1932

Abstract

Kin discrimination, the differential treatment of conspecifics based on kinship, occurs across the tree of life, from animals to plants to fungi to bacteria. When kin and nonkin interact, the ability to identify kin enables individuals to increase their inclusive fitness by helping kin, harming nonkin, and avoiding inbreeding. For a given species, the strength of selection for kin discrimination mechanisms is influenced by demographic, ecological, and life-history processes that collectively determine the scope for discrimination and the payoffs from kin-biased behavior. In this review, we explore how these processes drive variation in kin discrimination across taxa, highlighting contributions of recent empirical, comparative, and theoretical work to our understanding of when, how, and why kin discrimination evolves.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-102221-051057
2024-11-04
2025-02-18
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/55/1/annurev-ecolsys-102221-051057.html?itemId=/content/journals/10.1146/annurev-ecolsys-102221-051057&mimeType=html&fmt=ahah

Literature Cited

  1. Biernaskie JM. 2011.. Evidence for competition and cooperation among climbing plants. . Proc. R. Soc. B 278::198996
    [Crossref] [Google Scholar]
  2. Biernaskie JM, West SA, Gardner A. 2011.. Are greenbeards intragenomic outlaws?. Evolution 65::272942
    [Crossref] [Google Scholar]
  3. Billiard S, López-Villavicencio M, Hood ME, Giraud T. 2012.. Sex, outcrossing and mating types: unsolved questions in fungi and beyond. . J. Evol. Biol. 25::102038
    [Crossref] [Google Scholar]
  4. Bos N, d'Ettorre P. 2012.. Recognition of social identity in ants. . Front. Psych. 3::83
    [Google Scholar]
  5. Capodeanu-Nägler A, Rapkin J, Sakaluk SK, Hunt J, Steiger S. 2014.. Self-recognition in crickets via on-line processing. . Curr. Biol. 24::R111718
    [Crossref] [Google Scholar]
  6. Caspers BA, Hagelin JC, Paul M, Bock S, Willeke S, Krause ET. 2017.. Zebra Finch chicks recognise parental scent, and retain chemosensory knowledge of their genetic mother, even after egg cross-fostering. . Sci. Rep. 7::12859
    [Crossref] [Google Scholar]
  7. Charlesworth D, Willis JH. 2009.. The genetics of inbreeding depression. . Nat. Rev. Genet. 10::78396
    [Crossref] [Google Scholar]
  8. Clemens AM, Brecht M. 2021.. Neural representations of kinship. . Curr. Opin. Neurobiol. 68::11623
    [Crossref] [Google Scholar]
  9. Cornwallis CK, West SA, Griffin AS. 2009.. Routes to indirect fitness in cooperatively breeding vertebrates: kin discrimination and limited dispersal. . J. Evol. Biol. 22::244557
    [Crossref] [Google Scholar]
  10. Crepy MA, Casal JJ. 2015.. Photoreceptor-mediated kin recognition in plants. . New Phytol. 205::32938
    [Crossref] [Google Scholar]
  11. Cressler CE, McLeod DV, Rozins C, Van Den Hoogen J, Day T. 2016.. The adaptive evolution of virulence: a review of theoretical predictions and empirical tests. . Parasitology 143::91530
    [Crossref] [Google Scholar]
  12. Crozier RH. 1986.. Genetic clonal recognition abilities in marine invertebrates must be maintained by selection for something else. . Evolution 40::11001
    [Crossref] [Google Scholar]
  13. Daniel MJ, Rodd FH. 2021.. Kin recognition in guppies uses self-referencing based on olfactory cues. . Am. Nat. 197::17689
