1932

Abstract

Successful invasive species commonly depend on the establishment of mutualistic interactions with native and nonnative biota. In turn, invasive species can affect native mutualisms and community stability. Here, we examine different forms of mutualist acquisition by invasive species and the causes and consequences of mutualism abandonment for invasion processes. Additionally, we delve into the quantitative and qualitative effects of invaders on native biota via mutualism disruption that can occur through direct and diverse indirect pathways. These effects of invasive species on native biota via mutualistic interactions can often be a consequence of the invaders’ abundance, which should be considered a prime predictor when evaluating the impact of invasive species on native mutualisms and community stability. We propose that the ecological as well as the evolutionary consequences of mutualism disruption and switches caused by invasive species can play crucial roles in determining future biodiversity.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-102622-031210
2024-11-04
2025-02-08
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/55/1/annurev-ecolsys-102622-031210.html?itemId=/content/journals/10.1146/annurev-ecolsys-102622-031210&mimeType=html&fmt=ahah

Literature Cited

  1. Aagesen DL. 1998.. Indigenous resource rights and conservation of the monkey-puzzle tree (Araucaria araucana, Araucariaceae): a case study from southern Chile. . Econ. Bot. 52:(2):14660
    [Crossref] [Google Scholar]
  2. Abe T, Wada K, Kato Y, Makino S, Okochi I. 2011.. Alien pollinator promotes invasive mutualism in an insular pollination system. . Biol. Invasions 13:(4):95767
    [Crossref] [Google Scholar]
  3. Agüero JI, Coulin C, Torretta JP, Garibaldi LA. 2022.. Invader complexes or generalist interactions? Seasonal effects of a disturbance gradient on plants and floral visitors. . For. Ecol. Manag. 506::119963
    [Crossref] [Google Scholar]
  4. Aizen MA, Arbetman MP, Chacoff NP, Chalcoff VR, Feinsinger P, et al. 2020.. Invasive bees and their impact on agriculture. . Adv. Ecol. Res. 63::4992
    [Crossref] [Google Scholar]
  5. Aizen MA, Gleiser G, Sabatino M, Gilarranz LJ, Bascompte J, Verdú M. 2016.. The phylogenetic structure of plant–pollinator networks increases with habitat size and isolation. . Ecol. Lett. 19:(1):2936
    [Crossref] [Google Scholar]
  6. Aizen MA, Morales CL, Morales JM. 2008.. Invasive mutualists erode native pollination webs. . PLOS Biol. 6:(2):e31
    [Crossref] [Google Scholar]
  7. Aizen MA, Morales CL, Vázquez DP, Garibaldi LA, Sáez A, et al. 2014.. When mutualism goes bad: density-dependent impacts of introduced bees on plant reproduction. . New Phytol. 204:(2):32228
    [Crossref] [Google Scholar]
  8. Aizen MA, Raffaele E. 1996.. Nectar production and pollination in Alstroemeria aurea: responses to level and pattern of flowering shoot defoliation. . Oikos 76:(2):31222
    [Crossref] [Google Scholar]
  9. Aizen MA, Smith-Ramírez C, Morales CL, Vieli L, Sáez A, et al. 2019.. Coordinated species importation policies are needed to reduce serious invasions globally: the case of alien bumblebees in South America. . J. Appl. Ecol. 56:(1):1006
    [Crossref] [Google Scholar]
  10. Albrecht M, Schmid B, Hautier Y, Müller CB. 2012.. Diverse pollinator communities enhance plant reproductive success. . Proc. R. Soc. B 279:(1748):484552
    [Crossref] [Google Scholar]
  11. Anderson SH, Kelly D, Ladley JJ, Molloy S, Terry J. 2011.. Cascading effects of bird functional extinction reduce pollination and plant density. . Science 331:(6020):106871
