1932

Abstract

Animals with close social relationships often have similar microbiomes. These socially structured microbiomes can arise through multiple mechanisms that are often difficult to disentangle, including transmission between social partners or via socially structured, shared environments. Here, we review evidence for socially structured microbiomes and propose methods to differentiate the mechanisms that give rise to them. We discuss the evolutionary implications of these mechanisms for both hosts and their microbiomes, including the possibility that social transmission selects for host-specialized microbiomes. We conclude by identifying outstanding questions related to social microbiomes and their implications for social evolution. We identify new or underutilized approaches like longitudinal study designs, strain-sharing analysis, and culture-based characterization to address these outstanding questions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-102622-030749
2024-11-04
2025-02-12
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/55/1/annurev-ecolsys-102622-030749.html?itemId=/content/journals/10.1146/annurev-ecolsys-102622-030749&mimeType=html&fmt=ahah

Literature Cited

  1. Abdill RJ, Adamowicz EM, Blekhman R. 2022.. Public human microbiome data are dominated by highly developed countries. . PLOS Biol. 20:(2):e3001536. https://doi.org/10.1371/journal.pbio.3001536
    [Crossref] [Google Scholar]
  2. Adler CJ, Malik R, Browne GV, Norris JM. 2016.. Diet may influence the oral microbiome composition in cats. . Microbiome 4:(1):23. https://doi.org/10.1186/s40168-016-0169-y
    [Crossref] [Google Scholar]
  3. Albone ES, Gosden PE, Ware GC, Macdonald DW, Hough NG. 1978.. Bacterial action and chemical signaling in the red fox (Vulpes vulpes) and other mammals. . In Flavor Chemistry of Animal Foods. ACS Symp. Ser. 67 . Washington, DC:: Am. Chem. Soc. https://doi.org/10.1021/bk-1978-0067
    [Google Scholar]
  4. Albone ES, Perry GC. 1976.. Anal sac secretion of the red fox, Vulpes vulpes; volatile fatty acids and diamines: implications for a fermentation hypothesis of chemical recognition. . J. Chem. Ecol. 2:(1):10111. https://doi.org/10.1007/BF00988029
    [Crossref] [Google Scholar]
  5. Allert M, Ferretti P, Johnson KE, Heisel T, Gonia S, et al. 2024.. Assembly, stability, and dynamics of the infant gut microbiome are linked to bacterial strains and functions in mother's milk. . bioRxiv 2024.01.28.577594. https://doi.org/10.1101/2024.01.28.577594
  6. Amaral WZ, Lubach GR, Proctor A, Lyte M, Phillips GJ, Coe CL. 2017.. Social influences on prevotella and the gut microbiome of young monkeys. . Psychosom. Med. 79:(8):88897. https://doi.org/10.1097/PSY.0000000000000454
    [Crossref] [Google Scholar]
  7. Amato KR, Arrieta M-C, Azad MB, Bailey MT, Broussard JL, et al. 2021.. The human gut microbiome and health inequities. . PNAS 118:(25):e2017947118. https://doi.org/10.1073/pnas.2017947118
    [Crossref] [Google Scholar]
  8. Amato KR, Van Belle S, Di Fiore A, Estrada A, Stumpf R, et al. 2017.. Patterns in gut microbiota similarity associated with degree of sociality among sex classes of a neotropical primate. . Microbial Ecol. 74:(1):25058. https://doi.org/10.1007/s00248-017-0938-6
    [Crossref] [Google Scholar]
  9. Arnberg NN, Shizuka D, Chaine AS, Lyon BE. 2015.. Social network structure in wintering golden-crowned sparrows is not correlated with kinship. . Mol. Ecol. 24:(19):503444. https://doi.org/10.1111/mec.13366
    [Crossref] [Google Scholar]
  10. Beghini F, McIver LJ, Blanco-Míguez A, Dubois L, Asnicar F, et al. 2021.. Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3. . eLife 10::e65088. https://doi.org/10.7554/eLife.65088
    [Crossref] [Google Scholar]
  11. Blyton MDJ, Soo RM, Hugenholtz P, Moore BD. 2022.. Maternal inheritance of the koala gut microbiome and its compositional and functional maturation during juvenile development. . Environ. Microbiol. 24:(1):47593. https://doi.org/10.1111/1462-2920.15858
    [Crossref] [Google Scholar]
  12. Borthagaray AI, Pinelli V, Berazategui M, Rodríguez-Tricot L, Arim M. 2015.. Effects of metacommunity networks on local community structures. . In Aquatic Functional Biodiversity, ed. A Belgrano, G Woodward, U Jacob , pp. 75111. London:: Academic. https://doi.org/10.1016/B978-0-12-417015-5.00004-9
    [Google Scholar]
  13. Brito IL, Alm EJ. 2016.. Tracking strains in the microbiome: insights from metagenomics and models. . Front. Microbiol. 7::712. https://www.frontiersin.org/articles/10.3389/fmicb.2016.00712
    [Google Scholar]
