1932

Abstract

Fire has been an ecosystem process since plants colonized land over 400 million years ago. Many diverse traits provide a fitness benefit following fires, and these adaptive traits vary with the fire regime. Some of these traits enhance fire survival, while others promote recruitment in the postfire environment. Demonstrating that these traits are fire adaptations is challenging, since many arose early in the paleontological record, although increasingly better fossil records and phylogenetic analysis make timing of these trait origins to fire more certain. Resprouting from the base of stems is the most widely distributed fire-adaptive trait, and it is likely to have evolved under a diversity of disturbance types. The origins of other traits like serotiny, thick bark, fire-stimulated germination, and postfire flowering are more tightly linked to fire. Fire-adaptive traits occur in many environments: boreal and temperate forests, Mediterranean-type climate (MTC) shrublands, savannas, and other grasslands. MTC ecosystems are distinct in that many taxa in different regions have lost the resprouting ability and depend solely on postfire recruitment for postfire recovery. This obligate seeding mode is perhaps the most vulnerable fire-adaptive syndrome in the face of current global change, particularly in light of increasing anthropogenic fire frequency.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-102320-095612
2022-11-02
2024-06-17
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/53/1/annurev-ecolsys-102320-095612.html?itemId=/content/journals/10.1146/annurev-ecolsys-102320-095612&mimeType=html&fmt=ahah

Literature Cited

  1. Ackerly DD 2003. Community assembly, niche conservatism, and adaptive evolution in changing environments. Int. J. Plant Sci. 164:165–84
    [Google Scholar]
  2. Ackerly DD 2009. Evolution, origin and age of lineages in the Californian and Mediterranean floras. J. Biogeogr. 36:1221–33
    [Google Scholar]
  3. Axelrod DI 1958. Evolution of the Madro-Tertiary geoflora. Bot. Rev. 24:433–509
    [Google Scholar]
  4. Belcher CM 2013. Fire Phenomena and the Earth System: An Interdisciplinary Guide to Fire Science Chichester, UK: Wiley-Blackwell
    [Google Scholar]
  5. Bellingham PJ, Sparrow AD 2000. Resprouting as a life history strategy in woody plant communities. Oikos 89:409–16
    [Google Scholar]
  6. Bond WJ 2015. Fires in the Cenozoic: a late flowering of flammable ecosystems. Front. Plant Sci. 5:749
    [Google Scholar]
  7. Bond WJ, Cook GD, Williams RJ 2012. Which trees dominate in savannas? The escape hypothesis and eucalypts in northern Australia. Austral Ecol. 37:678–85
    [Google Scholar]
  8. Bond WJ, Midgley JJ 1995. Kill thy neighbour: an individualistic argument for the evolution of flammability. Oikos 73:79–85
    [Google Scholar]
  9. Bond WJ, Scott AC 2010. Fire and the spread of flowering plants in the Cretaceous. New Phytol. 188:1137–50
    [Google Scholar]
  10. Brown NAC 1993. Seed germination in the fynbos fire ephemeral, Syncarpha vestita (L) B-Nord is promoted by smoke, aqueous extracts of smoke and charred wood derived from burning the ericoid-leaved shrub, Passerina vulgaris Thoday. Int. J. Wildland Fire 3:203–6
    [Google Scholar]
  11. Burrows GE 2021. Gymnosperm resprouting—a review. Plants 10:2551
    [Google Scholar]
  12. Byers BA, DeSoto L, Chaney D, Ash SR, Byers AB et al. 2020. Fire-scarred fossil tree from the Late Triassic shows a pre-fire drought signal. Sci Rep. 10:20104
    [Google Scholar]
  13. Bytebier B, Antonelli A, Bellstedt DU, Linder HP 2011. Estimating the age of fire in the Cape flora of South Africa from an orchid phylogeny. Proc. R. Soc. B 278:188–95
    [Google Scholar]
  14. Castellanos MC, González-Martínez SC, Pausas JG 2015. Field heritability of a plant adaptation to fire in heterogeneous landscapes. Mol. Ecol. 24:5633–42