    [Crossref] [Google Scholar]
  12. Arbetman MP, Meeus I, Morales CL, Aizen MA, Smagghe G. 2012.. Alien parasite hitchhikes to Patagonia on invasive bumblebee. . Biol. Invasions 15:(3):48994
    [Crossref] [Google Scholar]
  13. Ashworth L, Aguilar R, Galetto L, Aizen MA. 2004.. Why do pollination generalist and specialist plant species show similar reproductive susceptibility to habitat fragmentation?. J. Ecol. 92:(4):71719
    [Crossref] [Google Scholar]
  14. Aslan CE, Sikes BA, Gedan KB. 2015.. Research on mutualisms between native and non-native partners can contribute critical ecological insights. . NeoBiota 26::3954
    [Crossref] [Google Scholar]
  15. Aslan CE, Zavaleta ES, Croll D, Tershy B. 2012.. Effects of native and non-native vertebrate mutualists on plants. . Conserv. Biol. 26:(5):77889
    [Crossref] [Google Scholar]
  16. Aslan CE, Zavaleta ES, Tershy B, Croll D, Robichaux RH. 2014.. Imperfect replacement of native species by non-native species as pollinators of endemic Hawaiian plants. . Conserv. Biol. 28:(2):47888
    [Crossref] [Google Scholar]
  17. Bascompte J, Jordano P. 2007.. Plant-animal mutualistic networks: the architecture of biodiversity. . Annu. Rev. Ecol. Evol. Syst. 38::56793
    [Crossref] [Google Scholar]
  18. Bastolla U, Fortuna MA, Pascual-García A, Ferrera A, Luque B, Bascompte J. 2009.. The architecture of mutualistic networks minimizes competition and increases biodiversity. . Nature 458:(7241):101820
    [Crossref] [Google Scholar]
  19. Boucher DH, James S, Keeler KH. 1982.. The ecology of mutualism. . Annu. Rev. Ecol. Syst. 13::31547
    [Crossref] [Google Scholar]
  20. Boyer AG, Jetz W. 2014.. Extinctions and the loss of ecological function in island bird communities. . Glob. Ecol. Biogeogr. 23:(6):67988
    [Crossref] [Google Scholar]
  21. Braga RR, Gómez-Aparicio L, Heger T, Vitule JRS, Jeschke JM. 2018.. Structuring evidence for invasional meltdown: broad support but with biases and gaps. . Biol. Invasions 20:(4):92336
    [Crossref] [Google Scholar]
  22. Bronstein JL. 1994.. Our current understanding of mutualism. . Q. Rev. Biol. 69:(1):3151
    [Crossref] [Google Scholar]
  23. Bronstein JL. 2001.. The costs of mutualism. . Am. Zool. 41:(4):82539
    [Google Scholar]
  24. Bronstein JL, ed. 2015.. Mutualism. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  25. Bueno FGB, Kendall L, Alves DA, Tamara ML, Heard T, et al. 2023.. Stingless bee floral visitation in the global tropics and subtropics. . Glob. Ecol. Conserv. 43::e02454
    [Google Scholar]
  26. Bufford JL, Daehler CC. 2014.. Sterility and lack of pollinator services explain reproductive failure in non-invasive ornamental plants. . Divers. Distrib. 20:(8):97585
    [Crossref] [Google Scholar]
  27. Burns JH, Ashman TL, Steets JA, Harmon-Threatt A, Knight TM. 2011.. A phylogenetically controlled analysis of the roles of reproductive traits in plant invasions. . Oecologia 166:(4):100917
    [Crossref] [Google Scholar]
  28. Capinha C, Essl F, Seebens H, Moser D, Pereira HM. 2015.. The dispersal of alien species redefines biogeography in the Anthropocene. . Science 348:(6240):124851
    [Crossref] [Google Scholar]
  29. Catford JA, Jansson R, Nilsson C. 2009.. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. . Divers. Distrib. 15:(1):2240
    [Crossref] [Google Scholar]
  30. Chacoff NP, Vázquez DP, Lomáscolo SB, Stevani EL, Dorado J, Padrón B. 2012.. Evaluating sampling completeness in a desert plant–pollinator network. . J. Anim. Ecol. 81:(1):190200
    [Crossref] [Google Scholar]