  14. Brito IL, Gurry T, Zhao S, Huang K, Young SK, et al. 2019.. Transmission of human-associated microbiota along family and social networks. . Nat. Microbiol. 4:(6):96471. https://doi.org/10.1038/s41564-019-0409-6
    [Crossref] [Google Scholar]
  15. Brown RE. 1979.. Mammalian social odors: a critical review. . Adv. Study Behav. 10::10362. https://doi.org/10.1016/S0065-3454(08)60094-7
    [Crossref] [Google Scholar]
  16. Browne HP, Almeida A, Kumar N, Vervier K, Adoum AT, et al. 2021.. Host adaptation in gut firmicutes is associated with sporulation loss and altered transmission cycle. . Genome Biol. 22:(1):204. https://doi.org/10.1186/s13059-021-02428-6
    [Crossref] [Google Scholar]
  17. Burns AR, Miller E, Agarwal M, Rolig AS, Milligan-Myhre K, et al. 2017.. Interhost dispersal alters microbiome assembly and can overwhelm host innate immunity in an experimental zebrafish model. . PNAS 114:(42):1118186. https://doi.org/10.1073/pnas.1702511114
    [Crossref] [Google Scholar]
  18. Cadotte MW. 2006.. Metacommunity influences on community richness at multiple spatial scales: a microcosm experiment. . Ecology 87:(4):100816. https://doi.org/10.1890/0012-9658200687[1008:MIOCRA]2.0.CO;2
    [Crossref] [Google Scholar]
  19. Carthey AJR, Gillings MR, Blumstein DT. 2018.. The extended genotype: microbially mediated olfactory communication. . Trends Ecol. Evol. 33:(11):88594. https://doi.org/10.1016/j.tree.2018.08.010
    [Crossref] [Google Scholar]
  20. Chen DW, Garud NR. 2022.. Rapid evolution and strain turnover in the infant gut microbiome. . Genome Res. 32:(6):112436. https://doi.org/10.1101/gr.276306.121
    [Crossref] [Google Scholar]
  21. Chrostek E, Pelz-Stelinski K, Hurst GDD, Hughes GL. 2017.. Horizontal transmission of intracellular insect symbionts via plants. . Front. Microbiol. 8::2237. https://doi.org/10.3389/fmicb.2017.02237
    [Crossref] [Google Scholar]
  22. Cornell SJ, Isham VS, Smith G, Grenfell BT. 2003.. Spatial parasite transmission, drug resistance, and the spread of rare genes. . PNAS 100:(12):74015. https://doi.org/10.1073/pnas.0832206100
    [Crossref] [Google Scholar]
  23. Davidson GL, Raulo A, Knowles SCL. 2020.. Identifying microbiome-mediated behaviour in wild vertebrates. . Trends Ecol. Evol. 35:(11):97280. https://doi.org/10.1016/j.tree.2020.06.014
    [Crossref] [Google Scholar]
  24. De Jonge N, Carlsen B, Christensen MH, Pertoldi C, Nielsen JL. 2022.. The gut microbiome of 54 mammalian species. . Front. Microbiol. 13::886252. https://doi.org/10.3389/fmicb.2022.886252
    [Crossref] [Google Scholar]
  25. DeCandia AL, Cassidy KA, Stahler DR, Stahler EA, von Holdt BM. 2021.. Social environment and genetics underlie body site-specific microbiomes of Yellowstone National Park gray wolves (Canis lupus). . Ecol. Evol. 11:(14):947288. https://doi.org/10.1002/ece3.7767
    [Crossref] [Google Scholar]
  26. Delm MM. 1990.. Vigilance for predators: detection and dilution effects. . Behav. Ecol. Sociobiol. 26:(5):33742. https://doi.org/10.1007/BF00171099
    [Crossref] [Google Scholar]
  27. Ebert D, Herre EA. 1996.. The evolution of parasitic diseases. . Parasitol. Today 12:(3):96101. https://doi.org/10.1016/0169-4758(96)80668-5
    [Crossref] [Google Scholar]
  28. Engel K, Pankoke H, Jünemann S, Brandl HB, Sauer J, et al. 2020.. Family matters: Skin microbiome reflects the social group and spatial proximity in wild zebra finches. . BMC Ecol. 20:(1):58. https://doi.org/10.1186/s12898-020-00326-2
    [Crossref] [Google Scholar]
  29. Evans JC, Hodgson DJ, Boogert NJ, Silk MJ. 2021.. Group size and modularity interact to shape the spread of infection and information through animal societies. . Behav. Ecol. Sociobiol. 75:(12):163. https://doi.org/10.1007/s00265-021-03102-4
    [Crossref] [Google Scholar]
  30. Ferretti P, Pasolli E, Tett A, Asnicar F, Gorfer V, et al. 2018.. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. . Cell Host Microbe 24:(1):13345.e5. https://doi.org/10.1016/j.chom.2018.06.005
    [Crossref] [Google Scholar]
  31. Fisher RM, Henry LM, Cornwallis CK, Kiers ET, West SA. 2017.. The evolution of host-symbiont dependence. . Nat. Commun. 8:(1):15973. https://doi.org/10.1038/ncomms15973
    [Crossref] [Google Scholar]
  32. Fitzpatrick CR, Toor I, Holmes MM. 2022.. Colony but not social phenotype or status structures the gut bacteria of a eusocial mammal. . Behav. Ecol. Sociobiol. 76:(8):117. https://doi.org/10.1007/s00265-022-03230-5
    [Crossref] [Google Scholar]
  33. Formica V, Wood C, Cook P, Brodie E. 2017.. Consistency of animal social networks after disturbance. . Behav. Ecol. 28:(1):8593. https://doi.org/10.1093/beheco/arw128