    [Google Scholar]
  15. Chalwell STS, Ladd PG 2005. Stem demography and post fire recruitment of Podocarpus drouynianaus: a resprouting non-serotinous conifer. Bot. J. Linn. Soc. 149:433–49
    [Google Scholar]
  16. Charles-Dominique T, Beckett H, Midgley GF, Bond WJ 2015. Bud protection: a key trait for species sorting in a forest-savanna mosaic. New Phytol. 207:1052–60
    [Google Scholar]
  17. Charnov EL, Schaffer WM 1973. Life-history consequences of natural selection: Cole's result revisited. Am. Nat. 107:791–93
    [Google Scholar]
  18. Chen Y, Morton DC, Andela N, van der Werf GR, Giglio L, Randerson JT 2017. A pan-tropical cascade of fire driven by El Niño/Southern Oscillation. Nat. Ecol. Evol. 7:906–11
    [Google Scholar]
  19. Cochrane MA 2003. Fire science for rainforests. Nature 421:913–19
    [Google Scholar]
  20. Collinson ME 2002. The ecology of Cainozoic ferns. Rev. Palaeobot. Palynol. 119:51–68
    [Google Scholar]
  21. Conard SG, Ivanova GA 1997. Wildfire in Russian boreal forests—potential impacts of fire regime characteristics on emissions and global carbon balance estimates. Environ. Pollut. 98:305–13
    [Google Scholar]
  22. Cressler WL 2001. Evidence of earliest known wildfires. Papaios 16:171–74
    [Google Scholar]
  23. Crisp MD, Burrows GE, Cook LG, Thornhill AH, Bowman DMJS 2011. Flammable biomes dominated by eucalypts originated at the Cretaceous–Palaeogene boundary. Nat. Commun. 2:193
    [Google Scholar]
  24. Crisp MD, Cook LG 2013. How was the Australian flora assembled over the last 65 million years? A molecular phylogenetic perspective. Annu. Rev. Ecol. Evol. Syst. 44:303–24
    [Google Scholar]
  25. Cui X, Paterson AM, Wyse SV, Alam MA, Maurin KJL et al. 2020. Shoot flammability of vascular plants is phylogenetically conserved and related to habitat fire-proneness and growth form. Nat. Plants. 6:355–59
    [Google Scholar]
  26. Daibes LF, Pausas JG, Bonani N, Nunes J, Silveira FAO, Fidelis A 2019. Fire and legume germination in a tropical savanna: ecological and historical factors. Ann. Bot. 123:1219–29
    [Google Scholar]
  27. Dantas VL, Batalha MA, Pausas JG 2013. Fire drives functional thresholds on the savanna–forest transition. Ecology 94:2454–63
    [Google Scholar]
  28. de Lange JH, Boucher C 1990. Autecological studies on Audouinia capitata (Bruniaceae). I: Plant-derived smoke as a seed germination cue. S. Afr. J. Bot. 56:700–3
    [Google Scholar]
  29. Del Tredici P 2001. Sprouting in temperate trees: a morphological and ecological review. Bot. Rev. 67:121–40
    [Google Scholar]
  30. Dixon KW, Roche S, Pate JS 1995. The promotive effect of smoke derived from burnt native vegetation on seed germination of Western Australian plants. Oecologia 101:185–92
    [Google Scholar]
  31. Downes KS, Lamont BB, Light ME, van Staden J 2010. The fire ephemeral Tersonia cyathiflora (Gyrostemonaceae) germinates in response to smoke but not the butenolide 3-methyl-2H-furol[2,3-c]pyran-2-one. Ann. Bot. 106:381–84
    [Google Scholar]
  32. Downes KS, Light ME, Pošta M, Kohout L, van Staden J 2014. Do fire-related cues, including smoke-water, karrikinolide, glyceronitrile and nitrate, stimulate the germination of 17 Anigozanthos taxa and Blancoa canescens (Haemodoraceae)?. Aust. J. Bot. 62:347–58
    [Google Scholar]
  33. Downing WM, Krawchuk MA, Meigs GW, Haire SL, Coop JD et al. 2019. Influence of fire refugia spatial pattern on post-fire forest recovery in Oregon's Blue Mountains. Landscape Ecol. 34:771–92
    [Google Scholar]
  34. Enright NJ, Fontaine JB, Bowman DMJS, Bradstock RA, Williams RJ 2015. Interval squeeze: altered fire regimes and demographic responses interact to threaten woody species persistence as climate changes. Front. Ecol. Environ. 13:265–72
    [Google Scholar]