  31. Chalcoff VR, Aizen MA, Ezcurra C. 2012.. Erosion of a pollination mutualism along an environmental gradient in a south Andean treelet, Embothrium coccineum (Proteaceae). . Oikos 121:(3):47180
    [Crossref] [Google Scholar]
  32. Chalcoff VR, Sasal Y, Graham LE, Vázquez DP, Morales CL. 2022.. Invasive bumble bee disrupts a pollination mutualism over space and time. . Biol. Invasions 24:(5):143952
    [Crossref] [Google Scholar]
  33. Chittka L, Schürkens S. 2001.. Successful invasion of a floral market. . Nature 411:(6838):653
    [Crossref] [Google Scholar]
  34. Daru BH, Davies TJ, Willis CG, Meineke EK, Ronk A, et al. 2021.. Widespread homogenization of plant communities in the Anthropocene. . Nat. Commun. 12::6983
    [Crossref] [Google Scholar]
  35. Delmas C, Delzon S, Lortie C. 2011.. A meta-analysis of the ecological significance of density in tree invasions. . Community Ecol. 12:(2):17178
    [Crossref] [Google Scholar]
  36. Dickie IA, Bufford JL, Cobb RC, Desprez-Loustau ML, Grelet G, et al. 2017.. The emerging science of linked plant–fungal invasions. . New Phytol. 215:(4):131432
    [Crossref] [Google Scholar]
  37. Downing JL, Liu H. 2012.. Friend or foe? Impacts of the introduced tropical oil bee Centris nitida on a threatened and specialized native mutualism in Southern Florida. . Biol. Invasions 14:(10):217585
    [Crossref] [Google Scholar]
  38. Enders M, Havemann F, Ruland F, Bernard-Verdier M, Catford JA, et al. 2020.. A conceptual map of invasion biology: integrating hypotheses into a consensus network. . Glob. Ecol. Biogeogr. 29:(6):97891
    [Crossref] [Google Scholar]
  39. Fort H, Vázquez DP, Lan BL. 2016.. Abundance and generalisation in mutualistic networks: solving the chicken-and-egg dilemma. . Ecol. Lett. 19:(1):411
    [Crossref] [Google Scholar]
  40. Fowler JC, Donald ML, Bronstein JL, Miller TEX. 2023.. The geographic footprint of mutualism: how mutualists influence species’ range limits. . Ecol. Monogr. 93:(1):e1558
    [Crossref] [Google Scholar]
  41. Geerts S, Pauw A. 2009.. African sunbirds hover to pollinate an invasive hummingbird-pollinated plant. . Oikos 118:(4):57379
    [Google Scholar]
  42. Gilarranz LJ, Rayfield B, Liñán-Cembrano G, Bascompte J, Gonzalez A. 2017.. Effects of network modularity on the spread of perturbation impact in experimental metapopulations. . Science 357:(6347):199201
    [Crossref] [Google Scholar]
  43. Hargreaves AL, Harder LD, Johnson SD. 2009.. Consumptive emasculation: the ecological and evolutionary consequences of pollen theft. . Biol. Rev. 84:(2):25976
    [Crossref] [Google Scholar]
  44. Harrison TL, Simonsen AK, Stinchcombe JR, Frederickson ME. 2018.. More partners, more ranges: Generalist legumes spread more easily around the globe. . Biol. Lett. 14:(11):20180616
    [Crossref] [Google Scholar]
  45. Hutchinson MC, Cagua EF, Stouffer DB. 2017.. Cophylogenetic signal is detectable in pollination interactions across ecological scales. . Ecology 98:(10):264052
    [Crossref] [Google Scholar]
  46. Issaly EA, Sérsic AN, Pauw A, Cocucci AA, Traveset A, et al. 2020.. Reproductive ecology of the bird-pollinated Nicotiana glauca across native and introduced ranges with contrasting pollination environments. . Biol. Invasions 22:(2):48598
    [Crossref] [Google Scholar]
  47. Janzen DH, Martin PS. 1982.. Neotropical anachronisms: the fruits the gomphotheres ate. . Science 215:(4528):1927
    [Crossref] [Google Scholar]
  48. Kalisz S, Kivlin SN, Bialic-Murphy L. 2021.. Allelopathy is pervasive in invasive plants. . Biol. Invasions 23:(2):36771
    [Crossref] [Google Scholar]
  49. Keane RM, Crawley MJ. 2002.. Exotic plant invasions and the enemy release hypothesis. . Trends Ecol. Evol. 17:(4):16470