    [Crossref] [Google Scholar]
  34. Ganesan R, Wierz JC, Kaltenpoth M, Flórez LV. 2022.. How it all begins: bacterial factors mediating the colonization of invertebrate hosts by beneficial symbionts. . Microbiol. Mol. Biol. Rev. 86:(4):e00126-21. https://doi.org/10.1128/mmbr.00126-21
    [Crossref] [Google Scholar]
  35. Garcia JR, Gerardo NM. 2014.. The symbiont side of symbiosis: Do microbes really benefit?. Front. Microbiol. 5::510. https://doi.org/10.3389/fmicb.2014.00510
    [Crossref] [Google Scholar]
  36. Gearty W, Jones LA. 2023.. rphylopic: an R package for fetching, transforming, and visualising PhyloPic silhouettes. . Methods Ecol. Evol. 14:(11):27008. https://doi.org/10.1111/2041-210X.14221
    [Crossref] [Google Scholar]
  37. Gogarten JF, Davies TJ, Benjamino J, Gogarten JP, Graf J, et al. 2018.. Factors influencing bacterial microbiome composition in a wild non-human primate community in Taï National Park, Côte d'Ivoire. . ISME J. 12:(10):255974. https://doi.org/10.1038/s41396-018-0166-1
    [Crossref] [Google Scholar]
  38. Goodfellow CK, Whitney T, Christie DM, Sicotte P, Wikberg EC, Ting N. 2019.. Divergence in gut microbial communities mirrors a social group fission event in a black-and-white colobus monkey (Colobus vellerosus). . Am. J. Primatol. 81:(10–11):e22966. https://doi.org/10.1002/ajp.22966
    [Crossref] [Google Scholar]
  39. Gorman ML. 1976.. A mechanism for individual recognition by odour in Herpestes auropunctatus (Carnivora: Viverridae). . Anim. Behav. 24:(1):14145. https://doi.org/10.1016/S0003-3472(76)80107-8
    [Crossref] [Google Scholar]
  40. Grieneisen L, Dasari M, Gould TJ, Björk JR, Grenier J-C, et al. 2021.. Gut microbiome heritability is nearly universal but environmentally contingent. . Science 373:(6551):18186
    [Crossref] [Google Scholar]
  41. Grieneisen LE, Charpentier MJE, Alberts SC, Blekhman R, Bradburd G, et al. 2019.. Genes, geology and germs: Gut microbiota across a primate hybrid zone are explained by site soil properties, not host species. . Proc. R. Soc. B 2861901::20190431. https://doi.org/10.1098/rspb.2019.0431
    [Crossref] [Google Scholar]
  42. Grieves LA, Gloor GB, Quinn JS. 2023.. Symbiotic microbiota vary with breeding group membership in a highly social joint-nesting bird. . Behav. Ecol. 34:(4):65361. https://doi.org/10.1093/beheco/arad034
    [Crossref] [Google Scholar]
  43. Griffin NW, Ahern PP, Cheng J, Heath AC, Ilkayeva O, et al. 2017.. Prior dietary practices and connections to a human gut microbial metacommunity alter responses to diet interventions. . Cell Host Microbe 21:(1):8496. https://doi.org/10.1016/j.chom.2016.12.006
    [Crossref] [Google Scholar]
  44. Grosser S, Sauer J, Paijmans AJ, Caspers BA, Forcada J, et al. 2019.. Fur seal microbiota are shaped by the social and physical environment, show mother–offspring similarities and are associated with host genetic quality. . Mol. Ecol. 28:(9):240622. https://doi.org/10.1111/mec.15070
    [Crossref] [Google Scholar]
  45. Hildebrand F, Gossmann TI, Frioux C, Özkurt E, Myers PN, et al. 2021.. Dispersal strategies shape persistence and evolution of human gut bacteria. . Cell Host Microbe 29:(7):116776.e9. https://doi.org/10.1016/j.chom.2021.05.008
    [Crossref] [Google Scholar]
  46. Hu R, Yao R, Li L, Xu Y, Lei B, et al. 2022.. A database of animal metagenomes. . Sci. Data 9:(1):312. https://doi.org/10.1038/s41597-022-01444-w
    [Crossref] [Google Scholar]
  47. Hungate RE. 1966.. The Rumen and Its Microbes. New York:: Academic
    [Google Scholar]
  48. Jaeggi AV, Van Schaik CP. 2011.. The evolution of food sharing in primates. . Behav. Ecol. Sociobiol. 65:(11):212540. https://doi.org/10.1007/s00265-011-1221-3
    [Crossref] [Google Scholar]
  49. Johnson KV-A, Foster KR. 2018.. Why does the microbiome affect behaviour?. Nat. Rev. Microbiol. 16:(10):64755. https://doi.org/10.1038/s41579-018-0014-3
    [Crossref] [Google Scholar]
  50. Kamilar JM, Baden AL. 2014.. What drives flexibility in primate social organization?. Behav. Ecol. Sociobiol. 68:(10):167792. https://doi.org/10.1007/s00265-014-1776-x
    [Crossref] [Google Scholar]
  51. Kapheim KM, Johnson MM, Jolley M. 2021.. Composition and acquisition of the microbiome in solitary, ground-nesting alkali bees. . Sci. Rep. 11:(1):2993. https://doi.org/10.1038/s41598-021-82573-x
    [Crossref] [Google Scholar]
  52. Kartzinel TR, Hsing JC, Musili PM, Brown BRP, Pringle RM. 2019.. Covariation of diet and gut microbiome in African megafauna. . PNAS 116:(47):2358893. https://doi.org/10.1073/pnas.1905666116
    [Crossref] [Google Scholar]
