google Scholar]
  131. Roth L, Saur J, Retherford KD, Blöcker A, Strobel DF, Feldman PD. 2017. Constraints on Io's interior from auroral spot oscillations. J. Geophys. Res. Space Phys. 122:1903–27
    [Google Scholar]
  132. Roth L, Saur J, Retherford KD, Feldman PD, Strobel DF. 2014. A phenomenological model of Io's UV aurora based on HST/STIS observations. Icarus 228:386–406
    [Google Scholar]
  133. Sagan C. 1979. Sulphur flows on Io. Nature 280:750–53
    [Google Scholar]
  134. Saur J, Duling S, Roth L, Jia X, Strobel DF, et al. 2015. The search for a subsurface ocean in Ganymede with Hubble Space Telescope observations of its auroral ovals. J. Geophys. Res. Space Phys. 120:1715–37
    [Google Scholar]
  135. Schaefer L, Fegley B. 2004. A thermodynamic model of high temperature lava vaporization on Io. Icarus 169:216–41
    [Google Scholar]
  136. Schaefer L, Fegley B. 2005. Alkali and halogen chemistry in volcanic gases on Io. Icarus 173:454–68
    [Google Scholar]
  137. Schenk P, Hargitai H, Wilson R, McEwen A, Thomas P. 2001. The mountains of Io: global and geological perspectives from Voyager and Galileo. J. Geophys. Res. 106:E1233201–22
    [Google Scholar]
  138. Schmitt B, de Bergh C, Lellouch E, Maillard J-P, Barbe A, Douté S. 1994. Identification of three absorption bands in the 2-μm spectrum of Io. Icarus 111:79–105
    [Google Scholar]
  139. Schubert G, Anderson JD, Spohn T, McKinnon WB. 2004. Interior composition, structure and dynamics of the Galilean satellites. See Bagenal et al. 2004 281–306
  140. Šebek O, Trávníček PM, Walker RJ, Hellinger P. 2019. Dynamic plasma interaction at Io: multispecies hybrid simulations. J. Geophys. Res. Space Phys. 124:313–41
    [Google Scholar]
  141. Secosky JJ, Potter M. 1994. A Hubble Space Telescope study of posteclipse brightening and albedo changes on Io. Icarus 111:73–78
    [Google Scholar]
  142. Segatz M, Spohn T, Ross MN, Schubert G. 1988. Tidal dissipation, surface heat flow, and figure of viscoelastic models of Io. Icarus 75:187–206
    [Google Scholar]
  143. Sinton WM, Kaminsky C. 1988. Infrared observations of eclipses of Io, its thermophysical parameters, and the thermal radiation of the Loki volcano and environs. Icarus 75:207–32
    [Google Scholar]
  144. Soderlund KM, Schmidt BE, Wicht J, Blankenship DD. 2014. Ocean-driven heating of Europa's icy shell at low latitudes. Nat. Geosci. 7:16–19
    [Google Scholar]
  145. Spencer DC, Katz RF, Hewitt IJ. 2020. Magmatic intrusions control Io's crustal thickness. J. Geophys. Res. Planets 125:e2020JE006443
    [Google Scholar]
  146. Spencer JR, Lellouch E, Richter MJ, López-Valverde MA, Jessup KL, et al. 2005. Mid-infrared detection of large longitudinal asymmetries in Io's SO2 atmosphere. Icarus 176:283–304
    [Google Scholar]
  147. Spencer JR, Rathbun JA, Travis LD, Tamppari LK, Barnard L, et al. 2000. Io's thermal emission from the Galileo photopolarimeter-radiometer. Science 288:1198–201
    [Google Scholar]
  148. Steinke T, Hu H, Höning D, van der Wal W, Vermeersen BLA. 2020. Tidally induced lateral variations of Io's interior. Icarus 335:113299
    [Google Scholar]
  149. Steinke T, van der Wal W, Vermeersen BLA. 2019. Modelling the feedback of Io's tidally induced heterogeneous interior on tidal dissipation Abstract P51A-07, Am. Geophys. Union, Fall Meet .
