1932

Abstract

This review describes the climate change–induced responses of the tropical atmospheric circulation and their impacts on the hydrological cycle. We depict the theoretically predicted changes and diagnose physical mechanisms for observational and model-projected trends in large-scale and regional climate. The tropical circulation slows down with moisture and stratification changes, connecting to a poleward expansion of the Hadley cells and a shift of the intertropical convergence zone. Redistributions of regional precipitation consist of thermodynamic and dynamical components, including a strong offset between moisture increase and circulation weakening throughout the tropics. This allows other dynamical processes to dominate local circulation changes, such as a surface warming pattern effect over oceans and multiple mechanisms over land. To improve reliability in climate projections, more fundamental understandings of pattern formation, circulation change, and the balance of various processes redistributing land rainfall are suggested to be important.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-082517-010102
2018-05-30
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/earth/46/1/annurev-earth-082517-010102.html?itemId=/content/journals/10.1146/annurev-earth-082517-010102&mimeType=html&fmt=ahah

Literature Cited

  1. Ackerley D, Dommenget D 2016. Atmosphere-only GCM (ACCESS1.0) simulations with prescribed land surface temperatures. Geosci. Model Dev. 9:2077–98
    [Google Scholar]
  2. Allan RP 2011. Regime dependent changes in global precipitation. Clim. Dyn. 39:827–40
    [Google Scholar]
  3. Allan RP, Soden BJ, John VO, Ingram W, Good P 2010. Current changes in tropical precipitation. Environ. Res. Lett. 5:025205
    [Google Scholar]
  4. Allen MR, Ingram WJ 2002. Constraints on future changes in the hydrological cycle. Nature 419:224–28
    [Google Scholar]
  5. An Z, Wu G, Li J, Sun Y, Liu Y et al. 2015. Global monsoon dynamics and climate change. Annu. Rev. Earth Planet. Sci. 43:29–77
    [Google Scholar]
  6. Andrews T, Forster PM, Boucher O, Bellouin N, Jones A 2010. Precipitation, radiative forcing and global temperature change. Geophys. Res. Lett. 37:L14701
    [Google Scholar]
  7. Back LE, Bretherton CS 2006. Geographic variability in the export of moist static energy and vertical motion profiles in the tropical Pacific. Geophys. Res. Lett. 33:L17810
    [Google Scholar]
  8. Bala G, Caldeira K, Nemani R 2010. Fast versus slow response in climate change: implications for the global hydrological cycle. Clim. Dyn. 35:423–34
    [Google Scholar]
  9. Bayr T, Dommenget D 2013. The tropospheric land-sea warming contrast as the driver of tropical sea level pressure changes. J. Clim. 26:1387–402
    [Google Scholar]
  10. Bender MA, Knutson TR, Tuleya RE, Sirutis JJ, Vecchi GA et al. 2010. Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. Science 327:454–58
    [Google Scholar]
  11. Biasutti M 2013. Forced Sahel rainfall trends in the CMIP5 archive. J. Geophys. Res. 118:1613–23
    [Google Scholar]
  12. Bjerknes J 1969. Atmospheric teleconnection from the equatorial Pacific. Mon. Weather Rev. 97:163–72
    [Google Scholar]
  13. Bony S, Bellon G, Klocke D, Sherwood S, Fermepin S et al. 2013. Robust direct effect of carbon dioxide on tropical circulation and regional precipitation. Nat. Geosci. 6:447–51
    [Google Scholar]
  14. Bretherton CS, Sobel AH 2002. A simple model of a convectively-coupled Walker circulation using the weak temperature gradient approximation. J. Clim. 15:2907–20
    [Google Scholar]
  15. Bruyère CL, Holland GJ, Towler E 2012. Investigating the use of a genesis potential index for tropical cyclones in the North Atlantic basin. J. Clim. 25:8611–26
    [Google Scholar]