  53. Kay T, Liberti J, Richardson TO, McKenzie SK, Weitekamp CA, et al. 2023.. Social network position is a major predictor of ant behavior, microbiota composition, and brain gene expression. . PLOS Biol. 21:(7):e3002203. https://doi.org/10.1371/journal.pbio.3002203
    [Crossref] [Google Scholar]
  54. Koch H, Abrol DP, Li J, Schmid-Hempel P. 2013.. Diversity and evolutionary patterns of bacterial gut associates of corbiculate bees. . Mol. Ecol. 22:(7):202844. https://doi.org/10.1111/mec.12209
    [Crossref] [Google Scholar]
  55. Koch H, Schmid-Hempel P. 2011.. Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. . PNAS 108:(48):1928892
    [Crossref] [Google Scholar]
  56. Koga R, Meng X-Y, Tsuchida T, Fukatsu T. 2012.. Cellular mechanism for selective vertical transmission of an obligate insect symbiont at the bacteriocyte–embryo interface. . PNAS 109:(20):e123037. https://doi.org/10.1073/pnas.1119212109
    [Crossref] [Google Scholar]
  57. Kort R, Caspers M, Van De Graaf A, Van Egmond W, Keijser B, Roeselers G. 2014.. Shaping the oral microbiota through intimate kissing. . Microbiome 2:(1):41. https://doi.org/10.1186/2049-2618-2-41
    [Crossref] [Google Scholar]
  58. Koskella B, Bergelson J. 2020.. The study of host–microbiome (co)evolution across levels of selection. . Philos. Trans. R. Soc. B 375:(1808):20190604. https://doi.org/10.1098/rstb.2019.0604
    [Crossref] [Google Scholar]
  59. Krausz RR. 2013.. Living in groups. . Trans. Anal. J. 43:(4):36674. https://doi.org/10.1177/0362153713519414
    [Google Scholar]
  60. Kumar S, Suleski M, Craig JM, Kasprowicz AE, Sanderford M, et al. 2022.. TimeTree 5: an expanded resource for species divergence times. . Mol. Biol. Evol. 39:(8):msac174. https://doi.org/10.1093/molbev/msac174
    [Crossref] [Google Scholar]
  61. Kummer H. 1978.. On the value of social relationships to nonhuman primates: a heuristic scheme. . Soc. Sci. Inform. 17:(4–5):687705. https://doi.org/10.1177/053901847801700418
    [Crossref] [Google Scholar]
  62. Kuthyar S, Manus MB, Amato KR. 2019.. Leveraging non-human primates for exploring the social transmission of microbes. . Curr. Opin. Microbiol. 50::814. https://doi.org/10.1016/j.mib.2019.09.001
    [Crossref] [Google Scholar]
  63. Lamprecht J. 1981.. The function of social hunting in larger terrestrial carnivores. . Mammal Rev. 11:(4):16979. https://doi.org/10.1111/j.1365-2907.1981.tb00004.x
    [Crossref] [Google Scholar]
  64. Leclaire S, Nielsen JF, Drea CM. 2014.. Bacterial communities in meerkat anal scent secretions vary with host sex, age, and group membership. . Behav. Ecol. 25:(4):9961004. https://doi.org/10.1093/beheco/aru074
    [Crossref] [Google Scholar]
  65. Lombardo MP. 2008.. Access to mutualistic endosymbiotic microbes: an underappreciated benefit of group living. . Behav. Ecol. Sociobiol. 62:(4):47997. https://doi.org/10.1007/s00265-007-0428-9
    [Crossref] [Google Scholar]
  66. Lou YC, Olm MR, Diamond S, Crits-Christoph A, Firek BA, et al. 2021.. Infant gut strain persistence is associated with maternal origin, phylogeny, and traits including surface adhesion and iron acquisition. . Cell Rep. Med. 2:(9):100393. https://doi.org/10.1016/j.xcrm.2021.100393
    [Crossref] [Google Scholar]
  67. Lucas J, Bill B, Stevenson B, Kaspari M. 2017.. The microbiome of the ant-built home: the microbial communities of a tropical arboreal ant and its nest. . Ecosphere 8:(2):e01639. https://doi.org/10.1002/ecs2.1639
    [Crossref] [Google Scholar]
  68. Lusseau D, Schneider K, Boisseau OJ, Haase P, Slooten E, Dawson SM. 2003.. The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations. . Behav. Ecol. Sociobiol. 54:(4):396405. https://doi.org/10.1007/s00265-003-0651-y
    [Crossref] [Google Scholar]
  69. Massen JJM, Sterck EHM. 2013.. Stability and durability of intra- and intersex social bonds of captive rhesus macaques (Macaca mulatta). . Int. J. Primatol. 34:(4):77091. https://doi.org/10.1007/s10764-013-9695-7
    [Crossref] [Google Scholar]
  70. McCafferty J, Mühlbauer M, Gharaibeh RZ, Arthur JC, Perez-Chanona E, et al. 2013.. Stochastic changes over time and not founder effects drive cage effects in microbial community assembly in a mouse model. . ISME J. 7:(11):211625. https://doi.org/10.1038/ismej.2013.106
    [Crossref] [Google Scholar]
  71. McCutcheon JP, Moran NA. 2012.. Extreme genome reduction in symbiotic bacteria. . Nat. Rev. Microbiol. 10:(1):1326. https://doi.org/10.1038/nrmicro2670
    [Crossref] [Google Scholar]
  72. Meadow JF, Bateman AC, Herkert KM, O'Connor TK, Green JL. 2013.. Significant changes in the skin microbiome mediated by the sport of roller derby. . PeerJ 1::e53. https://doi.org/10.7717/peerj.53