    [Crossref] [Google Scholar]
  14. Dapporto L, Pansolli C, Turillazzi S. 2004.. Hibernation clustering and its consequences for associative nest foundation in Polistes dominulus (Hymenoptera Vespidae). . Behav. Ecol. Sociobiol. 56::31521
    [Crossref] [Google Scholar]
  15. Davies NB, Brooke MDL, Kacelnik A. 1996.. Recognition errors and probability of parasitism determine whether reed warblers should accept or reject mimetic cuckoo eggs. . Proc. R. Soc. B 263::92531
    [Crossref] [Google Scholar]
  16. Davies NB, Hatchwell BJ, Robson T, Burke T. 1992.. Paternity and parental effort in dunnocks Prunella modularis: How good are male chick-feeding rules?. Anim. Behav. 43::72945
    [Crossref] [Google Scholar]
  17. De Tomaso AW. 2018.. Allorecognition and stem cell parasitism: a tale of competition, selfish genes and greenbeards in a basal chordate. . In Origin and Evolution of Biodiversity, ed. P Pontarotti , pp. 13142. Cham, Switzerland:: Springer
    [Google Scholar]
  18. Dudley SA, File AL. 2007.. Kin recognition in an annual plant. . Biol. Lett. 3::43538
    [Crossref] [Google Scholar]
  19. Field J, Accleton C, Foster WA. 2018.. Crozier's effect and the acceptance of intraspecific brood parasites. . Curr. Biol. 28::326772
    [Crossref] [Google Scholar]
  20. Fisher HS, Hoekstra HE. 2010.. Competition drives cooperation among closely related sperm of deer mice. . Nature 463::8013
    [Crossref] [Google Scholar]
  21. Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. 2016.. Biofilms: an emergent form of bacterial life. . Nat. Rev. Microbiol. 14::56375
    [Crossref] [Google Scholar]
  22. Fujii S, Kubo KI, Takayama S. 2016.. Non-self- and self-recognition models in plant self-incompatibility. . Nat. Plants 2::16130
    [Crossref] [Google Scholar]
  23. Gardner A, Hardy I, Taylor PD, West SA. 2007.. Spiteful soldiers and sex ratio conflict in polyembryonic parasitoid wasps. . Am. Nat. 169::51933
    [Crossref] [Google Scholar]
  24. Gardner A, West SA. 2010.. Greenbeards. . Evolution 64::2538
    [Crossref] [Google Scholar]
  25. Gilbert OM, Strassmann JE, Queller DC. 2012.. High relatedness in a social amoebae: the role of kin discriminatory segregation. . Proc. R. Soc. B 279::261924
    [Crossref] [Google Scholar]
  26. Giraud T, Yockteng R, López-Villavicencio M, Refrégier G, Hood ME. 2008.. Mating system of the anther smut fungus Microbotryum violaceum: selfing under heterothallism. . Eukaryot. Cell 7::76575
    [Crossref] [Google Scholar]
  27. Giron D, Dunn DW, Hardy IC, Strand MR. 2004.. Aggression by polyembryonic wasp soldiers correlates with kinship but not resource competition. . Nature 430::67679
    [Crossref] [Google Scholar]
  28. Goodwillie C, Kalisz S, Eckert CG. 2005.. The evolutionary enigma of mixed mating systems in plants: occurrence, theoretical explanations, and empirical evidence. . Annu. Rev. Ecol. Evol. Syst. 36::4779
    [Crossref] [Google Scholar]
  29. Goodwillie C, Weber JJ. 2018.. The best of both worlds? A review of delayed selfing in flowering plants. . Am. J. Bot. 105::64155
    [Crossref] [Google Scholar]
  30. Grafen A. 1985.. A geometric view of relatedness. . Ox. Surv. Evol. Biol. 2::2889
    [Google Scholar]
  31. Grafen A. 1990.. Do animals really recognize kin?. Anim. Behav. 39::4254