  35. Falcon-Lang HJ 2000. Fire ecology in the Carboniferous tropical zone. Palaeogeogr. Palaeoclimatol. Palaeoecol. 164:355–71
    [Google Scholar]
  36. Figueiral I, Mosbrugger V, Rowe NP, Utescher T, Jones TP et al. 2002. Role of charcoal analysis for interpreting vegetation change and paleoclimate in the Miocene Rhine Embayment (Germany). Palaios 17:347–65
    [Google Scholar]
  37. Flematti GR, Ghisalberti EL, Dixon KW, Trengove RD 2004. A compound from smoke that promotes seed germination. Science 305:977
    [Google Scholar]
  38. Flematti GR, Merritt DJ, Piggott MJ, Trengove RD, Smith SM et al. 2011. Burning vegetation produces cyanohydrins that liberate cyanide and stimulate seed germination. Nat. Commun. 2:360
    [Google Scholar]
  39. Frederiksen NO 1991. Pulses of middle Eocene to earliest Oligocene climatic deterioration in southern California and the Gulf Coast. Palaios 6:564–71
    [Google Scholar]
  40. Gadgil M, Bossert WH 1970. Life historical consequences of natural selection. Am. Nat. 104:1–24
    [Google Scholar]
  41. Gagnon PR, Passmore HA, Platt WJ, Myers JA, Paine CET, Harms KE 2010. Does pyrogenicity protect burning plants?. Ecology 91:3481–86
    [Google Scholar]
  42. Gould SJ, Vrba ES 1982. Exaptation—a missing term in the science of form. Paleobiology 8:4–15
    [Google Scholar]
  43. Gower ST, Krankina O, Olson RJ, Apps M, Linder S, Wang C 2001. Net primary production and carbon allocation patterns of boreal forest ecosystems. Ecol. Appl. 11:1395–411
    [Google Scholar]
  44. Greenwood D 1994. Palaeobotanical evidence for Tertiary climates. History of the Australian Vegetation: Cretaceous to Recent RS Hill 44–59 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  45. Groom PK, Lamont BB 2015. Plant Life of Southwestern Australia: Adaptations for Survival Berlin: De Gruyter Open Ltd.
    [Google Scholar]
  46. Guzmán B, Vargas P 2009. Historical biogeography and character evolution of Cistaceae (Malvales) based on analysis of plastid rbcL and trnL-trnF sequences. Organ. Div. Evol. 9:83–99
    [Google Scholar]
  47. Hanes CC, Wang X, Jain P, Parisien M-A, Little JM, Flannigan MD 2019. Fire-regime changes in Canada over the last half century. Can. J. For. Res. 49:256–69
    [Google Scholar]
  48. Harris TM 1958. Forest fire in the Mesozoic. J. Ecol. 46:447–53
    [Google Scholar]
  49. He T, Lamont BB, Downes KS 2011. Banksia born to burn. New Phytol 191:184–96
    [Google Scholar]
  50. He T, Pausas JG, Belcher CM, Schwilk DW, Lamont BB 2012. Fire-adapted traits of Pinus arose in the fiery Cretaceous. New Phytol. 194:751–59
    [Google Scholar]
  51. Heckenhauer J, Samuel R, Ashton PS, Turner B, Barfuss MHJ et al. 2017. Phylogenetic analyses of plastid DNA suggest a different interpretation of morphological evolution than those used as the basis for previous classifications of Dipterocarpaceae (Malvales). Bot. J. Linn. Soc. 185:1–26
    [Google Scholar]
  52. Hernández-Serrano A, Verdú M, González-Martínez SC, Pausas JG 2013. Fire structures pine serotiny at different scales. Am. J. Bot. 100:2349–56
    [Google Scholar]
  53. Herrera CM 1992. Historical effects and sorting processes as explanations for contemporary ecological patterns: character syndromes in Mediterranean woody plants. Am. Nat. 140:421–446
    [Google Scholar]
  54. Herring JR 1985. Charcoal fluxes into sediments of the North Pacific Ocean: the Cenozoic of burning. The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, ed. TT Sundquist, WS Broecker 419–42 Washington, DC: Am. Geophys. Union
    [Google Scholar]
  55. Hopper SD 2009. OCBIL theory: towards an integrated understanding of the evolution, ecology and conservation of biodiversity on old, climatically buffered, infertile landscapes. Plant Soil 322:49–86
    [Google Scholar]
  56. Johnson EA 1992. Fire and Vegetation Dynamics: Studies from the North American Boreal Forest Cambridge, UK: Cambridge Univ. Press.