    [Crossref] [Google Scholar]
  73. Merhej V, Royer-Carenzi M, Pontarotti P, Raoult D. 2009.. Massive comparative genomic analysis reveals convergent evolution of specialized bacteria. . Biol. Direct 4:(1):13. https://doi.org/10.1186/1745-6150-4-13
    [Crossref] [Google Scholar]
  74. Michel A, Minocher R, Niehoff P-P, Li Y, Nota K, et al. 2022.. Isolated Grauer's gorilla populations differ in diet and gut microbiome. . Mol. Ecol. 32::652342. https://doi.org/10.1111/mec.16663
    [Crossref] [Google Scholar]
  75. Mideo N, Alizon S, Day T. 2008.. Linking within- and between-host dynamics in the evolutionary epidemiology of infectious diseases. . Trends Ecol. Evol. 23:(9):51117. https://doi.org/10.1016/j.tree.2008.05.009
    [Crossref] [Google Scholar]
  76. Miller ET, Svanbäck R, Bohannan BJM. 2018.. Microbiomes as metacommunities: understanding host-associated microbes through metacommunity ecology. . Trends Ecol. Evol. 33:(12):92635. https://doi.org/10.1016/j.tree.2018.09.002
    [Crossref] [Google Scholar]
  77. Moeller AH, Foerster S, Wilson ML, Pusey AE, Hahn BH, Ochman H. 2016.. Social behavior shapes the chimpanzee pan-microbiome. . Sci. Adv. 2:(1):e1500997
    [Crossref] [Google Scholar]
  78. Moeller AH, Sanders JG, Sprockett DD, Landers A. 2023.. Assessing co-diversification in host-associated microbiomes. . J. Evol. Biol. 36:(12):165968. https://doi.org/10.1111/jeb.14221
    [Crossref] [Google Scholar]
  79. Morris JJ, Lenski RE, Zinser ER. 2012.. The Black Queen Hypothesis: evolution of dependencies through adaptive gene loss. . mBio 3:(2):e00036-12. https://doi.org/10.1128/mBio.00036-12
    [Crossref] [Google Scholar]
  80. Mouquet N, Loreau M. 2002.. Coexistence in metacommunities: the regional similarity hypothesis. . Am. Nat. 159:(4):42026. https://doi.org/10.1086/338996
    [Crossref] [Google Scholar]
  81. Muegge BD, Kuczynski J, Knights D, Clemente JC, González A, et al. 2011.. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. . Science 332:(6032):97074. https://doi.org/10.1126/science.1198719
    [Crossref] [Google Scholar]
  82. Muller HJ. 1964.. The relation of recombination to mutational advance. . Mutation Res./Fundam. Mol. Mech. Mutagen. 1:(1):29. https://doi.org/10.1016/0027-5107(64)90047-8
    [Crossref] [Google Scholar]
  83. Murillo T, Schneider D, Heistermann M, Daniel R, Fichtel C. 2022.. Assessing the drivers of gut microbiome composition in wild redfronted lemurs via longitudinal metacommunity analysis. . Sci. Rep. 12:(1):21462. https://doi.org/10.1038/s41598-022-25733-x
    [Crossref] [Google Scholar]
  84. Musciotto F, Dobon B, Greenacre M, Mira A, Chaudhary N, et al. 2023.. Agta hunter-gatherer oral microbiomes are shaped by contact network structure. . Evol. Hum. Sci. 5::e9. https://doi.org/10.1017/ehs.2023.4
    [Crossref] [Google Scholar]
  85. Nayfach S, Rodriguez-Mueller B, Garud N, Pollard KS. 2016.. An integrated metagenomics pipeline for strain profiling reveals novel patterns of bacterial transmission and biogeography. . Genome Res. 26:(11):161225
    [Crossref] [Google Scholar]
  86. Ng KM, Aranda-Díaz A, Tropini C, Frankel MR, Van Treuren W, et al. 2019.. Recovery of the gut microbiota after antibiotics depends on host diet, community context, and environmental reservoirs. . Cell Host Microbe 26:(5):65065.e4. https://doi.org/10.1016/j.chom.2019.10.011
    [Crossref] [Google Scholar]
  87. Noonan MJ, Tinnesand HV, Müller CT, Rosell F, Macdonald DW, Buesching CD. 2019.. Knowing me, knowing you: Anal gland secretion of European badgers (Meles meles) codes for individuality, sex and social group membership. . J. Chem. Ecol. 45:(10):82337. https://doi.org/10.1007/s10886-019-01113-0
    [Crossref] [Google Scholar]
  88. Obeng N, Bansept F, Sieber M, Traulsen A, Schulenburg H. 2021.. Evolution of microbiota–host associations: the microbe's perspective. . Trends Microbiol. 29:(9):77987. https://doi.org/10.1016/j.tim.2021.02.005
    [Crossref] [Google Scholar]
  89. Oliver KM, Degnan PH, Burke GR, Moran NA. 2010.. Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. . Annu. Rev. Entomol. 55::24766 https://doi.org/10.1146/annurev-ento-112408-085305
    [Crossref] [Google Scholar]
  90. Olm MR, Crits-Christoph A, Bouma-Gregson K, Firek BA, Morowitz MJ, Banfield JF. 2021.. inStrain profiles population microdiversity from metagenomic data and sensitively detects shared microbial strains. . Nat. Biotechnol. 39:(6):72736. https://doi.org/10.1038/s41587-020-00797-0
    [Crossref] [Google Scholar]
