1932

Abstract

Phylogenetic comparative methods are important tools in biology, providing insights into the way traits evolve. There are many technical resources describing how these methods work. Our aim here is to complement these with an overview of the types of biological questions that can be addressed by different methods and to outline potential pitfalls and considerations when embarking on comparative studies. First, we introduce what comparative methods are and why they are important. Second, we outline how they can be used to understand when, where, and how frequently traits evolve. Third, we examine how the coevolution of traits within and between species can be studied, along with patterns of causality. Finally, we discuss how to approach comparative analyses and the ways in which different types of data, such as published relationships, omic, and remote sensing data, can be integrated.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-102221-050754
2024-11-04
2025-02-07
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/55/1/annurev-ecolsys-102221-050754.html?itemId=/content/journals/10.1146/annurev-ecolsys-102221-050754&mimeType=html&fmt=ahah

Literature Cited

  1. Adams DC. 2008.. Phylogenetic meta-analysis. . Evol. Int. J. Org. Evol. 62:(3):56772
    [Crossref] [Google Scholar]
  2. Adams DC, Collyer ML. 2019.. Phylogenetic comparative methods and the evolution of multivariate phenotypes. . Annu. Rev. Ecol. Evol. Syst. 50::40525
    [Crossref] [Google Scholar]
  3. Alvarado-Serrano DF, Knowles LL. 2014.. Ecological niche models in phylogeographic studies: applications, advances and precautions. . Mol. Ecol. Resour. 14:(2):23348
    [Crossref] [Google Scholar]
  4. Alves JM, Prado-López S, Cameselle-Teijeiro JM, Posada D. 2019.. Rapid evolution and biogeographic spread in a colorectal cancer. . Nat. Commun. 10::5139
    [Crossref] [Google Scholar]
  5. Arenas M. 2022.. Methodologies for microbial ancestral sequence reconstruction. . In Environmental Microbial Evolution: Methods and Protocols, ed. H Luo , pp. 283303. New York:: Springer
    [Google Scholar]
  6. Arnold C, Nunn CL. 2010.. Phylogenetic targeting of research effort in evolutionary biology. . Am. Nat. 176:(5):60112
    [Crossref] [Google Scholar]
  7. Assaf Y, Bouznach A, Zomet O, Marom A, Yovel Y. 2020.. Conservation of brain connectivity and wiring across the mammalian class. . Nat. Neurosci. 23:(7):8058
    [Crossref] [Google Scholar]
  8. Axelrod DI. 1972.. Edaphic aridity as a factor in angiosperm evolution. . Am. Nat. 106:(949):31120
    [Crossref] [Google Scholar]
  9. Ayuso-Fernández I, Rencoret J, Gutiérrez A, Ruiz-Dueñas FJ, Martínez AT. 2019.. Peroxidase evolution in white-rot fungi follows wood lignin evolution in plants. . PNAS 116:(36):179005
    [Crossref] [Google Scholar]
  10. Ayuso-Fernández I, Ruiz-Dueñas FJ, Martínez AT. 2018.. Evolutionary convergence in lignin-degrading enzymes. . PNAS 115:(25):642833
    [Crossref] [Google Scholar]
  11. Baker RR, Parker GA. 1979.. The evolution of bird coloration. . Philos. Trans. R. Soc. B 2871018::63130
    [Google Scholar]
  12. Barua A, Mikheyev AS. 2019.. Many options, few solutions: Over 60 My snakes converged on a few optimal venom formulations. . Mol. Biol. Evol. 36:(9):196474