  16. Byrne MP, O'Gorman PA 2013. Link between land-ocean warming contrast and surface relative humidities in simulations with coupled climate models. Geophys. Res. Lett. 40:5223–27
    [Google Scholar]
  17. Byrne MP, O'Gorman PA 2015. The response of precipitation minus evapotranspiration to climate warming: why the “wet-get-wetter, dry-get-drier” scaling does not hold over land. J. Clim. 28:8078–92
    [Google Scholar]
  18. Camargo SJ, Emanuel KA, Sobel AH 2007. Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Clim. 20:4819–34
    [Google Scholar]
  19. Cao L, Bala G, Caldeira K 2012. Climate response to changes in atmospheric carbon dioxide and solar irradiance on the time scale of days to weeks. Environ. Res. Lett. 7:034015
    [Google Scholar]
  20. Chadwick R 2016. Which aspects of CO2 forcing and SST warming cause most uncertainty in projections of tropical rainfall change over land and ocean. ? J. Clim. 29:2493–509
    [Google Scholar]
  21. Chadwick R, Boutle I, Martin G 2013. Spatial patterns of precipitation change in CMIP5: Why the rich do not get richer in the tropics. J. Clim. 26:3803–22
    [Google Scholar]
  22. Chadwick R, Good P, Andrews T, Martin G 2014. Surface warming patterns drive tropical rainfall pattern responses to CO2 forcing on all timescales. Geophys. Res. Lett. 41:610–15
    [Google Scholar]
  23. Chen G, Held IM 2007. Phase speed spectra and the recent poleward shift of Southern Hemisphere surface westerlies. Geophys. Res. Lett. 34:L21805
    [Google Scholar]
  24. Chen G, Lu J, Frierson DMW 2008. Phase speed spectra and the latitude of surface westerlies: interannual variability and the global warming trend. J. Clim. 21:5942–59
    [Google Scholar]
  25. Chou C, Chen CA 2010. Depth of convection and the weakening of the tropical circulation in global warming. J. Clim. 23:3019–30
    [Google Scholar]
  26. Chou C, Chiang JCH, Lan CW, Chung CH, Liao YC, Lee CJ 2013.a Increase in the range between wet and dry season precipitation. Nat. Geosci. 6:263–67
    [Google Scholar]
  27. Chou C, Neelin JD 2004. Mechanisms of global warming impacts on regional tropical precipitation. J. Clim. 17:2688–701
    [Google Scholar]
  28. Chou C, Neelin JD, Chen CA, Tu JY 2009. Evaluating the “rich-get-richer” mechanism in tropical precipitation change under global warming. J. Clim. 22:1982–2005
    [Google Scholar]
  29. Chou C, Wu TC, Tan PH 2013.b Changes in gross moist stability in the tropics under global warming. Clim. Dyn. 41:2481–96
    [Google Scholar]
  30. Clarke AJ, Lebedev A 1996. Long-term change in the equatorial Pacific trade winds. J. Clim. 9:1020–29
    [Google Scholar]
  31. Compo GP, Sardeshmukh PD 2009. Oceanic influences on recent continental warming. Clim. Dyn. 32:333–42
    [Google Scholar]
  32. Curry R, Dickson B, Yashayaev I 2003. A change in the fresh-water balance of the Atlantic Ocean over the past four decades. Nature 426:826–29
    [Google Scholar]
  33. DeMaria M 1996. The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci. 53:2076–87
    [Google Scholar]
  34. Deser C, Phillips AS 2009. Atmospheric circulation trends, 1950–2000: the relative roles of sea surface temperature forcing and direct atmospheric radiative forcing. J. Clim. 22:396–413
    [Google Scholar]
  35. Dong B, Gregory JM, Sutton RT 2009. Understanding land-sea warming contrast in response to increasing greenhouse gases. Part I. Transient adjustment. J. Clim. 22:3079–97
    [Google Scholar]
  36. Durack PJ, Wijffels SE 2010. Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. J. Clim. 23:4342–62
    [Google Scholar]
  37. Durack PJ, Wijffels SE, Matear RJ 2012. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science 336:455–58
    [Google Scholar]
  38. Emanuel KA 1999. Thermodynamic control of hurricane intensity. Nature 401:665–69
    [Google Scholar]
  39. Fasullo J 2012. A mechanism for land-ocean contrasts in global monsoon trends in a warming climate. Clim. Dyn. 39:1137–47