  91. Onchuru TO, Martinez AJ, Ingham CS, Kaltenpoth M. 2018.. Transmission of mutualistic bacteria in social and gregarious insects. . Curr. Opin. Insect Sci. 28::5058. https://doi.org/10.1016/j.cois.2018.05.002
    [Crossref] [Google Scholar]
  92. Orkin JD, Webb SE, Melin AD. 2019.. Small to modest impact of social group on the gut microbiome of wild Costa Rican capuchins in a seasonal forest. . Am. J. Primatol. 81:(10–11):e22985. https://doi.org/10.1002/ajp.22985
    [Crossref] [Google Scholar]
  93. Parker ES, Moczek AP, Macagno ALM. 2021.. Reciprocal microbiome transplants differentially rescue fitness in two syntopic dung beetle sister species (Scarabaeidae: Onthophagus). . Ecol. Entomol. 46:(4):94654. https://doi.org/10.1111/een.13031
    [Crossref] [Google Scholar]
  94. Perofsky AC, Lewis RJ, Abondano LA, Di Fiore A, Meyers LA. 2017.. Hierarchical social networks shape gut microbial composition in wild Verreaux's sifaka. . Proc. R. Soc. B 284:(1868):20172274. https://doi.org/10.1098/rspb.2017.2274
    [Crossref] [Google Scholar]
  95. Perofsky AC, Meyers LA, Abondano LA, Di Fiore A, Lewis RJ. 2021.. Social groups constrain the spatiotemporal dynamics of wild sifaka gut microbiomes. . Mol. Ecol. 30:(24):675975. https://doi.org/10.1111/mec.16193
    [Crossref] [Google Scholar]
  96. Pfau M, Degregori S, Johnson G, Tennenbaum SR, Barber PH, et al. 2023.. The social microbiome: Gut microbiome diversity and abundance are negatively associated with sociality in a wild mammal. . R. Soc. Open Sci. 10:(10):231305. https://doi.org/10.1098/rsos.231305
    [Crossref] [Google Scholar]
  97. Podlesny D, Arze C, Dörner E, Verma S, Dutta S, et al. 2022.. Metagenomic strain detection with SameStr: identification of a persisting core gut microbiota transferable by fecal transplantation. . Microbiome 10:(1):53. https://doi.org/10.1186/s40168-022-01251-w
    [Crossref] [Google Scholar]
  98. Prox L, Farine D. 2020.. A framework for conceptualizing dimensions of social organization in mammals. . Ecol. Evol. 10:(2):791807. https://doi.org/10.1002/ece3.5936
    [Crossref] [Google Scholar]
  99. Pullman J, Beghini F, Alexander M, Shridhar SV, Prinster D, et al. 2023.. Detailed social network interactions and gut microbiome strain-sharing within isolated Honduras villages. . bioRxiv 2023.04.06.535875. https://doi.org/10.1101/2023.04.06.535875
  100. Raulo A, Allen BE, Troitsky T, Husby A, Firth JA, et al. 2021.. Social networks strongly predict the gut microbiota of wild mice. . ISME J. 15:(9):260113. https://doi.org/10.1038/s41396-021-00949-3
    [Crossref] [Google Scholar]
  101. Raulo A, Bürkner P, Dale J, English H, Finerty G, et al. 2023.. Social and environmental transmission spread different sets of gut microbes in wild mice. . bioRxiv 2023.07.20.549849. https://doi.org/10.1101/2023.07.20.549849
  102. Raulo A, Ruokolainen L, Lane A, Amato K, Knight R, et al. 2018.. Social behaviour and gut microbiota in red-bellied lemurs (Eulemur rubriventer): in search of the role of immunity in the evolution of sociality. . J. Anim. Ecol. 87:(2):38899. https://doi.org/10.1111/1365-2656.12781
    [Crossref] [Google Scholar]
  103. Rawls JF, Mahowald MA, Ley RE, Gordon JI. 2006.. Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. . Cell 127:(2):42333. https://doi.org/10.1016/j.cell.2006.08.043
    [Crossref] [Google Scholar]
  104. Reese AT, Cho EH, Klitzman B, Nichols SP, Wisniewski NA, et al. 2018.. Antibiotic-induced changes in the microbiota disrupt redox dynamics in the gut. . eLife 7::e35987. https://doi.org/10.7554/eLife.35987
    [Crossref] [Google Scholar]
  105. Robertson A, McDonald RA, Delahay RJ, Kelly SD, Bearhop S. 2015.. Resource availability affects individual niche variation and its consequences in group-living European badgers Meles meles. . Oecologia 178:(1):3143. https://doi.org/10.1007/s00442-014-3202-5
    [Crossref] [Google Scholar]
  106. Robinson CD, Klein HS, Murphy KD, Parthasarathy R, Guillemin K, Bohannan BJM. 2018.. Experimental bacterial adaptation to the zebrafish gut reveals a primary role for immigration. . PLOS Biol. 16:(12):e2006893. https://doi.org/10.1371/journal.pbio.2006893
    [Crossref] [Google Scholar]
  107. Rodríguez-Gijón A, Nuy JK, Mehrshad M, Buck M, Schulz F, et al. 2022.. A genomic perspective across Earth's microbiomes reveals that genome size in Archaea and Bacteria is linked to ecosystem type and trophic strategy. . Front. Microbiol. 12::761869. https://doi.org/10.3389/fmicb.2021.761869
    [Crossref] [Google Scholar]
  108. Ross AA, Hoffmann AR, Neufeld JD. 2019.. The skin microbiome of vertebrates. . Microbiome 7:(1):79. https://doi.org/10.1186/s40168-019-0694-6
    [Crossref] [Google Scholar]