  150. Strobel DF, Zhu X, Summers ME. 1994. On the vertical structure of Io's atmosphere. Icarus 111:18–30
    [Google Scholar]
  151. Summers ME, Strobel DF. 1996. Photochemistry and vertical transport in Io's atmosphere and ionosphere. Icarus 120:290–316
    [Google Scholar]
  152. Tackley PJ, Schubert G, Glatzmaier GA, Schenk P, Ratcliff J, et al. 2001. Three-dimensional simulations of mantle convection in Io. Icarus 149:79–93
    [Google Scholar]
  153. Tobie G, Mocquet A, Sotin C. 2005. Tidal dissipation within large icy satellites: applications to Europa and Titan. Icarus 177:2534–49
    [Google Scholar]
  154. Tosi F, Mura A, Lopes RMC, Filacchione G, Ciarniello M. 2020. Mapping Io's surface composition with Juno/JIRAM. J. Geophys. Res. Planets 125:e2020JE006522
    [Google Scholar]
  155. Tsang CCC, Spencer JR, Lellouch E, Lopez-Valverde MA, Richter MJ. 2016. The collapse of Io's primary atmosphere in Jupiter eclipse. J. Geophys. Res. Planets 121:1400–10
    [Google Scholar]
  156. Tsang CCC, Spencer JR, Lellouch E, Lopez-Valverde MA, Richter MJ, Greathouse TK. 2012. Io's atmosphere: constraints on sublimation support from density variations on seasonal timescales using NASA IRTF/TEXES observations from 2001 to 2010. Icarus 217:277–96
    [Google Scholar]
  157. Turtle EP, Jaegar WL, Schenk PM. 2007. Ionian mountains and tectonics: insights into what lies beneath Io's lofty peaks. See Lopes & Spencer 2007 109–28
  158. Tyler RH, Henning WG, Hamilton CW. 2015. Tidal heating in a magma ocean within Jupiter's moon Io. Astrophys. J. Suppl. 218:22
    [Google Scholar]
  159. Veeder GJ, Davies AG, Matson DL, Johnson TV, Williams DA, Radebaugh J. 2012. Io: volcanic thermal sources and global heat flow. Icarus 219:701–22
    [Google Scholar]
  160. Veeder GJ, Davies AG, Matson DL, Johnson TV, Williams DA, Radebaugh J. 2015. Io: heat flow from small volcanic features. Icarus 245:379–410
    [Google Scholar]
  161. Veeder GJ, Matson DL, Johnson TV, Blaney DL, Goguen JD. 1994. Io's heat flow from infrared photometry: 1983–1993. J. Geophys. Res. 99:E817095–162
  162. Wagman DD. 1979. Sublimation Pressure and Enthalpy of S02 Data sheet, Chem. Thermodyn. Data Cent., Washington, DC, Nat. Bur. Stand .
  163. Walker AC, Gratiy SL, Goldstein DB, Moore CH, Varghese PL, et al. 2010. A comprehensive numerical simulation of Io's sublimation-driven atmosphere. Icarus 207:409–32
    [Google Scholar]
  164. Walker AC, Moore CH, Goldstein DB, Varghese PL, Trafton LM. 2012. A parametric study of Io's thermophysical surface properties and subsequent numerical atmospheric simulations based on the best fit parameters. Icarus 220:225–53
    [Google Scholar]
  165. White OL, Schenk PM, Nimmo F, Hoogenboom T. 2014. A new stereo topographic map of Io: implications for geology from global to local scales. J. Geophys. Res. Planets 119:1276–301
    [Google Scholar]
  166. Wieczorek MA 2015. Gravity and topography of the terrestrial planets. Treatise on Geophysics G Schubert 153–93 Amsterdam: Elsevier. , 2nd ed..
    [Google Scholar]
  167. Williams DA, Davies AG, Keszthelyi LP, Greeley R. 2001. The summer 1997 eruption at Pillan Patera on Io: implications for ultrabasic lava flow emplacement. J. Geophys. Res. 106:E1233105–20
    [Google Scholar]
  168. Williams DA, Keszthelyi LP, Crown DA, Yff JA, Jaeger WL et al. 2011. Geologic Map of Io U.S. Geological Survey Scientific Investigations Map 3168, scale 1:15,000,000, https://pubs.usgs.gov/sim/3168/
  169. Wu RCY, Yang BW, Chen FZ, Judge J, Caldwell J, Trafton LM. 2000. Measurements of high-, room-, and low-temperature photoabsorption cross sections of SO2 in the 2080- to 2950-A region, with applications to Io. Icarus 145:289–96
    [Google Scholar]
  170. Yoshikawa I, Yoshioka K, Murakami F, Yamazaki A, Tsuchiya F, et al. 2014. Extreme ultraviolet radiation measurement for planetary atmospheres, magnetospheres from Earth-orbiting spacecraft (EXCEED). Space Sci. Rev. 184:237–58
    [Google Scholar]
  171. Yoshioka K, Tsuchiya F, Kagitani M, Kimura T, Murakami G. 2018. The influence of Io's 2015 volcanic activity on Jupiter's magnetospheric dynamics. Geophys. Res. Lett. 45:10195–99
    [Google Scholar]
  172. Zhang J, Goldstein DB, Varghese PL, Gimelshein NE, Gimelshein SF, Levin DA. 2003. Simulation of gas dynamics and radiation in volcanic plumes of Io. Icarus 163:182–87
    [Google Scholar]
  173. Zhang J, Goldstein DB, Varghese PL, Trafton L, Moore C, Miki K. 2004. Numerical modeling of Ionian volcanic plumes with entrained particulates. Icarus 172:479–502
    [Google Scholar]
  174. Zimmer C, Khurana KK, Kivelson MG. 2000. Subsurface oceans on Europa and Callisto: constraints from Galileo magnetometer observations. Icarus 147.2:329–47
    [Google Scholar]
  175. Zolotov MY, Fegley B Jr. 1998. Volcanic production of sulfur monoxide (SO) on Io. Icarus 132:431–34
    [Google Scholar]
  176. Zolotov MY, Fegley B Jr. 2000. Eruption conditions of Pele volcano on Io inferred from chemistry of its volcanic plume. Geophys. Res. Lett. 27:2789–92
    [Google Scholar]
/content/journals/10.1146/annurev-earth-082420-095244
Loading
/content/journals/10.1146/annurev-earth-082420-095244
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error