    [Google Scholar]
  40. Friedman AR, Hwang YT, Chiang JCH, Frierson DMW 2013. Interhemispheric temperature asymmetry over the twentieth century and in future projections. J. Clim. 26:5419–33
    [Google Scholar]
  41. Frierson DMW, Hwang YT 2012. Extratropical influence on ITCZ shifts in slab ocean simulations of global warming. J. Clim. 25:720–33
    [Google Scholar]
  42. Frierson DMW, Lu J, Chen G 2007. Width of the Hadley cell in simple and comprehensive general circulation models. Geophys. Res. Lett. 34:L18804
    [Google Scholar]
  43. Fu Q, Johanson CM, Wallace JM, Reichler T 2006. Enhanced mid-latitude tropospheric warming in satellite measurements. Science 312:1179
    [Google Scholar]
  44. Fučkar NS, Xie SP, Farneti R, Maroon EA, Frierson DMW 2013. Influence of the extratropical ocean circulation on the intertropical convergence zone in an idealized coupled general circulation model. J. Clim. 26:4612–29
    [Google Scholar]
  45. Gastineau G, Li L, Le Treut H 2009. The Hadley and Walker circulation changes in global warming conditions described by idealized atmospheric simulations. J. Clim. 22:3993–4013
    [Google Scholar]
  46. Giannini A 2010. Mechanisms of climate change in the semiarid African Sahel: the local view. J. Clim. 23:743–56
    [Google Scholar]
  47. Giannini A, Salack S, Lodoun T, Ali A, Gaye AT, Ndiaye O 2013. A unifying view of climate change in the Sahel linking intra-seasonal, interannual and longer time scales. Environ. Res. Lett. 8:024010
    [Google Scholar]
  48. Greve P, Orlowsky B, Mueller B, Sheffield J, Reichstein M et al. 2014. Global assessment of trends in wetting and drying over land. Nat. Geosci. 7:716–21
    [Google Scholar]
  49. Hartmann DL, Larson K 2002. An important constraint on tropical cloud - climate feedback. Geophys. Res. Lett. 29:1951
    [Google Scholar]
  50. He J, Soden BJ 2015. Anthropogenic weakening of the tropical circulation: the relative roles of direct CO2 forcing and sea surface temperature change. J. Clim. 28:8728–42
    [Google Scholar]
  51. He J, Soden BJ, Kirtman B 2014. The robustness of the atmospheric circulation and precipitation response to future anthropogenic surface warming. Geophys. Res. Lett. 41:2614–22
    [Google Scholar]
  52. Hegerl GC, Black E, Allan RP, Ingram WJ, Polson D et al. 2015. Challenges in quantifying changes in the global water cycle. Bull. Am. Meteorol. Soc. 96:1097–115
    [Google Scholar]
  53. Held IM, Delworth TL, Lu J, Findell KL, Knutson TR 2005. Simulation of Sahel drought in the 20th and 21st centuries. PNAS 102:17891–96
    [Google Scholar]
  54. Held IM, Hou AY 1980. Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci. 37:515–33
    [Google Scholar]
  55. Held IM, Soden BJ 2000. Water vapor feedback and global warming. Annu. Rev. Energy Environ. 25:441–75
    [Google Scholar]
  56. Held IM, Soden BJ 2006. Robust responses of the hydrological cycle to global warming. J. Clim. 19:5686–99
    [Google Scholar]
  57. Hu Y, Fu Q 2007. Observed poleward expansion of the Hadley circulation since 1979. Atmos. Chem. Phys. 7:5229–36
    [Google Scholar]
  58. Ingram W 2010. A very simple model for the water vapour feedback on climate change. Q. J. R. Meteorol. Soc. 136:30–40
    [Google Scholar]
  59. Johanson CM, Fu Q 2009. Hadley cell widening: model simulations versus observations. J. Clim. 22:2713–25
    [Google Scholar]
  60. Johnson NC, Xie SP 2010. Changes in the sea surface temperature threshold for tropical convection. Nat. Geosci. 3:842–45
    [Google Scholar]
  61. Joshi MM, Gregory JM, Webb MJ, Sexton DMH, Johns TC 2008. Mechanisms for the land/sea warming contrast exhibited by simulations of climate change. Clim. Dyn. 30:455–65
    [Google Scholar]