    [Crossref] [Google Scholar]
  13. Basu DN, Bhaumik V, Kunte K. 2023.. The tempo and mode of character evolution in the assembly of mimetic communities. . PNAS 120:(1):e2203724120
    [Crossref] [Google Scholar]
  14. Baum DA, Smith SD. 2012.. Tree Thinking: An Introduction to Phylogenetic Biology. Greenwood Village, CO:: Roberts
    [Google Scholar]
  15. Bensch HM, O'Connor EA, Cornwallis CK. 2021.. Living with relatives offsets the harm caused by pathogens in natural populations. . eLife 10::e66649
    [Crossref] [Google Scholar]
  16. Bergeron LA, Besenbacher S, Zheng J, Li P, Bertelsen MF, et al. 2023.. Evolution of the germline mutation rate across vertebrates. . Nature 615:(7951):28591
    [Crossref] [Google Scholar]
  17. Boettiger C, Coop G, Ralph P. 2012.. Is your phylogeny informative? Measuring the power of comparative methods. . Evol. Int. J. Org. Evol. 66:(7):224051
    [Crossref] [Google Scholar]
  18. Bollback JP. 2006.. SIMMAP: Stochastic character mapping of discrete traits on phylogenies. . BMC Bioinform. 7::88
    [Crossref] [Google Scholar]
  19. Boomsma JJ. 2007.. Kin selection versus sexual selection: why the ends do not meet. . Curr. Biol. 17:(16):R67383
    [Crossref] [Google Scholar]
  20. Bowles AMC, Bechtold U, Paps J. 2020.. The origin of land plants is rooted in two bursts of genomic novelty. . Curr. Biol. 30:(3):53036.e2
    [Crossref] [Google Scholar]
  21. Boyko JD, Beaulieu JM. 2021.. Generalized hidden Markov models for phylogenetic comparative datasets. . Methods Ecol. Evol. 12:(3):46878
    [Crossref] [Google Scholar]
  22. Budd GE, Mann RP. 2023.. Two notorious nodes: a critical examination of relaxed molecular clock age estimates of the bilaterian animals and placental mammals. . Syst. Biol. 73:(1):22334
    [Crossref] [Google Scholar]
  23. Bürkner P-C. 2017.. brms: an R package for Bayesian multilevel models using Stan. . J. Stat. Softw. 80::128
    [Crossref] [Google Scholar]
  24. Carvalho P, Diniz-Filho JAF, Bini LM. 2006.. Factors influencing changes in trait correlations across species after using phylogenetic independent contrasts. . Evol. Ecol. 20:(6):591602
    [Crossref] [Google Scholar]
  25. Cassemiro FAS, Albert JS, Antonelli A, Menegotto A, Wüest RO, et al. 2023.. Landscape dynamics and diversification of the megadiverse South American freshwater fish fauna. . PNAS 120:(2):e2211974120
    [Crossref] [Google Scholar]
  26. Clutton-Brock TH, Harvey PH. 1977.. Primate ecology and social organization. . J. Zool. 183:(1):139
    [Crossref] [Google Scholar]
  27. Cooney CR, Bright JA, Capp EJR, Chira AM, Hughes EC, et al. 2017.. Mega-evolutionary dynamics of the adaptive radiation of birds. . Nature 542:(7641):34447
    [Crossref] [Google Scholar]
  28. Cornwallis CK, van ’t Padje A, Ellers J, Klein M, Jackson R, et al. 2023.. Symbioses shape feeding niches and diversification across insects. . Nat. Ecol. Evol. 7::102244
    [Crossref] [Google Scholar]
  29. Cornwallis CK, West SA, Davis KE, Griffin AS. 2010.. Promiscuity and the evolutionary transition to complex societies. . Nature 466:(7309):96972
    [Crossref] [Google Scholar]