    [Google Scholar]
  57. Keeley JE l991. Seed germination and life history syndromes in the California chaparral. Bot. Rev. 57:81116
    [Google Scholar]
  58. Keeley JE 1993. Smoke-induced flowering in the fire-lily Cyrtanthus ventricosus. S. Afr. J. Bot. 59:638
    [Google Scholar]
  59. Keeley JE 2006. Fire severity and plant age in postfire resprouting of woody plants in sage scrub and chaparral. Madroño 53:373–79
    [Google Scholar]
  60. Keeley JE 2012. Ecology and evolution of pine life histories. Ann. For. Sci. 69:445–53
    [Google Scholar]
  61. Keeley JE, Bond WJ 1997. Convergent seed germination in South African fynbos and Californian chaparral. Plant Ecol. 133:153–67
    [Google Scholar]
  62. Keeley JE, Bond WJ 1999. Mast flowering and semelparity in bamboos: the bamboo fire cycle hypothesis. Am. Nat. 154:383–91
    [Google Scholar]
  63. Keeley JE, Bond WJ, Bradstock RA, Pausas JG, Rundel PW 2012. Fire in Mediterranean Ecosystems: Ecology, Evolution and Management Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  64. Keeley JE, Fotheringham CJ 1997. Trace gas emissions and smoke-induced seed germination. Science 276:1248–50
    [Google Scholar]
  65. Keeley JE, Keeley MB, Bond WJ 1999a. Stem demography and post-fire recruitment of a resprouting serotinous conifer. J. Veget. Sci. 10:69–76
    [Google Scholar]
  66. Keeley JE, Ne'eman G, Fotheringham CJ 1999b. Immaturity risk in a fire-dependent pine. J. Medit. Ecol. 1:41–48
    [Google Scholar]
  67. Keeley JE, Parker TV, Vasey MC 2016. Resprouting and seeding hypotheses: a test of the gap-dependent model using resprouting and obligate seeding subspecies of Arctostaphylos. Plant Ecol 217:743–50
    [Google Scholar]
  68. Keeley JE, Pausas JG 2018. Evolution of “smoke” induced seed germination in pyroendemic plants. S. Afr. J. Bot. 115:251–55
    [Google Scholar]
  69. Keeley JE, Pausas JG 2019. Distinguishing disturbance from perturbations in fire-prone ecosystems. Int. J. Wildland Fire 28:282–87
    [Google Scholar]
  70. Keeley JE, Pausas JG, Rundel PW, Bond WJ, Bradstock RA 2011. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci. 16:406–11
    [Google Scholar]
  71. Keeley JE, Rundel PW 2005. Fire and the Miocene expansion of C4 grasslands. Ecol. Lett. 8:683–90
    [Google Scholar]
  72. Keeley JE, Zedler PH 1998. Evolution of life histories in Pinus. Ecology and Biogeography of Pinus DM Richardson 219–50 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  73. King RA, Menges ES 2018. Effects of heat and smoke on the germination of six Florida scrub species. . South Afr. J. Bot. 115:223–30
    [Google Scholar]
  74. Kumar M, Tewari R, Chatterjee S, Mehrotra NC 2011. Charcoalified plant remains from the Lashly Formation of Allan Hills, Antarctica: evidence of forest fire during the Triassic Period. Episodes 34:109–18
    [Google Scholar]
  75. Ladd PG, Midgley JJ, Nield AP 2013. Serotiny in southern hemisphere conifers. Aust. J. Bot. 61:486–96
    [Google Scholar]
  76. Lamont BB, Downes KS 2011. Fire-stimulated flowering among resprouters and geophytes in Australia and South Africa. Plant Ecol. 212:2111–25