  62. Kamae Y, Watanabe M, Ogura T, Yoshimori M, Shiogama H 2015. Rapid adjustments of cloud and hydrological cycle to increasing CO2: a review. Curr. Clim. Change Rep. 1:103–13
    [Google Scholar]
  63. Kang SM, Frierson DMW, Held IM 2009. The tropical response to extratropical thermal forcing in an idealized GCM: the importance of radiative feedbacks and convective parameterization. J. Atmos. Sci. 66:2812–27
    [Google Scholar]
  64. Kidston J et al. 2015. Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nat. Geosci. 8:433–40
    [Google Scholar]
  65. Knutson TR, Manabe S 1995. Time-mean response over the tropical Pacific to increased CO2 in a coupled ocean-atmosphere model. J. Clim. 8:2181–99
    [Google Scholar]
  66. Knutson TR, Sirutis JJ, Garner ST, Vecchi GA, Held IM 2008. Simulated reduction in Atlantic hurricane frequency under twenty-first-century warming conditions. Nat. Geosci. 1:359–64
    [Google Scholar]
  67. Lambert FH, Webb MJ 2008. Dependency of global mean precipitation on surface temperature. Geophys. Res. Lett. 35:L16706
    [Google Scholar]
  68. Lambert FH, Webb MJ, Joshi MM 2011. The relationship between land-ocean surface temperature contrast and radiative forcing. J. Clim. 24:3239–56
    [Google Scholar]
  69. Lau KM, Wu HT 2007. Detecting trends in tropical rainfall characteristics, 1979–2003. Int. J. Climatol. 27:979–88
    [Google Scholar]
  70. Le Hir G, Donnadieu Y, Goddéris Y, Pierrehumbert RT, Halverson GP et al. 2009. The Snowball Earth aftermath: exploring the limits of continental weathering processes. Earth Planet. Sci. Lett. 277:453–63
    [Google Scholar]
  71. Lee SS, Tao WK, Jung CH 2014. Aerosol effects on instability, circulations, clouds, and precipitation. Adv. Meteorol. 2014:683950
    [Google Scholar]
  72. Liu Z, Vavrus S, He F, Wen N, Zhong Y 2005. Rethinking tropical ocean response to global warming: the enhanced equatorial warming. J. Clim. 18:4684–700
    [Google Scholar]
  73. Long SM, Xie SP, Liu W 2016. Uncertainty in tropical rainfall projections: atmospheric circulation effect and the ocean coupling. J. Clim. 29:2671–87
    [Google Scholar]
  74. Lorenz DJ, DeWeaver ET 2007. Tropopause height and zonal wind response to global warming in the IPCC scenario integrations. J. Geophys. Res. 112:D10119
    [Google Scholar]
  75. Lu J, Vecchi GA, Reichler T 2007. Expansion of the Hadley cell under global warming. Geophys. Res. Lett. 34:L06805
    [Google Scholar]
  76. Lu J, Zhao B 2012. The role of oceanic feedback in the climate response to doubling CO2. J. Clim. 25:7544–63
    [Google Scholar]
  77. Lucas C, Timbal B, Nguyen H 2014. The expanding tropics: a critical assessment of the observational and modeling studies. WIREs Clim. Change 5:89–112
    [Google Scholar]
  78. Ma J, Foltz GR, Soden BJ, Huang G, He J, Dong C 2016. Will surface winds weaken in response to global warming. Environ. Res. Lett. 11:124012
    [Google Scholar]
  79. Ma J, Xie SP 2013. Regional patterns of sea surface temperature change: a source of uncertainty in future projections of precipitation and atmospheric circulation. J. Clim. 26:2482–501
    [Google Scholar]
  80. Ma J, Xie SP, Kosaka Y 2012. Mechanisms for tropical tropospheric circulation change in response to global warming. J. Clim. 25:2979–94
    [Google Scholar]
  81. Ma J, Yu JY 2014.a Linking centennial surface warming patterns in the equatorial Pacific to the relative strengths of the Walker and Hadley circulations. J. Atmos. Sci. 71:3454–64
    [Google Scholar]
  82. Ma J, Yu JY 2014.b Paradox in South Asian summer monsoon circulation change: lower tropospheric strengthening and upper tropospheric weakening. Geophys. Res. Lett. 41:2934–40
    [Google Scholar]
  83. Meehl GA, Covey C, Taylor KE, Delworth T, Stouffer RJ et al. 2007. The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull. Am. Meteorol. Soc. 88:1383–94
    [Google Scholar]