    [Crossref] [Google Scholar]
  50. Kiers ET, Palmer TM, Ives AR, Bruno JF, Bronstein JL. 2010.. Mutualisms in a changing world: an evolutionary perspective. . Ecol. Lett. 13:(12):145974
    [Crossref] [Google Scholar]
  51. Kollars NM, Byers JE, Sotka EE. 2016.. Invasive décor: an association between a native decorator worm and a non-native seaweed can be mutualistic. . Mar. Ecol. Prog. Ser. 545::13545
    [Crossref] [Google Scholar]
  52. Larson DL, Rabie PA, Droege S, Larson JL, Haar M. 2016.. Exotic plant infestation is associated with decreased modularity and increased numbers of connectors in mixed-grass prairie pollination networks. . PLOS ONE 11:(5):e0155068
    [Crossref] [Google Scholar]
  53. Le Roux JJ, Hui C, Keet JH, Ellis AG. 2017.. Co-introduction versus ecological fitting as pathways to the establishment of effective mutualisms during biological invasions. . New Phytol. 215:(4):135460
    [Crossref] [Google Scholar]
  54. Levine JM, Antonio CMD. 2010.. Elton revisited: a review of evidence linking diversity and invasibility. . Oikos 87:(1):1526
    [Crossref] [Google Scholar]
  55. Losos JB. 2008.. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. . Ecol. Lett. 11:(10):9951003
    [Crossref] [Google Scholar]
  56. Lu M, Hulcr J, Sun J. 2016.. The role of symbiotic microbes in insect invasions. . Annu. Rev. Ecol. Evol. Syst. 47::487505
    [Crossref] [Google Scholar]
  57. Maloof JE, Inouye DW. 2000.. Are nectar robbers cheaters or mutualists?. Ecology 81:(10):265161
    [Crossref] [Google Scholar]
  58. McKinney ST, Fiedler CE, Tomback DF. 2009.. Invasive pathogen threatens bird–pine mutualism: implications for sustaining a high-elevation ecosystem. . Ecol. Appl. 19:(3):597607
    [Crossref] [Google Scholar]
  59. Moles AT, Dalrymple RL, Raghu S, Bonser SP, Ollerton J. 2022.. Advancing the missed mutualist hypothesis, the under-appreciated twin of the enemy release hypothesis. . Biol. Lett. 18:(10):20220220
    [Crossref] [Google Scholar]
  60. Mooney HA, Cleland EE. 2001.. The evolutionary impact of invasive species. . PNAS 98:(10):544651
    [Crossref] [Google Scholar]
  61. Morales CL, Aizen MA. 2002.. Does invasion of exotic plants promote invasion of exotic flower visitors? A case study from the temperate forests of the southern Andes. . Biol. Invasions 4:(1–2):87100
    [Crossref] [Google Scholar]
  62. Morales CL, Aizen MA. 2006.. Invasive mutualisms and the structure of plant–pollinator interactions in the temperate forests of north-west Patagonia, Argentina. . J. Ecol. 94:(1):17180
    [Crossref] [Google Scholar]
  63. Morales CL, Saez A, Arbetman MP, Cavallero L, Aizen MA. 2014.. Detrimental effects of volcanic ash deposition on bee fauna and plant-pollinator interactions. . Ecol. Austral 24:(1):4250
    [Crossref] [Google Scholar]
  64. Morales CL, Traveset A. 2009.. A meta-analysis of impacts of alien vs. native plants on pollinator visitation and reproductive success of co-flowering native plants. . Ecol. Lett. 12:(7):71628
    [Crossref] [Google Scholar]
  65. Morgan JAW, Bending GD, White PJ. 2005.. Biological costs and benefits to plant–microbe interactions in the rhizosphere. . J. Exp. Bot. 56:(417):172939
    [Crossref] [Google Scholar]
  66. Moyano J, Rodriguez-Cabal MA, Nuñez MA. 2021.. Invasive trees rely more on mycorrhizas, countering the ideal-weed hypothesis. . Ecology 102:(5):e03330
    [Crossref] [Google Scholar]
  67. Mujic AB, Policelli N, Nuñez MA, Truong C, Smith ME. 2023.. Co-invasive ectomycorrhizal fungi alter native soil fungal communities. . Plant Soil 484:(1–2):54767
    [Crossref] [Google Scholar]