  30. Davies NB, Krebs JR. 2009.. An Introduction to Behavioural Ecology. Hoboken, NJ:: John Wiley & Sons. , 3rd ed..
    [Google Scholar]
  31. Debastiani VJ, Bastazini VAG, Pillar VD. 2021.. Using phylogenetic information to impute missing functional trait values in ecological databases. . Ecol. Inform. 63::101315
    [Crossref] [Google Scholar]
  32. Dewar AE, Thomas JL, Scott TW, Wild G, Griffin AS, et al. 2021.. Plasmids do not consistently stabilize cooperation across bacteria but may promote broad pathogen host-range. . Nat. Ecol. Evol. 5:(12):162436
    [Crossref] [Google Scholar]
  33. Dillard JR, Westneat DF. 2016.. Disentangling the correlated evolution of monogamy and cooperation. . Trends Ecol. Evol. 31:(7):50313
    [Crossref] [Google Scholar]
  34. Dismukes W, Braga MP, Hembry DH, Heath TA, Landis MJ. 2022.. Cophylogenetic methods to untangle the evolutionary history of ecological interactions. . Annu. Rev. Ecol. Evol. Syst. 53::27598
    [Crossref] [Google Scholar]
  35. dos Reis M, Donoghue PCJ, Yang Z. 2016.. Bayesian molecular clock dating of species divergences in the genomics era. . Nat. Rev. Genet. 17:(2):7180
    [Crossref] [Google Scholar]
  36. Douglas AE. 2022.. Insects and Their Beneficial Microbes. Princeton, NJ:: Princeton Univ. Press
    [Google Scholar]
  37. Eckerström-Liedholm S, Sowersby W, Morozov S, van der Bijl W, Rowiński PK, et al. 2019.. Macroevolutionary evidence suggests trait-dependent coevolution between behavior and life-history. . Evolution 73:(11):231223
    [Crossref] [Google Scholar]
  38. Felsenstein J. 1985.. Phylogenies and the comparative method. . Am. Nat. 125:(1):115
    [Crossref] [Google Scholar]
  39. Felsenstein J. 1988.. Phylogenies and quantitative characters. . Annu. Rev. Ecol. Syst. 19::44571
    [Crossref] [Google Scholar]
  40. Felsenstein J. 2003.. Inferring Phylogenies. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  41. Floudas D, Binder M, Riley R, Barry K, Blanchette RA, et al. 2012.. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. . Science 336:(6089):171519
    [Crossref] [Google Scholar]
  42. Foo YZ, O'Dea RE, Koricheva J, Nakagawa S, Lagisz M. 2021.. A practical guide to question formation, systematic searching and study screening for literature reviews in ecology and evolution. . Methods Ecol. Evol. 12:(9):170520
    [Crossref] [Google Scholar]
  43. Freckleton RP. 2009.. The seven deadly sins of comparative analysis. . J. Evol. Biol. 22:(7):136775
    [Crossref] [Google Scholar]
  44. Frumhoff PC, Reeve HK. 1994.. Using phylogenies to test hypotheses of adaptation: a critique of some current proposals. . Evolution 48:(1):17280
    [Crossref] [Google Scholar]
  45. Gallinat AS, Pearse WD. 2021.. Phylogenetic generalized linear mixed modeling presents novel opportunities for eco-evolutionary synthesis. . Oikos 130:(5):66979
    [Crossref] [Google Scholar]
  46. Garamszegi LZ, ed. 2014.. Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology: Concepts and Practice. Berlin:: Springer
    [Google Scholar]
  47. Garcia M, Theunissen F, Sèbe F, Clavel J, Ravignani A, et al. 2020.. Evolution of communication signals and information during species radiation. . Nat. Commun. 11:(1):4970
    [Crossref] [Google Scholar]
  48. Germain RR, Feng S, Chen G, Graves GR, Tobias JA, et al. 2023.. Species-specific traits mediate avian demographic responses under past climate change. . Nat. Ecol. Evol. 7:(6):86272
    [Crossref] [Google Scholar]
  49. Ghoul M, Andersen SB, Marvig RL, Johansen HK, Jelsbak L, et al. 2023.. Long-term evolution of antibiotic tolerance in Pseudomonas aeruginosa lung infections. . Evol. Lett. 7:(6):389400
    [Crossref] [Google Scholar]
  50. Gingerich PD. 2019.. Rates of Evolution: A Quantitative Synthesis. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  51. Goberna M, Verdú M. 2016.. Predicting microbial traits with phylogenies. . ISME J. 10:(4):95967
    [Crossref] [Google Scholar]
  52. Goolsby EW. 2015.. Phylogenetic comparative methods for evaluating the evolutionary history of function-valued traits. . Syst. Biol. 64:(4):56878
    [Crossref] [Google Scholar]
  53. Grafen A. 1989.. The phylogenetic regression. . Philos. Trans. R. Soc. B 326:(1233):11957
    [Google Scholar]
  54. Hadfield JD, Krasnov BR, Poulin R, Nakagawa S. 2014.. A tale of two phylogenies: comparative analyses of ecological interactions. . Am. Nat. 183:(2):17487
    [Crossref] [Google Scholar]
  55. Hadfield JD, Nakagawa S. 2010.. General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters. . J. Evol. Biol. 23:(3):494508
    [Crossref] [Google Scholar]
  56. Hällfors MH, Antão LH, Itter M, Lehikoinen A, Lindholm T, et al. 2020.. Shifts in timing and duration of breeding for 73 boreal bird species over four decades. . PNAS 117:(31):1855765
    [Crossref] [Google Scholar]
  57. Hansen TF, Bolstad GH, Tsuboi M. 2022.. Analyzing disparity and rates of morphological evolution with model-based phylogenetic comparative methods. . Syst. Biol. 71:(5):105472
    [Crossref] [Google Scholar]
  58. Harmon L. 2018.. Phylogenetic Comparative Methods: Learning from Trees. Scotts Valley, CA:: CreateSpace Indep. Publ. Platf.