  84. Mitas CM, Clement A 2005. Has the Hadley cell been strengthening in recent decades. ? Geophys. Res. Lett. 32:L03809
    [Google Scholar]
  85. Mitas CM, Clement A 2006. Recent behavior of the Hadley cell and tropical thermodynamics in climate models and reanalyses. Geophys. Res. Lett. 33:L01810
    [Google Scholar]
  86. Muller CJ, O'Gorman PA 2011. An energetic perspective on the regional response of precipitation to climate change. Nat. Clim. Change 1:266–71
    [Google Scholar]
  87. Neelin JD, Chou C, Su H 2003. Tropical drought regions in global warming and El Niño teleconnections. Geophys. Res. Lett. 30:2275
    [Google Scholar]
  88. Neelin JD, Zeng N 2000. A quasi-equilibrium tropical circulation model—formulation. J. Atmos. Sci. 57:1741–66
    [Google Scholar]
  89. O'Gorman PA, Allan RP, Byrne MP, Previdi M 2012. Energetic constraints on precipitation under climate change. Surv. Geophys. 33:585–608
    [Google Scholar]
  90. O'Gorman PA, Muller C 2010. How closely do changes in surface and column water vapor follow Clausius-Clapeyron scaling in climate change simulations. ? Environ. Res. Lett. 5:025207
    [Google Scholar]
  91. O'Gorman PA, Singh MS 2013. Vertical structure of warming consistent with an upward shift in the middle and upper troposphere. Geophys. Res. Lett. 40:1838–42
    [Google Scholar]
  92. Pierrehumbert RT 1995. Thermostats, radiator fins, and the local runaway greenhouse. J. Atmos. Sci. 52:1784–806
    [Google Scholar]
  93. Pierrehumbert RT 1999. Subtropical water vapor as a mediator of rapid global climate change. Mechanisms of Global Change at Millennial Time Scales PU Clark, RS Webb, LD Keigwin. Geophys. Monogr. Ser. 112 Washington, DC: Am. Geophys. Union
    [Google Scholar]
  94. Pierrehumbert RT 2002. The hydrologic cycle in deep time climate problems. Nature 419:191–98
    [Google Scholar]
  95. Pierrehumbert RT 2010. The surface energy balance. Principles of Planetary Climate386–431 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  96. Pierrehumbert RT, Roca R 1998. Evidence for control of Atlantic subtropical humidity by large scale advection. Geophys. Res. Lett. 25:4537–40
    [Google Scholar]
  97. Qu X, Huang G 2016. The global warming–induced South Asian high change and its uncertainty. J. Clim. 29:2259–73
    [Google Scholar]
  98. Quan XW, Diaz HF, Hoerling MP 2004. Change in the tropical Hadley cell since 1950. The Hadley Circulation: Past, Present, and Future HF Diaz, RS Bradley New York: Cambridge Univ. Press
    [Google Scholar]
  99. Richardson T, Forster P, Andrews T, Parker D 2016. Understanding the rapid precipitation response to CO2 and aerosol forcing on a regional scale. J. Clim. 29:583–88
    [Google Scholar]
  100. Richter I, Xie SP 2008. The muted precipitation increase in global warming simulations: a surface evaporation perspective. J. Geophys. Res. 113:D24118
    [Google Scholar]
  101. Roderick ML, Sun F, Lim WH, Farquhar GD 2014. A general framework for understanding the response of the water cycle to global warming over land and ocean. Hydrol. Earth Syst. Sci. 18:1575–89
    [Google Scholar]
  102. Rodwell MJ, Hoskins BJ 1996. Monsoons and the dynamics of deserts. Q. J. R. Meteorol. Soc. 122:1385–404
    [Google Scholar]
  103. Rowell D, Jones R 2006. Causes and uncertainty of future summer drying over Europe. Clim. Dyn. 27:281–99
    [Google Scholar]
  104. Scheff J, Frierson D 2012. Twenty-first-century multimodel subtropical precipitation declines are mostly midlatitude shifts. J. Clim. 25:4330–47
    [Google Scholar]
  105. Schneider T, O'Gorman PA, Levine XJ 2010. Water vapor and the dynamics of climate changes. Rev. Geophys. 48:RG3001
    [Google Scholar]
  106. Seager R, Naik N, Vecchi GA 2010. Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Clim. 23:4651–68
    [Google Scholar]