    [Crossref] [Google Scholar]
  32. Granato ET, Meiller-Legrand TA, Foster KR. 2019.. The evolution and ecology of bacterial warfare. . Curr. Biol. 29::R52137
    [Crossref] [Google Scholar]
  33. Green JP, Franco C, Davidson AJ, Lee V, Stockley P, et al. 2023.. Cryptic kin discrimination during communal lactation in mice favours cooperation between relatives. . Commun. Biol. 6::734
    [Crossref] [Google Scholar]
  34. Green JP, Hatchwell BJ. 2018.. Inclusive fitness consequences of dispersal decisions in a cooperatively breeding bird, the long-tailed tit (Aegithalos caudatus). . PNAS 115::1201116
    [Crossref] [Google Scholar]
  35. Green JP, Holmes AM, Davidson AJ, Paterson S, Stockley P, et al. 2015.. The genetic basis of kin recognition in a cooperatively breeding mammal. . Curr. Biol. 25::263141
    [Crossref] [Google Scholar]
  36. Griffin AS, Alonzo SH, Cornwallis CK. 2013.. Why do cuckolded males provide paternal care?. PLOS Biol. 11::e1001520
    [Crossref] [Google Scholar]
  37. Gruenheit N, Parkinson K, Stewart B, Howie JA, Wolf JB, Thompson CR. 2017.. A polychromatic ‘greenbeard’ locus determines patterns of cooperation in a social amoeba. . Nat. Commun. 8::14171
    [Crossref] [Google Scholar]
  38. Hain TJ, Neff BD. 2006.. Promiscuity drives self-referent kin recognition. . Curr. Biol. 16::180711
    [Crossref] [Google Scholar]
  39. Hamilton WD. 1964.. The genetical evolution of social behaviour. I. . J. Theor. Biol. 7::116
    [Crossref] [Google Scholar]
  40. Hamilton WD. 1970.. Selfish and spiteful behaviour in an evolutionary model. . Nature 228::121820
    [Crossref] [Google Scholar]
  41. Hatchwell BJ, Gullett PR, Adams MJ. 2014.. Helping in cooperatively breeding long-tailed tits: a test of Hamilton's rule. . Philos. Trans. R. Soc. B 369::20130565
    [Crossref] [Google Scholar]
  42. Hauber ME, Sherman PW. 2001.. Self-referent phenotype matching: theoretical considerations and empirical evidence. . Trends Neurosci. 24::60916
    [Crossref] [Google Scholar]
  43. Hawlena H, Bashey F, Lively CM. 2010.. The evolution of spite: population structure and bacteriocin-mediated antagonism in two natural populations of Xenorhabdus bacteria. . Evolution 64::3198204
    [Crossref] [Google Scholar]
  44. Hepper PG. 1986.. Kin recognition: functions and mechanisms a review. . Biol. Rev. 61::6393
    [Crossref] [Google Scholar]
  45. Hiscock SJ, Kües U. 1999.. Cellular and molecular mechanisms of sexual incompatibility in plants and fungi. . Int. Rev. Cytol. 193::165295
    [Crossref] [Google Scholar]
  46. Holman L, Van Zweden JS, Linksvayer TA, D'Ettorre P. 2013.. Crozier's paradox revisited: maintenance of genetic recognition systems by disassortative mating. . BMC Evol. Biol. 13::211
    [Crossref] [Google Scholar]
  47. Igic B, Lande R, Kohn JR. 2008.. Loss of self-incompatibility and its evolutionary consequences. . Int. J. Plant Sci. 169::93104
    [Crossref] [Google Scholar]
  48. Inglis RF, Roberts PG, Gardner A, Buckling A. 2011.. Spite and the scale of competition in Pseudomonas aeruginosa. . Am. Nat. 178::27685
    [Crossref] [Google Scholar]
  49. Jordan WC, Bruford MW. 1998.. New perspectives on mate choice and the MHC. . Heredity 81::12733
    [Crossref] [Google Scholar]
  50. Kamiya T, O'Dwyer K, Westerdahl H, Senior A, Nakagawa S. 2014.. A quantitative review of MHC-based mating preference: the role of diversity and dissimilarity. . Mol. Ecol. 23::515163