    [Google Scholar]
  77. Lamont BB, El-ahmir SM, Lim SL, Groom PK, He T 2017. Contribution of transition and stabilization processes to speciation is a function of the ancestral trait state and selective environment in Hakea. bioRxiv 20737. https://doi.org/10.1101/207373
    [Crossref]
  78. Lamont BB, He T 2017. Fire-proneness as prerequisite for the evolution of fire-adapted traits. Trends Plant Sci. 22:278–88
    [Google Scholar]
  79. Lamont BB, He T, Yan Z 2019. Evolutionary history of fire-stimulated resprouting, flowering, seed release and germination. Biol. Rev. 94:903–28
    [Google Scholar]
  80. Lamont BB, Pausas JG, He T, Witkowski ETF, Hanley ME 2020. Fire as a selective agent for both serotiny and nonserotiny over space and time. Crit. Rev. Plant Sci. 39:140–72
    [Google Scholar]
  81. Lamont BB, Wiens D 2003. Are seed set and speciation rates always low among species that resprout after fire, and why?. Evol. Ecol. 17:277–92
    [Google Scholar]
  82. Lauder GV, Leroi AM, Rose MR 1993. Adaptations and history. Trends Ecol. Evol. 8:294–97
    [Google Scholar]
  83. Lawson DM, Regan HM, Zedler PH, Franklin J 2010. Cumulative effects of land use, altered fire regime and climate change on persistence of Ceanothus verrucosus, a rare, fire-dependent plant species. Glob. Chang. Biol. 16:2518–29
    [Google Scholar]
  84. Le Maitre DC, Brown PJ 1992. Life cycles and fire-stimulated flowering in geophytes. Fire in South African Mountain Fynbos BW Van Wilgen, DM Richardson, FJ Kruger, HJ Van Hensberge 145–60 Berlin: Springer-Verlag
    [Google Scholar]
  85. Li H-L, Wang W, Mortimer PE, Li R-Q, Li D-Z et al. 2015. Large-scale phylogenetic analyses reveal multiple gains of actinorhizal nitrogen-fixing symbioses in angiosperms associated with climate change. Sci. Rep. 5:14023
    [Google Scholar]
  86. Martin HA 1996. Wildfires in past ages. Proc. Linn. Soc. N.S.W. 116:3–18
    [Google Scholar]
  87. Mason HL 1947. Evolution of certain floristic associations in western North America. Ecol. Monogr. 17:201–10
    [Google Scholar]
  88. Mays C, Cantrill DJ, Bevitt JJ 2017. Polar wildfires and conifer serotiny during the Cretaceous global hothouse. Geology 45:1119–22
    [Google Scholar]
  89. Mezquida ET, Benkman CW 2005. The geographic selection mosaic for squirrels, crossbills and Aleppo pine. J. Evol. Biol. 18:348–57
    [Google Scholar]
  90. Mooney HA, Dunn EL 1970. Convergent evolution of Mediterranean climate evergreen sclerophyll shrubs. Evolution 24:292–303
    [Google Scholar]
  91. Moreira B, Tormo J, Estrelles E, Pausas JG 2010. Disentangling the role of heat and smoke as germination cues in Mediterranean Basin flora. Ann. Bot. 105:627–35
    [Google Scholar]
  92. Mutch RW 1970. Wildland fires and ecosystems—a hypothesis. Ecology 51:1046–51
    [Google Scholar]
  93. Ne'eman G, Arianoutsou M 2021. Mediterranean pines – adaptations to fire. Pines and Their Mixed Forest Ecosystems in the Mediterranean Basin, ed. G Ne'eman, Y Osem 457–80 Cham, Switz: Springer Int. Publ.