  107. Seager R, Ting M, Held I, Kushnir Y, Lu J et al. 2007. Model projections of an imminent transition to a more arid climate in southwestern North America. Science 316:1181–84
    [Google Scholar]
  108. Seidel DJ, Fu Q, Randel WJ, Reichler TJ 2008. Widening of the tropical belt in a changing climate. Nat. Geosci. 1:21–24
    [Google Scholar]
  109. Seo J, Kang SM, Frierson DMW 2014.a Sensitivity of intertropical convergence zone movement to the latitudinal position of thermal forcing. J. Clim. 27:3035–42
    [Google Scholar]
  110. Seo KH, Frierson DMW, Son JH 2014.b A mechanism for future changes in Hadley circulation strength in CMIP5 climate change simulations. Geophys. Res. Lett. 40:5251–58
    [Google Scholar]
  111. Simmons A, Willett K, Jones P, Thorne P, Dee D 2010. Low-frequency variations in surface atmospheric humidity, temperature and precipitation: inferences from reanalyses and monthly gridded observational datasets. J. Geophys. Res. 115:D01110
    [Google Scholar]
  112. Singh MS, O'Gorman PA 2013. Influence of entrainment on the thermal stratification in simulations of radiative-convective equilibrium. Geophys. Res. Lett. 40:4398–403
    [Google Scholar]
  113. Sobel AH, Camargo SJ 2011. Projected future changes in tropical summer climate. J. Clim. 24:473–87
    [Google Scholar]
  114. Sobel AH, Nilsson J, Polvani LM 2001. The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci. 58:3650–65
    [Google Scholar]
  115. Solomon A, Newman M 2012. Reconciling disparate twentieth-century Indo-Pacific ocean temperature trends in the instrumental record. Nat. Clim. Change 2:691–99
    [Google Scholar]
  116. Stephens GL, Ellis TD 2008. Controls of global-mean precipitation increases in global warming GCM experiments. J. Clim. 21:6141–55
    [Google Scholar]
  117. Su H, Jiang JH, Neelin JD, Shen TJ, Zhai C et al. 2017. Tightening of tropical ascent and high clouds key to precipitation change in a warmer climate. Nat. Commun. 8:15771
    [Google Scholar]
  118. Su H, Jiang JH, Zhai C, Shen TJ, Neelin JD et al. 2014. Weakening and strengthening structures in the Hadley circulation change under global warming and implications for cloud response and climate sensitivity. J. Geophys. Res. 119:5787–805
    [Google Scholar]
  119. Sugi M, Yoshimura J 2003. A mechanism of tropical precipitation change due to CO2 increase. J. Clim. 17:238–43
    [Google Scholar]
  120. Sun Y, Solomon S, Dai A, Portmann RW 2007. How often will it rain. ? J. Clim. 20:4081–818
    [Google Scholar]
  121. Sutton RT, Dong B, Gregory JM 2007. Land/sea warming ratio in response to climate change: IPCC AR4 model results and comparison with observations. Geophys. Res. Lett. 34:L02701
    [Google Scholar]
  122. Tanaka HL, Ishizaki N, Kitoh A 2004. Trend and interannual variability of Walker, monsoon and Hadley circulations defined by velocity potential in the upper troposphere. Tellus 56A:250–69
    [Google Scholar]
  123. Taylor KE, Stouffer RJ, Meehl GA 2012. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93:485–98
    [Google Scholar]
  124. Thorpe L, Andrews T 2014. The physical drivers of historical and 21st century global precipitation changes. Environ. Res. Lett. 9:064024
    [Google Scholar]
  125. Tokinaga H, Xie SP 2011. Weakening of the equatorial Atlantic cold tongue over the past six decades. Nat. Geosci. 4:222–26
    [Google Scholar]
  126. Tokinaga H, Xie SP, Timmermann A, McGregor S, Ogata T et al. 2012. Regional patterns of tropical Indo-Pacific climate change: evidence of the Walker circulation weakening. J. Clim. 25:1689–710
    [Google Scholar]
  127. Vecchi GA, Soden BJ 2007.a Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature 450:1066–70
    [Google Scholar]
  128. Vecchi GA, Soden BJ 2007.b Global warming and the weakening of the tropical circulation. J. Clim. 20:4316–40
    [Google Scholar]