  68. Nathan P, Economo EP, Guénard B, Simonsen AK, Frederickson ME. 2023.. Generalized mutualisms promote range expansion in both plant and ant partners. . Proc. R. Soc. B 290:(2006):20231083
    [Crossref] [Google Scholar]
  69. Nuismer SL, Week B, Aizen MA. 2018.. Coevolution slows the disassembly of mutualistic networks. . Am. Nat. 192:(4):490502
    [Crossref] [Google Scholar]
  70. Okuyama T, Holland JN. 2008.. Network structural properties mediate the stability of mutualistic communities. . Ecol. Lett. 11:(3):20816
    [Crossref] [Google Scholar]
  71. Olesen JM, Eskildsen LI, Venkatasamy S. 2002.. Invasion of pollination networks on oceanic islands: importance of invader complexes and endemic super generalists. . Biodivers. Distrib. 8:(3):18192
    [Crossref] [Google Scholar]
  72. Pannell JR, Auld JR, Brandvain Y, Burd M, Busch JW, et al. 2015.. The scope of Baker's law. . New Phytol. 208:(3):65667
    [Crossref] [Google Scholar]
  73. Parker JD, Torchin ME, Hufbauer RA, Lemoine NP, Alba C, et al. 2013.. Do invasive species perform better in their new ranges?. Ecology 94:(5):98594
    [Crossref] [Google Scholar]
  74. Parra-Tabla V, Arceo-Gómez G. 2021.. Impacts of plant invasions in native plant–pollinator networks. . New Phytol. 230:(6):211728
    [Crossref] [Google Scholar]
  75. Pattemore DE, Wilcove DS. 2012.. Invasive rats and recent colonist birds partially compensate for the loss of endemic New Zealand pollinators. . Proc. R. Soc. B 279:(1733):1597605
    [Crossref] [Google Scholar]
  76. Pauw A. 2019.. A bird's-eye view of pollination: biotic interactions as drivers of adaptation and community change. . Annu. Rev. Ecol. Evol. Syst. 50::477502
    [Crossref] [Google Scholar]
  77. Pearson DE, Eren Ö, Ortega YK, Villarreal D, Şentürk M, et al. 2018.. Are exotic plants more abundant in the introduced versus native range?. J. Ecol. 106:(2):72736
    [Crossref] [Google Scholar]
  78. Peng S, Kinlock NL, Gurevitch J, Peng S. 2019.. Correlation of native and exotic species richness: A global meta-analysis finds no invasion paradox across scales. . Ecology 100:(1):e02552
    [Crossref] [Google Scholar]
  79. Poisot T, Gravel D. 2014.. When is an ecological network complex? Connectance drives degree distribution and emerging network properties. . PeerJ 2::e251
    [Crossref] [Google Scholar]
  80. Policelli N, Hoeksema JD, Moyano J, Vilgalys R, Vivelo S, Bhatnagar JM. 2023.. Global pine tree invasions are linked to invasive root symbionts. . New Phytol. 237:(1):1621
    [Crossref] [Google Scholar]
  81. Pyšek P, Hulme PE, Simberloff D, Bacher S, Blackburn TM, et al. 2020.. Scientists’ warning on invasive alien species. . Biol. Rev. 95:(6):151134
    [Crossref] [Google Scholar]
  82. Ratto F, Simmons BI, Spake R, Zamora-Gutierrez V, MacDonald MA, et al. 2018.. Global importance of vertebrate pollinators for plant reproductive success: a meta-analysis. . Front. Ecol. Environ. 16:(2):8290
    [Crossref] [Google Scholar]
  83. Real LA, Brown JH, eds. 1991.. Foundations of Ecology: Classic Papers with Commentaries. Chicago:: Univ. Chicago Press
    [Google Scholar]
  84. Reinhart KO, Callaway RM. 2006.. Soil biota and invasive plants. . New Phytol. 170:(3):44557
    [Crossref] [Google Scholar]
  85. Richardson DM, Allsopp N, D'Antonio CM, Milton SJ, Rejmánek M. 2000.. Plant invasions—the role of mutualisms. . Biol. Rev. 75:(1):6593
    [Google Scholar]
  86. Richardson DM, Pyšek P. 2012.. Naturalization of introduced plants: ecological drivers of biogeographical patterns. . New Phytol. 196:(2):38396
    [Crossref] [Google Scholar]