    [Crossref] [Google Scholar]
  51. Karban R, Shiojiri K, Ishizaki S, Wetzel WC, Evans RY. 2013.. Kin recognition affects plant communication and defence. . Proc. R. Soc. B 280::20123062
    [Crossref] [Google Scholar]
  52. Keller LF, Waller DM. 2002.. Inbreeding effects in wild populations. . Trends Ecol. Evol. 17::23041
    [Crossref] [Google Scholar]
  53. Kilner RM, Langmore NE. 2011.. Cuckoos versus hosts in insects and birds: adaptations, counter-adaptations and outcomes. . Biol. Rev. 86::83652
    [Crossref] [Google Scholar]
  54. Krakauer AH. 2005.. Kin selection and cooperative courtship in wild turkeys. . Nature 434::6972
    [Crossref] [Google Scholar]
  55. Labov JB. 1980.. Factors influencing infanticidal behavior in wild male house mice (Mus musculus). . Behav. Ecol. Sociobiol. 6::297303
    [Crossref] [Google Scholar]
  56. Lacy RC, Sherman PW. 1983.. Kin recognition by phenotype matching. . Am. Nat. 121::489512
    [Crossref] [Google Scholar]
  57. Leedale AE, Lachlan RF, Robinson EJ, Hatchwell BJ. 2020a.. Helping decisions and kin recognition in long-tailed tits: Is call similarity used to direct help towards kin?. Philos. Trans. R. Soc. B. 375::20190565
    [Crossref] [Google Scholar]
  58. Leedale AE, Li J, Hatchwell BJ. 2020b.. Kith or kin? Familiarity as a cue to kinship in social birds. . Front. Ecol. Evol. 8::77
    [Crossref] [Google Scholar]
  59. Leedale AE, Simeoni M, Sharp SP, Green JP, Slate J, et al. 2020c.. Cost, risk, and avoidance of inbreeding in a cooperatively breeding bird. . PNAS 117::1572430
    [Crossref] [Google Scholar]
  60. Lehmann L, Bargum K, Reuter M. 2006.. An evolutionary analysis of the relationship between spite and altruism. . J. Evol. Biol. 19::150716
    [Crossref] [Google Scholar]
  61. Lehmann L, Feldman MW, Rousset F. 2009.. On the evolution of harming and recognition in finite panmictic and infinite structured populations. . Evolution 63::2896913
    [Crossref] [Google Scholar]
  62. Lehmann L, Mullon C, Akçay E, Van Cleve J. 2016.. Invasion fitness, inclusive fitness, and reproductive numbers in heterogeneous populations. . Evolution 70::1689702
    [Crossref] [Google Scholar]
  63. Leslie JF, Raju NB. 1985.. Recessive mutations from natural populations of Neurospora crassa that are expressed in the sexual diplophase. . Genetics 111::75977
    [Crossref] [Google Scholar]
  64. Li XY, Kokko H. 2019.. Sex-biased dispersal: a review of the theory. . Biol. Rev. 94::72136
    [Crossref] [Google Scholar]
  65. Lightfoot JW, Wilecki M, Rödelsperger C, Moreno E, Susoy V, et al. 2019.. Small peptide–mediated self-recognition prevents cannibalism in predatory nematodes. . Science 364::8689
    [Crossref] [Google Scholar]
  66. Lihoreau M, Rivault C, van Zweden JS. 2016.. Kin discrimination increases with odor distance in the German cockroach. . Behav. Ecol. 27::1694701
    [Google Scholar]
  67. Logan DW, Brunet LJ, Webb WR, Cutforth T, Ngai J, Stowers L. 2012.. Learned recognition of maternal signature odors mediates the first suckling episode in mice. . Curr. Biol. 22::19982007
    [Crossref] [Google Scholar]
  68. Madgwick PG, Belcher LJ, Wolf JB. 2019.. Greenbeard genes: theory and reality. . Trends Ecol. Evol. 34::1092103