    [Google Scholar]
  59. Harvey PH, Pagel MD. 1991.. The Comparative Method in Evolutionary Biology. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  60. Healy SD, Rowe C. 2006.. A critique of comparative studies of brain size. . Proc. R. Soc. B 274:(1609):45364
    [Crossref] [Google Scholar]
  61. Hembry DH, Weber MG. 2020.. Ecological interactions and macroevolution: a new field with old roots. . Annu. Rev. Ecol. Evol. Syst. 51::21543
    [Crossref] [Google Scholar]
  62. Hernández CE, Rodríguez-Serrano E, Avaria-Llautureo J, Inostroza-Michael O, Morales-Pallero B, et al. 2013.. Using phylogenetic information and the comparative method to evaluate hypotheses in macroecology. . Methods Ecol. Evol. 4:(5):40115
    [Crossref] [Google Scholar]
  63. Houle D, Bolstad GH, van der Linde K, Hansen TF. 2017.. Mutation predicts 40 million years of fly wing evolution. . Nature 548:(7668):44750
    [Crossref] [Google Scholar]
  64. Housworth EA, Martins EP, Lynch M. 2004.. The phylogenetic mixed model. . Am. Nat. 163:(1):8496
    [Crossref] [Google Scholar]
  65. Ives AR, Garland T Jr. 2014.. Phylogenetic regression for binary dependent variables. . In Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology: Concepts and Practice, ed. LZ Garamszegi , pp. 23161. Berlin:: Springer
    [Google Scholar]
  66. Jukes T, Cantor CR. 1969.. Evolution of protein molecules. . In Mammalian Protein Metabolism, Vol. 3, ed. HN Munro , pp. 21132. New York:: Academic
    [Google Scholar]
  67. Kahrl AF, Snook RR, Fitzpatrick JL. 2021.. Fertilization mode drives sperm length evolution across the animal tree of life. . Nat. Ecol. Evol. 5:(8):115364
    [Crossref] [Google Scholar]
  68. King B, Lee MSY. 2015.. Ancestral state reconstruction, rate heterogeneity, and the evolution of reptile viviparity. . Syst. Biol. 64:(3):53244
    [Crossref] [Google Scholar]
  69. Kverková K, Marhounová L, Polonyiová A, Kocourek M, Zhang Y, et al. 2022.. The evolution of brain neuron numbers in amniotes. . PNAS 119:(11):e2121624119
    [Crossref] [Google Scholar]
  70. Lichter-Marck IH, Baldwin BG. 2023.. Edaphic specialization onto bare, rocky outcrops as a factor in the evolution of desert angiosperms. . PNAS 120:(6):e2214729120
    [Crossref] [Google Scholar]
  71. Logan CJ, Avin S, Boogert N, Buskell A, Cross FR, et al. 2018.. Beyond brain size: uncovering the neural correlates of behavioral and cognitive specialization. . Comp. Cogn. Behav. Rev. 13::5589
    [Crossref] [Google Scholar]
  72. Losos JB. 2008.. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. . Ecol. Lett. 11:(10):9951003
    [Crossref] [Google Scholar]
  73. Losos JB. 2011.. Seeing the forest for the trees: the limitations of phylogenies in comparative biology. . Am. Nat. 177:(6):70927
    [Crossref] [Google Scholar]
  74. Lynch M. 1991.. Methods for the analysis of comparative data in evolutionary biology. . Evolution 45:(5):106580
    [Crossref] [Google Scholar]
  75. Maddison WP. 1990.. A method for testing the correlated evolution of two binary characters: Are gains or losses concentrated on certain branches of a phylogenetic tree?. Evolution 44:(3):53957
    [Crossref] [Google Scholar]
  76. Martins EP. 1994.. Estimating the rate of phenotypic evolution from comparative data. . Am. Nat. 144:(2):193209