    [Google Scholar]
  94. Ojeda F, Brun FG, Vergara JJ 2005. Fire, rain and the selection of seeder and resprouter life-histories in fire-recruiting, woody plants. New Phytol. 168:155–65
    [Google Scholar]
  95. Pausas JG, Alessio GA, Moreira B, Corcobado G 2012. Fires enhance flammability in Ulex parviflorus. New Phytol. 193:18–23
    [Google Scholar]
  96. Pausas JG, Alessio GA, Moreira B, Segarra-Moragues JG 2016. Secondary compounds enhance flammability in a Mediterranean plant. Oecologia 180:103–10
    [Google Scholar]
  97. Pausas JG, Keeley JE 2009. A burning story: the role of fire in the history of life. BioScience 59:593–601
    [Google Scholar]
  98. Pausas JG, Keeley JE 2014. Evolutionary ecology of resprouting and seeding in fire-prone ecosystems. New Phytol. 204:55–65
    [Google Scholar]
  99. Pausas JG, Keeley JE 2017. Epicormic resprouting in fire-prone ecosystems. Trends Plant Sci. 22:1008–15
    [Google Scholar]
  100. Pausas JG, Keeley JE 2021. Wildfires and global change. Front Ecol. Environ. 19:387–95
    [Google Scholar]
  101. Pausas JG, Keeley JE, Schwilk DW 2017. Flammability as an ecological and evolutionary driver. J. Ecol. 105:289–97
    [Google Scholar]
  102. Pausas JG, Lamont BB 2022. Fire-released seed dormancy – a global synthesis. Biol. Rev. 97:161239
    [Google Scholar]
  103. Pausas JG, Lamont BB, Paula S, Appezzato-da-Gloria B, Fidelis A 2018. Unearthing belowground bud banks in fire-prone ecosystems. New Phytol. 217:1435–48
    [Google Scholar]
  104. Pausas JG, Su W-H, Luo C, Shen Z 2021. A shrubby resprouting pine with serotinous cones endemic to Southwest China. Ecology 102:e03282
    [Google Scholar]
  105. Perry DA, Lotan JE 1979. A model of fire selection for serotiny in lodgepole pine. Evolution 33:958–68
    [Google Scholar]
  106. Peterson GL, Abbott PL 1979. Mid-Eocene climatic change, Southwestern California and Northwestern Baja California. Palaeogeogr. Palaeoclimatol. Palaeoecol. 26:73–87
    [Google Scholar]
  107. Pigliucci M, Kaplan J 2000. The fall and rise of Dr Pangloss: adaptationism and the Spandrels paper 20 years later. Trends Ecol. Evol. 15:66–70
    [Google Scholar]
  108. Pivovaroff AL, Emery N, Sharifi MR, Witter M, Keeley JE, Rundel PW 2019. The effect of ecophysiological traits on live fuel moisture content. Fire 2:28
    [Google Scholar]
  109. Probert RJ 2000. The role of temperature in the regulation of seed dormancy and gemination. The Ecology of Regeneration in Plant Communities M Fenner 261–92 Wallingford, UK: CABI
    [Google Scholar]
  110. Reilly MJ, Monleon VJ, Jules ES, Butz RJ 2019. Range-wide population structure and dynamics of a serotinous conifer, knobcone pine (Pinus attenuata L.), under an anthropogenically-altered disturbance regime. For. Ecol. Manag. 441:182–91
    [Google Scholar]
  111. Rogers BM, Soja AJ, Goulden ML, Randerson JT 2015. Influence of tree species on continental differences in boreal fires and climate feedbacks. Nat. Geosci. 8:228–34
    [Google Scholar]
  112. Rundel PW, Arroyo MTK, Cowling RM, Keeley JE, Lamont B et al. 2018. Fire and plant diversification in Mediterranean-climate regions. Front. Plant Sci. 9:851
    [Google Scholar]
  113. Sannikov SN, Goldammer JG 1996. Fire ecology of pine forests of northern Eurasia. Fire in Ecosystems of Boreal Eurasia, ed. JG Goldammer, VV Furyaev 151–67 Dordrecht, Neth: Springer Netherlands
    [Google Scholar]