    [Crossref] [Google Scholar]
  69. Malloure BD, James TY. 2013.. Inbreeding depression in urban environments of the bird's nest fungus Cyathus stercoreus (Nidulariaceae: Basidiomycota). . Heredity 110::35562
    [Crossref] [Google Scholar]
  70. Manning CJ, Wakeland EK, Potts WK. 1992.. Communal nesting patterns in mice implicate MHC genes in kin recognition. . Nature 360::58183
    [Crossref] [Google Scholar]
  71. Mateo JM. 2003.. Kin recognition in ground squirrels and other rodents. . J. Mammal. 84::116381
    [Crossref] [Google Scholar]
  72. McDonald PG. 2012.. Cooperative bird differentiates between the calls of different individuals, even when vocalizations were from completely unfamiliar individuals. . Biol. Lett. 8::36568
    [Crossref] [Google Scholar]
  73. McDonald PG, Wright J. 2011.. Bell miner provisioning calls are more similar among relatives and are used by helpers at the nest to bias their effort towards kin. . Proc. R. Soc. B 278::340311
    [Crossref] [Google Scholar]
  74. Nieuwenhuis BP, Tusso S, Bjerling P, Stångberg J, Wolf JB, Immler S. 2018.. Repeated evolution of self-compatibility for reproductive assurance. . Nat. Commun. 9::1639
    [Crossref] [Google Scholar]
  75. Osborne KE, Oldroyd BP. 1999.. Possible causes of reproductive dominance during emergency queen rearing by honeybees. . Anim. Behav. 58::26772
    [Crossref] [Google Scholar]
  76. Pannell JR, Jordan CY. 2022.. Evolutionary transitions between hermaphroditism and dioecy in animals and plants. . Annu. Rev. Ecol. Evol. Syst. 53::183201
    [Crossref] [Google Scholar]
  77. Patel M, West SA, Biernaskie JM. 2020.. Kin discrimination, negative relatedness, and how to distinguish between selfishness and spite. . Evol. Lett. 4::6572
    [Crossref] [Google Scholar]
  78. Paterson S, Hurst JL. 2009.. How effective is recognition of siblings on the basis of genotype?. J. Evol. Biol. 22::187581
    [Crossref] [Google Scholar]
  79. Paterson S, Pemberton JM. 1997.. No evidence for major histocompatibility complex–dependent mating patterns in a free-living ruminant population. . Proc. R. Soc. B 264::181319
    [Crossref] [Google Scholar]
  80. Penn DJ, Frommen JG. 2010.. Kin recognition: an overview of conceptual issues, mechanisms and evolutionary theory. . In Animal Behaviour: Evolution and Mechanisms, ed. P Kappeler , pp. 5585. Heidelberg, Ger:.: Springer
    [Google Scholar]
  81. Penn DJ, Potts W. 1998.. MHC-disassortative mating preferences reversed by cross-fostering. . Proc. R. Soc. B 265::1299306
    [Crossref] [Google Scholar]
  82. Pfennig DW. 1997.. Kinship and cannibalism. . BioScience 47::66775
    [Crossref] [Google Scholar]
  83. Pike VL, Cornwallis CK, Griffin AS. 2021.. Why don't all animals avoid inbreeding?. Proc. R. Soc. B 288::20211045
    [Crossref] [Google Scholar]
  84. Pizzari T, Løvlie H, Cornwallis CK. 2004.. Sex-specific, counteracting responses to inbreeding in a bird. . Proc. R. Soc. B 271::211521
    [Crossref] [Google Scholar]
  85. Pusey A, Wolf M. 1996.. Inbreeding avoidance in animals. . Trends Ecol. Evol. 11::2016
    [Crossref] [Google Scholar]
  86. Queller DC. 1994.. Genetic relatedness in viscous populations. . Evol. Ecol. 8::7073
    [Crossref] [Google Scholar]
  87. Radwan J, Babik W, Kaufman J, Lenz TL, Winternitz J. 2020.. Advances in the evolutionary understanding of MHC polymorphism. . Trends Genet. 36::298311