    [Crossref] [Google Scholar]
  77. Martins EP. 1996.. Phylogenies and the Comparative Method in Animal Behavior. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  78. Martins EP, Hansen TF. 1997.. Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. . Am. Nat. 149:(4):64667
    [Crossref] [Google Scholar]
  79. May MR, Moore BR. 2020.. A Bayesian approach for inferring the impact of a discrete character on rates of continuous-character evolution in the presence of background-rate variation. . Syst. Biol. 69:(3):53044
    [Crossref] [Google Scholar]
  80. Maynard-Smith J, Holliday R. 1979.. The Evolution of Adaptation by Natural Selection: A Royal Society Discussion Meeting. London, UK:: R. Soc.
    [Google Scholar]
  81. McLean MJ, Bishop PJ, Nakagawa S. 2012.. Male quality, signal reliability and female choice: assessing the expectations of inter-sexual selection. . J. Evol. Biol. 25:(8):151320
    [Crossref] [Google Scholar]
  82. Molina-Venegas R. 2023.. How to get the most out of phylogenetic imputation without abusing it. . Methods Ecol. Evol. 15:(3):45663
    [Crossref] [Google Scholar]
  83. Mouquet N, Devictor V, Meynard CN, Munoz F, Bersier L-F, et al. 2012.. Ecophylogenetics: advances and perspectives. . Biol. Rev. 87:(4):76985
    [Crossref] [Google Scholar]
  84. Muffato M, Louis A, Nguyen NTT, Lucas J, Berthelot C, Roest Crollius H. 2023.. Reconstruction of hundreds of reference ancestral genomes across the eukaryotic kingdom. . Nat. Ecol. Evol. 7:(3):35566
    [Crossref] [Google Scholar]
  85. Nagy LG, Merényi Z, Hegedüs B, Bálint B. 2020.. Novel phylogenetic methods are needed for understanding gene function in the era of mega-scale genome sequencing. . Nucleic Acids Res. 48:(5):220919
    [Crossref] [Google Scholar]
  86. Nakagawa S, de Villemereuil P. 2019.. A general method for simultaneously accounting for phylogenetic and species sampling uncertainty via Rubin's rules in comparative analysis. . Syst. Biol. 68:(4):63241
    [Crossref] [Google Scholar]
  87. Nakagawa S, Johnson PCD, Schielzeth H. 2017.. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. . J. R. Soc. Interface 14:(134):20170213
    [Crossref] [Google Scholar]
  88. Nakagawa S, Lagisz M, Yang Y, Drobniak SM. 2024.. Finding the right power balance: Better study design and collaboration can reduce dependence on statistical power. . PLOS Biol. 22:(1):e3002423
    [Crossref] [Google Scholar]
  89. Nakagawa S, Yang Y, Macartney EL, Spake R, Lagisz M. 2023.. Quantitative evidence synthesis: a practical guide on meta-analysis, meta-regression, and publication bias tests for environmental sciences. . Environ. Evid. 12:(1):8
    [Crossref] [Google Scholar]
  90. Nunn CL. 2011.. The Comparative Approach in Evolutionary Anthropology and Biology. Chicago:: Univ. Chicago Press
    [Google Scholar]
  91. O'Meara BC. 2012.. Evolutionary inferences from phylogenies: a review of methods. . Annu. Rev. Ecol. Evol. Syst. 43::26785
    [Crossref] [Google Scholar]
  92. Opedal ØH, Armbruster WS, Hansen TF, Holstad A, Pélabon C, et al. 2023.. Evolvability and trait function predict phenotypic divergence of plant populations. . PNAS 120:(1):e2203228120
    [Crossref] [Google Scholar]
  93. Pagel M. 1992.. A method for the analysis of comparative data. . J. Theor. Biol. 156:(4):43142