  129. Vecchi GA, Soden BJ 2007.c Increased tropical Atlantic wind shear in model projections of global warming. Geophys. Res. Lett. 34:L08702
    [Google Scholar]
  130. Vecchi GA, Soden BJ, Wittenberg AT, Held IM, Leetmaa A, Harrison MJ 2006. Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 441:73–76
    [Google Scholar]
  131. Vecchi GA, Swanson KL, Soden BJ 2008. Whither hurricane activity. Science 322:687–89
    [Google Scholar]
  132. Véspoli de Carvalho LM, Jones C 2016. The Monsoons and Climate Change New York: Springer
    [Google Scholar]
  133. Voigt A, Shaw TA 2015. Circulation response to warming shaped by radiative changes of clouds and water vapor. Nat. Geosci. 8:102–6
    [Google Scholar]
  134. Wang C, Lee SK 2008. Global warming and United States landfalling hurricanes. Geophys. Res. Lett. 35:L02708
    [Google Scholar]
  135. Wang C, Lee SK, Enfield DB 2008. Atlantic warm pool acting as a link between Atlantic multidecadal oscillation and Atlantic tropical cyclone activity. Geochem. Geophys. Geosyst. 9:Q05V03
    [Google Scholar]
  136. Wang Y, Jiang JH, Su H 2015. Atmospheric responses to the redistribution of anthropogenic aerosols. J. Geophys. Res. 120:9625–41
    [Google Scholar]
  137. Watanabe M, Kimoto M 2000. Atmosphere-ocean thermal coupling in the North Atlantic: a positive feedback. Q. J. R. Meteorol. Soc. 126:3343–69 Corrigendum Q. J. R. Meteorol. Soc. 127:733–34
    [Google Scholar]
  138. Webb MJ, Andrews T, Bodas-Salcedo A, Bony S, Bretherton CS et al. 2017. The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6. Geosci. Model Dev. 10:359–84
    [Google Scholar]
  139. Wentz FJ, Ricciardulli L, Hilburn K, Mears C 2007. How much more rain will global warming bring. ? Science 317:233–35
    [Google Scholar]
  140. Williams IN, Pierrehumbert RT, Huber M 2009. Global warming, convective threshold and false thermostats. Geophys. Res. Lett. 36:272–77
    [Google Scholar]
  141. Xie SP, Deser C, Vecchi GA, Collins M, Delworth TL et al. 2015. Towards predictive understanding of regional climate change. Nat. Clim. Change 5:921–30
    [Google Scholar]
  142. Xie SP, Deser C, Vecchi GA, Ma J, Teng H, Wittenberg AT 2010. Global warming pattern formation: sea surface temperature and rainfall. J. Clim. 23:966–86
    [Google Scholar]
  143. Xie SP, Philander SGH 1994. A coupled ocean-atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus 46A:340–50
    [Google Scholar]
  144. Yang F, Kumar A, Schlesinger ME, Wang W 2003. Intensity of hydrological cycles in warmer climates. J. Clim. 16:2419–23
    [Google Scholar]
  145. Yu L 2007. Global variations in oceanic evaporation (1958–2005): the role of the changing wind speed. J. Clim. 20:5376–90
    [Google Scholar]
  146. Zelinka MD, Hartmann DL 2011. The observed sensitivity of high clouds to mean surface temperature anomalies in the tropics. J. Geophys. Res. 116:D23103
    [Google Scholar]
  147. Zeng N, Neelin JD, Chou C 2000. A quasi-equilibrium tropical circulation model—implementation and simulation. J. Atmos. Sci. 57:1767–96
    [Google Scholar]
  148. Zhang X et al. 2007. Detection of human influence on twentieth-century precipitation trends. Nature 448:461–65
    [Google Scholar]
  149. Zhao M, Held IM 2012. TC-permitting GCM simulations of hurricane frequency response to sea surface temperature anomalies projected for the late 21st century. J. Clim. 25:2995–3009
    [Google Scholar]
  150. Zhou YP, Xu KM, Sud YC, Betts AK 2011. Recent trends of the tropical hydrological cycle inferred from Global Precipitation Climatology Project and International Satellite Cloud Climatology Project data. J. Geophys. Res. 116:D09101
    [Google Scholar]
/content/journals/10.1146/annurev-earth-082517-010102
Loading
/content/journals/10.1146/annurev-earth-082517-010102
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error