    [Crossref] [Google Scholar]
  88. Ratnieks FL. 1991.. The evolution of genetic odor-cue diversity in social Hymenoptera. . Am. Nat. 137::20226
    [Crossref] [Google Scholar]
  89. Ratnieks FL, Reeve HK. 1992.. Conflict in single-queen hymenopteran societies: the structure of conflict and processes that reduce conflict in advanced eusocial species. . J. Theor. Biol. 158::3365
    [Crossref] [Google Scholar]
  90. Reeve HK. 1989.. The evolution of conspecific acceptance thresholds. . Am. Nat. 133::40735
    [Crossref] [Google Scholar]
  91. Renner SS. 2014.. The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database. . Am. J. Bot. 101::158896
    [Crossref] [Google Scholar]
  92. Riley MA, Wertz JE. 2002.. Bacteriocins: evolution, ecology, and application. . Annu. Rev. Microbiol. 56::11737
    [Crossref] [Google Scholar]
  93. Rousset F, Roze D. 2007.. Constraints on the origin and maintenance of genetic kin recognition. . Evolution 61::232030
    [Crossref] [Google Scholar]
  94. Sah GP, Wall D. 2020.. Kin recognition and outer membrane exchange (OME) in myxobacteria. . Curr. Opin. Microbiol. 56::8188
    [Crossref] [Google Scholar]
  95. Schmid-Hempel P. 2017.. Parasites and their social hosts. . Trends Parasitol. 33::45362
    [Crossref] [Google Scholar]
  96. Scott TW, Grafen A, West SA. 2022.. Multiple social encounters can eliminate Crozier's paradox and stabilise genetic kin recognition. . Nat. Commun. 13::3902
    [Crossref] [Google Scholar]
  97. Scott TW, Grafen A, West SA. 2023.. Host–parasite coevolution and the stability of genetic kin recognition. . PNAS 120::e2220761120
    [Crossref] [Google Scholar]
  98. Scott TW, Wild G. 2023.. How to make an inclusive-fitness model. . Proc. R. Soc. B 290::20231310
    [Crossref] [Google Scholar]
  99. Sepil I, Radersma R, Santure AW, De Cauwer I, Slate J, Sheldon BC. 2015.. No evidence for MHC class I-based disassortative mating in a wild population of great tits. . J. Evol. Biol. 28::64254
    [Crossref] [Google Scholar]
  100. Sharp SP, McGowan A, Wood MJ, Hatchwell BJ. 2005.. Learned kin recognition cues in a social bird. . Nature 434::112730
    [Crossref] [Google Scholar]
  101. Sheehan MJ, Lee V, Corbett-Detig R, Bi K, Beynon RJ, et al. 2016.. Selection on coding and regu-latory variation maintains individuality in major urinary protein scent marks in wild mice. . PLOS Genet. 12::e1005891
    [Crossref] [Google Scholar]
  102. Sheehan MJ, Nachman MW. 2014.. Morphological and population genomic evidence that human faces have evolved to signal individual identity. . Nat. Commun. 5::4800
    [Crossref] [Google Scholar]
  103. Sheehan MJ, Reeve HK. 2020.. Evolutionarily stable investments in recognition systems explain patterns of discrimination failure and success. . Philos. Trans. R. Soc. B 375::20190465
    [Crossref] [Google Scholar]
  104. Sherborne AL, Thom MD, Paterson S, Jury F, Ollier WE, et al. 2007.. The genetic basis of inbreeding avoidance in house mice. . Curr. Biol. 17::206166
    [Crossref] [Google Scholar]
  105. Sherman PW. 1977.. Nepotism and the evolution of alarm calls: Alarm calls of Belding's ground squirrels warn relatives, and thus are expressions of nepotism. . Science 197::124653
    [Crossref] [Google Scholar]