    [Crossref] [Google Scholar]
  94. Pagel M. 1994.. Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. . Proc. Biol. Sci. 255:(1342):3745
    [Crossref] [Google Scholar]
  95. Pagel M. 1997.. Inferring evolutionary processes from phylogenies. . Zool. Scr. 26:(4):33148
    [Crossref] [Google Scholar]
  96. Pagel M. 1999.. Inferring the historical patterns of biological evolution. . Nature 401:(6756):87784
    [Crossref] [Google Scholar]
  97. Pagel M, Meade A. 2006.. Bayesian analysis of correlated evolution of discrete characters by reversible-jump Markov chain Monte Carlo. . Am. Nat. 167:(6):80825
    [Crossref] [Google Scholar]
  98. Pankey M, Plachetzki DC, Macartney KJ, Gastaldi M, Slattery M, et al. 2022.. Cophylogeny and convergence shape holobiont evolution in sponge–microbe symbioses. . Nat. Ecol. Evol. 6:(6):75062
    [Crossref] [Google Scholar]
  99. Pinseel E, Janssens SB, Verleyen E, Vanormelingen P, Kohler TJ, et al. 2020.. Global radiation in a rare biosphere soil diatom. . Nat. Commun. 11::2382
    [Crossref] [Google Scholar]
  100. Powell S, Price SL, Kronauer DJC. 2020.. Trait evolution is reversible, repeatable, and decoupled in the soldier caste of turtle ants. . PNAS 117:(12):660815
    [Crossref] [Google Scholar]
  101. Pyron RA, Burbrink FT. 2014.. Early origin of viviparity and multiple reversions to oviparity in squamate reptiles. . Ecol. Lett. 17:(1):1321
    [Crossref] [Google Scholar]
  102. Revell LJ, Harmon LJ. 2022.. Phylogenetic Comparative Methods in R. Princeton, NJ:: Princeton Univ. Press
    [Google Scholar]
  103. Ridley M. 1983.. The Explanation of Organic Diversity: The Comparative Method and Adaptations for Mating. Oxford, UK:: Clarendon
    [Google Scholar]
  104. Ronquist F, Sanmartín I. 2011.. Phylogenetic methods in biogeography. . Annu. Rev. Ecol. Evol. Syst. 42::44164
    [Crossref] [Google Scholar]
  105. Sackton TB, Grayson P, Cloutier A, Hu Z, Liu JS, et al. 2019.. Convergent regulatory evolution and loss of flight in paleognathous birds. . Science 364:(6435):7478
    [Crossref] [Google Scholar]
  106. Sanchez-Martinez P, Martínez-Vilalta J, Dexter KG, Segovia RA, Mencuccini M. 2020.. Adaptation and coordinated evolution of plant hydraulic traits. . Ecol. Lett. 23:(11):1599610
    [Crossref] [Google Scholar]
  107. Santini L, González-Suárez M, Russo D, Gonzalez-Voyer A, von Hardenberg A, Ancillotto L. 2019.. One strategy does not fit all: determinants of urban adaptation in mammals. . Ecol. Lett. 22:(2):36576
    [Crossref] [Google Scholar]
  108. Sheehan O, Watts J, Gray RD, Bulbulia J, Claessens S, et al. 2023.. Coevolution of religious and political authority in Austronesian societies. . Nat. Hum. Behav. 7:(1):3845
    [Crossref] [Google Scholar]
  109. Simonet C, McNally L. 2021.. Kin selection explains the evolution of cooperation in the gut microbiota. . PNAS 118:(6):e2016046118
    [Crossref] [Google Scholar]
  110. Smith SD, Pennell MW, Dunn CW, Edwards SV. 2020.. Phylogenetics is the new genetics (for most of biodiversity). . Trends Ecol. Evol. 35:(5):41525
    [Crossref] [Google Scholar]
  111. Sorensen D, Gianola D. 2002.. Likelihood, Bayesian, and MCMC Methods in Quantitative Genetics. New York:: Springer
    [Google Scholar]