  114. Schwilk DW 2003. Flammability is a niche-construction trait: Canopy architecture affects fire intensity. Am. Nat. 162:725–33
    [Google Scholar]
  115. Schwilk DW, Ackerly DD 2001. Flammability and serotiny as strategies: correlated evolution in pines. Oikos 94:326–36
    [Google Scholar]
  116. Schwilk DW, Keeley JE 2006. The role of fire refugia in the distribution of Pinus sabiniana (Pinaceae) in the southern Sierra Nevada. Madroño 53:364–72
    [Google Scholar]
  117. Schwilk DW, Kerr B 2003. Genetic niche-hiking: an alternative explanation for the evolution of flammability. Oikos 99:431–42
    [Google Scholar]
  118. Scott AC 2018. Burning Planet: The Story of Fire through Time Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  119. Scott AC, Glasspool IJ 2006. The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. PNAS 103:10861–65
    [Google Scholar]
  120. Simon MF, Grether R, De Queiroz LP, Skema C, Pennington RT, Hughes CE 2009. Recent assembly of the Cerrado, a Neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. PNAS 106:20359–64
    [Google Scholar]
  121. Sloan LC, Barron EJ 1990. “Equable” climates during Earth history?. Geology 18:489–92
    [Google Scholar]
  122. Snyder JR 1984. The role of fire: Mutch ado about nothing?. Oikos 43:404–5
    [Google Scholar]
  123. Tapias R, Climent J, Pardos JA, Gil L 2004. Life histories of Mediterranean pines. Plant Ecol. 171:53–68
    [Google Scholar]
  124. Troumbis AY, Trabaud L 1989. Some questions about flammability in fire ecology. Acta Oecol. 10:167–75
    [Google Scholar]
  125. Turner MG, Braziunas KH, Hansen WD, Harvey BJ 2019. Short-interval severe fire erodes the resilience of subalpine lodgepole pine forests. PNAS 116:11319–28
    [Google Scholar]
  126. Uhl D, Kerp H 2003. Wildfires in the Late Palaeozoic of Central Europe – The Zechstein (Upper Permian) of NW-Hesse (Germany). Palaeogeogr. Palaeoclimatol. Palaeoecol. 199:11–15
    [Google Scholar]
  127. Van Staden J, Jäger AK, Light ME, Burger BV 2004. Isolation of the major germination cue from plant-derived smoke. S. Afr. J. Bot. 70:654–59
    [Google Scholar]
  128. Wells PV 1969. The relation between mode of reproduction and extent of speciation in wood genera of the California chaparral. Evolution 23:264–67
    [Google Scholar]
  129. Wicklow DT 1977. Germination response in Emmenanthe penduliflora (Hydrophyllaceae). Ecology 58:201–5
    [Google Scholar]
  130. Wolfe J 1964. Miocene Floras from Fingerrock Wash Southwestern Nevada. Washington, DC: U.S Gov. Print. Off.
    [Google Scholar]
  131. Zedler PH 1977. Life history attributes of plants and the fire cycle: a case study in chaparral dominated by Cupressus forbesii. Proceedings of the Symposium on Environmental Consequences of Fire and Fuel Management in Mediterranean Ecosystems HA Mooney, CE Conrad 451–58 Gen. Tech. Rep. WO-3 Washington, DC: USDA Forest Service
    [Google Scholar]
  132. Zedler PH 1995. Fire frequency in southern California shrublands: biological effects and management options. Brushfires in California: Ecology and Management JE Keeley, T Scott 101–12 Fairfield, WA: Int. Assoc. Wildland Fire
    [Google Scholar]
  133. Zirondi HL, Ooi MKJ, Fidelis A 2021. Fire-triggered flowering is the dominant post-fire strategy in a tropical savanna. J. Veget. Sci. 32:e12995
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-102320-095612
Loading
/content/journals/10.1146/annurev-ecolsys-102320-095612
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error