  109. Rozins C, Silk MJ, Croft DP, Delahay RJ, Hodgson DJ, et al. 2018.. Social structure contains epidemics and regulates individual roles in disease transmission in a group-living mammal. . Ecol. Evol. 8:(23):1204455. https://doi.org/10.1002/ece3.4664
    [Crossref] [Google Scholar]
  110. Russell SL, Pepper-Tunick E, Svedberg J, Byrne A, Castillo JR, et al. 2020.. Horizontal transmission and recombination maintain forever young bacterial symbiont genomes. . PLOS Genet. 16:(8):e1008935. https://doi.org/10.1371/journal.pgen.1008935
    [Crossref] [Google Scholar]
  111. Sah P, Méndez JD, Bansal S. 2019.. A multi-species repository of social networks. . Sci. Data 6:(1):44. https://doi.org/10.1038/s41597-019-0056-z
    [Crossref] [Google Scholar]
  112. Salem H, Bauer E, Kirsch R, Berasategui A, Cripps M, et al. 2017.. Drastic genome reduction in an herbivore's pectinolytic symbiont. . Cell 171:(7):152031.e13. https://doi.org/10.1016/j.cell.2017.10.029
    [Crossref] [Google Scholar]
  113. Sampson TR, Mazmanian SK. 2015.. Control of brain development, function, and behavior by the microbiome. . Cell Host Microbe 17:(5):56576. https://doi.org/10.1016/j.chom.2015.04.011
    [Crossref] [Google Scholar]
  114. Sarkar A, Harty S, Johnson KV-A, Moeller AH, Archie EA, et al. 2020.. Microbial transmission in animal social networks and the social microbiome. . Nat. Ecol. Evol. 4:(8):102035. https://doi.org/10.1038/s41559-020-1220-8
    [Crossref] [Google Scholar]
  115. Seeley TD. 1983.. Division of labor between scouts and recruits in honeybee foraging. . Behav. Ecol. Sociobiol. 12:(3):25359. https://doi.org/10.1007/BF00290778
    [Crossref] [Google Scholar]
  116. Silk JB. 2007.. The adaptive value of sociality in mammalian groups. . Philos. Trans. R. Soc. B 362:(1480):53959. https://doi.org/10.1098/rstb.2006.1994
    [Crossref] [Google Scholar]
  117. Skelton J, Geyer KM, Lennon JT, Creed RP, Brown BL. 2017.. Multi-scale ecological filters shape the crayfish microbiome. . Symbiosis 72:(3):15970. https://doi.org/10.1007/s13199-016-0469-9
    [Crossref] [Google Scholar]
  118. Smith J, Gamboa D, Spencer J, Travenick S, Ortiz C, et al. 2018.. Split between two worlds: Automated sensing reveals links between above- and belowground social networks in a free-living mammal. . Philos. Trans. R. Soc. B 373:(1753):20170249
    [Crossref] [Google Scholar]
  119. Springer A, Fichtel C, Al-Ghalith GA, Koch F, Amato KR, et al. 2017.. Patterns of seasonality and group membership characterize the gut microbiota in a longitudinal study of wild Verreaux's sifakas (Propithecus verreauxi). . Ecol. Evol. 7:(15):573245. https://doi.org/10.1002/ece3.3148
    [Crossref] [Google Scholar]
  120. Sprockett DD, Price JD, Juritsch AF, Schmaltz RJ, Real MVF, et al. 2023.. Home-site advantage for host species-specific gut microbiota. . Sci. Adv. 9:(19):eadf5499. https://doi.org/10.1126/sciadv.adf5499
    [Crossref] [Google Scholar]
  121. Stothart MR, Greuel RJ, Gavriliuc S, Henry A, Wilson AJ, et al. 2021.. Bacterial dispersal and drift drive microbiome diversity patterns within a population of feral hindgut fermenters. . Mol. Ecol. 30:(2):55571. https://doi.org/10.1111/mec.15747
    [Crossref] [Google Scholar]
  122. Theis KR, Schmidt TM, Holekamp KE. 2012.. Evidence for a bacterial mechanism for group-specific social odors among hyenas. . Sci. Rep. 2:(1):615. https://doi.org/10.1038/srep00615
    [Crossref] [Google Scholar]
  123. Theis KR, Venkataraman A, Dycus JA, Koonter KD, Schmitt-Matzen EN, et al. 2013.. Symbiotic bacteria appear to mediate hyena social odors. . PNAS 110:(49):1983237. https://doi.org/10.1073/pnas.1306477110
    [Crossref] [Google Scholar]
  124. Trosvik P, De Muinck EJ, Rueness EK, Fashing PJ, Beierschmitt EC, et al. 2018.. Multilevel social structure and diet shape the gut microbiota of the gelada monkey, the only grazing primate. . Microbiome 6:(1):84. https://doi.org/10.1186/s40168-018-0468-6
    [Crossref] [Google Scholar]
  125. Troyer K. 1984.. Microbes, herbivory and the evolution of social behavior. . J. Theor. Biol. 106:(2):15769. https://doi.org/10.1016/0022-5193(84)90016-X
    [Crossref] [Google Scholar]
  126. Truong DT, Tett A, Pasolli E, Huttenhower C, Segata N. 2017.. Microbial strain-level population structure and genetic diversity from metagenomes. . Genome Res. 27:(4):62638. https://doi.org/10.1101/gr.216242.116
    [Crossref] [Google Scholar]
  127. Tung J, Barreiro LB, Burns MB, Grenier J-C, Lynch J, et al. 2015.. Social networks predict gut microbiome composition in wild baboons. . eLife 4::e05224
    [Crossref] [Google Scholar]