  106. Sherman PW, Reeve HK, Pfennig DW. 1997.. Recognition systems. . In Behavioural Ecology: An Evolutionary Approach, ed. JR Krebs, NB Davies , pp. 6998. Oxford, UK:: Blackwell
    [Google Scholar]
  107. Strassmann JE. 2016.. Kin discrimination in Dictyostelium social amoebae. . J. Eukaryot. Microbiol. 63::37883
    [Crossref] [Google Scholar]
  108. Strassmann JE, Gilbert OM, Queller DC. 2011.. Kin discrimination and cooperation in microbes. . Annu. Rev. Microbiol. 65::34967
    [Crossref] [Google Scholar]
  109. Tang-Martinez Z. 2001.. The mechanisms of kin discrimination and the evolution of kin recognition in vertebrates: a critical re-evaluation. . Behav. Proc. 53::2140
    [Crossref] [Google Scholar]
  110. Taylor PD. 1992.. Altruism in viscous populations—an inclusive fitness model. . Evol. Ecol. 6::35256
    [Crossref] [Google Scholar]
  111. Thompson FJ, Cant MA, Marshall HH, Vitikainen EI, Sanderson JL, et al. 2017.. Explaining negative kin discrimination in a cooperative mammal society. . PNAS 114::520712
    [Crossref] [Google Scholar]
  112. Tibbetts EA, Dale J. 2007.. Individual recognition: It is good to be different. . Trends Ecol. Evol. 22::52937
    [Crossref] [Google Scholar]
  113. Todrank J, Heth G. 2003.. Odor–genes covariance and genetic relatedness assessments: rethinking odor-based recognition mechanisms in rodents. . Adv. Study Behav. 32::77130
    [Crossref] [Google Scholar]
  114. van Zweden JS, Brask JB, Christensen JH, Boomsma JJ, Linksvayer TA, d'Ettorre P. 2010.. Blending of heritable recognition cues among ant nestmates creates distinct colony gestalt odours but prevents within-colony nepotism. . J. Evol. Biol. 23::1498508
    [Crossref] [Google Scholar]
  115. Vehrencamp SL. 1977.. Relative fecundity and parental effort in communally nesting anis, Crotophaga sulcirostris. . Science 197::4035
    [Crossref] [Google Scholar]
  116. Villinger J, Waldman B. 2012.. Social discrimination by quantitative assessment of immunogenetic similarity. . Proc. R. Soc. B 279::436874
    [Crossref] [Google Scholar]
  117. Waldman B. 1987.. Mechanisms of kin recognition. . J. Theor. Biol. 128::15985
    [Crossref] [Google Scholar]
  118. Walter A, Bilde T. 2022.. Avoiding the tragedy of the commons: Improved group-feeding performance in kin groups maintains foraging cooperation in subsocial Stegodyphus africanus spiders (Araneae, Eresidae). . J. Evol. Biol. 35::39199
    [Crossref] [Google Scholar]
  119. West SA, Murray MG, Machado CA, Griffin AS, Herre EA. 2001.. Testing Hamilton's rule with competition between relatives. . Nature 409::51013
    [Crossref] [Google Scholar]
  120. Wilkinson GS. 1984.. Reciprocal food sharing in the vampire bat. . Nature 308::18184
    [Crossref] [Google Scholar]
  121. Xu Y, Cheng H, Kong C, Meiners SJ. 2021.. Intra-specific kin recognition contributes to inter-specific allelopathy: a case study of allelopathic rice interference with paddy weeds. . Plant Cell Environ. 44::370921
    [Crossref] [Google Scholar]
  122. Zhao H, Zhang Y, Zhang H, Song Y, Zhao F, et al. 2022.. Origin, loss, and regain of self-incompatibility in angiosperms. . Plant Cell 34::57996
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-102221-051057
Loading
/content/journals/10.1146/annurev-ecolsys-102221-051057
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error