  112. Sukumaran J, Knowles LL. 2018.. Trait-dependent biogeography: (re)integrating biology into probabilistic historical biogeographical models. . Trends Ecol. Evol. 33:(6):39098
    [Crossref] [Google Scholar]
  113. Szulkin M, Munshi-South J, Charmantier A, eds. 2020.. Urban Evolutionary Biology. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  114. Thorson JT, Maureaud AA, Frelat R, Mérigot B, Bigman JS, et al. 2023.. Identifying direct and indirect associations among traits by merging phylogenetic comparative methods and structural equation models. . Methods Ecol. Evol. 14:(5):125975
    [Crossref] [Google Scholar]
  115. Tobias JA, Ottenburghs J, Pigot AL. 2020.. Avian diversity: speciation, macroevolution, and ecological function. . Annu. Rev. Ecol. Evol. Syst. 51::53360
    [Crossref] [Google Scholar]
  116. Trepel J, le Roux E, Abraham AJ, Buitenwerf R, Kamp J, et al. 2024.. Meta-analysis shows that wild large herbivores shape ecosystem properties and promote spatial heterogeneity. . Nat. Ecol. Evol. 8:(4):70516
    [Crossref] [Google Scholar]
  117. Uyeda JC, Zenil-Ferguson R, Pennell MW. 2018.. Rethinking phylogenetic comparative methods. . Syst. Biol. 67:(6):1091109
    [Crossref] [Google Scholar]
  118. Vamosi JC, Armbruster WS, Renner SS. 2014.. Evolutionary ecology of specialization: insights from phylogenetic analysis. . Proc. R. Soc. B 281:(1795):20142004
    [Crossref] [Google Scholar]
  119. von Hardenberg A, Gonzalez-Voyer A. 2013.. Disentangling evolutionary cause-effect relationships with phylogenetic confirmatory path analysis: phylogenetic path analysis. . Evolution 67:(2):37887
    [Crossref] [Google Scholar]
  120. Walsh B, Lynch M. 2018.. Evolution and Selection of Quantitative Traits. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  121. Watts J, Sheehan O, Atkinson QD, Bulbulia J, Gray RD. 2016.. Ritual human sacrifice promoted and sustained the evolution of stratified societies. . Nature 532:(7598):22831
    [Crossref] [Google Scholar]
  122. Webb CO, Ackerly DD, McPeek MA, Donoghue MJ. 2002.. Phylogenies and community ecology. . Annu. Rev. Ecol. Syst. 33::475505
    [Crossref] [Google Scholar]
  123. Wells MT, Barker FK. 2017.. Big groups attract bad eggs: Brood parasitism correlates with but does not cause cooperative breeding. . Anim. Behav. 133::4756
    [Crossref] [Google Scholar]
  124. Westoby M, Yates L, Holland B, Halliwell B. 2023.. Phylogenetically conservative trait correlation: quantification and interpretation. . J. Ecol. 111:(10):210517
    [Crossref] [Google Scholar]
  125. Whitford M, Klimley AP. 2019.. An overview of behavioral, physiological, and environmental sensors used in animal biotelemetry and biologging studies. . Anim. Biotelemetry 7:(1):26
    [Crossref] [Google Scholar]
  126. Winkelman M. 2014.. Political and demographic-ecological determinants of institutionalised human sacrifice. . Anthropol. Forum. 24:(1):4770
    [Crossref] [Google Scholar]
  127. Wright AM, Bapst DW, Barido-Sottani J, Warnock RCM. 2022.. Integrating fossil observations into phylogenetics using the fossilized birth–death model. . Annu. Rev. Ecol. Evol. Syst. 53::25173
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-102221-050754
Loading
/content/journals/10.1146/annurev-ecolsys-102221-050754
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error