  128. Valles-Colomer M, Blanco-Míguez A, Manghi P, Asnicar F, Dubois L, et al. 2023.. The person-to-person transmission landscape of the gut and oral microbiomes. . Nature 614:(7946):12535. https://doi.org/10.1038/s41586-022-05620-1
    [Crossref] [Google Scholar]
  129. Venail PA, MacLean RC, Bouvier T, Brockhurst MA, Hochberg ME, Mouquet N. 2008.. Diversity and productivity peak at intermediate dispersal rate in evolving metacommunities. . Nature 452:(7184):21014. https://doi.org/10.1038/nature06554
    [Crossref] [Google Scholar]
  130. Vernier CL, Chin IM, Adu-Oppong B, Krupp JJ, Levine J, et al. 2020.. The gut microbiome defines social group membership in honey bee colonies. . Sci. Adv. 6:(42):eabd3431. https://doi.org/10.1126/sciadv.abd3431
    [Crossref] [Google Scholar]
  131. Vieira-Silva S, Falony G, Darzi Y, Lima-Mendez G, Yunta RG, et al. 2016.. Species–function relationships shape ecological properties of the human gut microbiome. . Nat. Microbiol. 1:(8):16088. https://doi.org/10.1038/nmicrobiol.2016.88
    [Crossref] [Google Scholar]
  132. Vuong HE, Yano JM, Fung TC, Hsiao EY. 2017.. The microbiome and host behavior. . Annu. Rev. Neurosci. 40::2149. https://doi.org/10.1146/annurev-neuro-072116-031347
    [Crossref] [Google Scholar]
  133. Walter J, Ley R. 2011.. The human gut microbiome: ecology and recent evolutionary changes. . Annu. Rev. Microbiol. 65::41129. https://doi.org/10.1146/annurev-micro-090110-102830
    [Crossref] [Google Scholar]
  134. Wanelik KM, Raulo A, Troitsky T, Husby A, Knowles SCL. 2023.. Maternal transmission gives way to social transmission during gut microbiota assembly in wild mice. . Anim. Microbiome 5:(1):29. https://doi.org/10.1186/s42523-023-00247-7
    [Crossref] [Google Scholar]
  135. Webster NS, Taylor MW, Behnam F, Lücker S, Rattei T, et al. 2010.. Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts. . Environ. Microbiol. 12:(8):207082. https://doi.org/10.1111/j.1462-2920.2009.02065.x
    [Crossref] [Google Scholar]
  136. Wheeler WM. 1934.. Animal societies. . Sci. Mon. 39:(4):289301
    [Google Scholar]
  137. Whittaker DJ, Slowinski SP, Greenberg JM, Alian O, Winters AD, et al. 2019.. Experimental evidence that symbiotic bacteria produce chemical cues in a songbird. . J. Exp. Biol. 222:(20):jeb.202978. https://doi.org/10.1242/jeb.202978
    [Crossref] [Google Scholar]
  138. Wierz JC, Gaube P, Klebsch D, Kaltenpoth M, Flórez LV. 2021.. Transmission of bacterial symbionts with and without genome erosion between a beetle host and the plant environment. . Front. Microbiol. 12::715601. https://doi.org/10.3389/fmicb.2021.715601
    [Crossref] [Google Scholar]
  139. Wikberg EC, Christie D, Sicotte P, Ting N. 2020.. Interactions between social groups of colobus monkeys (Colobus vellerosus) explain similarities in their gut microbiomes. . Anim. Behav. 163::1731. https://doi.org/10.1016/j.anbehav.2020.02.011
    [Crossref] [Google Scholar]
  140. Wilson DS. 1992.. Complex interactions in metacommunities, with implications for biodiversity and higher levels of selection. . Ecology 73:(6):19842000. https://doi.org/10.2307/1941449
    [Crossref] [Google Scholar]
  141. Wrangham RW. 1980.. An ecological model of female-bonded primate groups. . Behaviour 75:(3–4):262300. https://doi.org/10.1163/156853980X00447
    [Crossref] [Google Scholar]
  142. Xue J, Ajuwon KM, Fang R. 2020.. Mechanistic insight into the gut microbiome and its interaction with host immunity and inflammation. . Animal Nutr. 6:(4):42128. https://doi.org/10.1016/j.aninu.2020.05.007
    [Crossref] [Google Scholar]
  143. Xue KS, Walton SJ, Goldman DA, Morrison ML, Verster AJ, et al. 2023.. Prolonged delays in human microbiota transmission after a controlled antibiotic perturbation. . bioRxiv 2023.09.26.559480. https://doi.org/10.1101/2023.09.26.559480
  144. Yarlagadda K, Razik I, Malhi RS, Carter GG. 2021.. Social convergence of gut microbiomes in vampire bats. . Biol. Lett. 17:(11):20210389. https://doi.org/10.1098/rsbl.2021.0389
    [Crossref] [Google Scholar]
  145. Youngblut ND, Reischer GH, Walters W, Schuster N, Walzer C, et al. 2019.. Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. . Nat. Commun. 10:(1):2200. https://doi.org/10.1038/s41467-019-10191-3
    [Crossref] [Google Scholar]
  146. Zhang T, Li M, Shi T, Yan Y, Niyazbekova Z, et al. 2022.. Transmission of the gut microbiome in cohousing goats and pigs. . Front. Microbiol. 13::948617. https://doi.org/10.3389/fmicb.2022.948617
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-102622-030749
Loading
/content/journals/10.1146/annurev-ecolsys-102622-030749
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error