  87. Rodriguez-Cabal MA, Barrios-Garcia MN, Amico GC, Aizen MA, Sanders NJ. 2013.. Node-by-node disassembly of a mutualistic interaction web driven by species introductions. . PNAS 110:(41):165037
    [Crossref] [Google Scholar]
  88. Rogers HS, Buhle ER, HilleRisLambers J, Fricke EC, Miller RH, Tewksbury JJ. 2017.. Effects of an invasive predator cascade to plants via mutualism disruption. . Nat. Commun. 8::14557
    [Crossref] [Google Scholar]
  89. Rosenberger NM, Aizen MA, Dickson RG, Harder LD. 2022.. Behavioural responses by a bumble bee to competition with a niche-constructing congener. . J. Anim. Ecol. 91:(3):58092
    [Crossref] [Google Scholar]
  90. Sachs JL, Simms EL. 2006.. Pathways to mutualism breakdown. . Trends Ecol. Evol. 21:(10):58592
    [Crossref] [Google Scholar]
  91. Sanguinetti A, Singer RB. 2014.. Invasive bees promote high reproductive success in Andean orchids. . Biol. Conserv. 175::1020
    [Crossref] [Google Scholar]
  92. Schoen DJ, Schultz ST. 2019.. Somatic mutation and evolution in plants. . Annu. Rev. Ecol. Evol. Syst. 50::4973
    [Crossref] [Google Scholar]
  93. Seifert EK, Bever JD, Maron JL. 2009.. Evidence for the evolution of reduced mycorrhizal dependence during plant invasion. . Ecology 90:(4):105562
    [Crossref] [Google Scholar]
  94. Shah MA, Reshi ZA, Khasa DP. 2009.. Arbuscular mycorrhizas: drivers or passengers of alien plant invasion. . Bot. Rev. 75:(4):397417
    [Crossref] [Google Scholar]
  95. Sheng M, Rosche C, Al-Gharaibeh M, Bullington LS, Callaway RM, et al. 2022.. Acquisition and evolution of enhanced mutualism—an underappreciated mechanism for invasive success?. ISME 16:(11):246778
    [Crossref] [Google Scholar]
  96. Simberloff D. 2006.. Invasional meltdown 6 years later: important phenomenon, unfortunate metaphor, or both?. Ecol. Lett. 9:(8):91219
    [Crossref] [Google Scholar]
  97. Simberloff D, Von Holle B. 1999.. Positive interactions of nonindigenous species: invasional meltdown?. Biol. Invasions 1:(1):2132
    [Crossref] [Google Scholar]
  98. Speziale KL, Lambertucci SA, Gleiser G, Tella JL, Hiraldo F, Aizen MA. 2018.. An overlooked plant–parakeet mutualism counteracts human overharvesting on an endangered tree. . R. Soc. Open Sci. 5:(1):171456
    [Crossref] [Google Scholar]
  99. Stout JC, Tiedeken EJ. 2017.. Direct interactions between invasive plants and native pollinators: evidence, impacts and approaches. . Funct. Ecol. 31:(1):3846
    [Crossref] [Google Scholar]
  100. Sun D, Yang X, Wang Y, Fan Y, Ding P, et al. 2022.. Stronger mutualistic interactions with arbuscular mycorrhizal fungi help Asteraceae invaders outcompete the phylogenetically related natives. . New Phytol. 236:(4):148796
    [Crossref] [Google Scholar]
  101. Thomson JN. 2005.. The Geographic Mosaic of Coevolution. Chicago:: Univ. Chicago Press
    [Google Scholar]
  102. Traveset A, Richardson DM. 2014.. Mutualistic interactions and biological invasions. . Annu. Rev. Ecol. Evol. Syst. 45::89113
    [Crossref] [Google Scholar]
  103. Tylianakis JM, Didham RK, Bascompte J, Wardle DA. 2008.. Global change and species interactions in terrestrial ecosystems. . Ecol. Lett. 11:(12):135163
    [Crossref] [Google Scholar]
  104. Van Der Wal R, Fischer A, Selge S, Larson BMH. 2014.. Neither the public nor experts judge species primarily on their origins. . Environ. Conserv. 42:(4):34955
    [Crossref] [Google Scholar]
  105. Van Kleunen M, Dawson W, Essl F, Pergl J, Winter M, et al. 2015.. Global exchange and accumulation of non-native plants. . Nature 525:(7567):1003
    [Crossref] [Google Scholar]
  106. Van Kleunen M, Weber E, Fischer M. 2010.. A meta-analysis of trait differences between invasive and non-invasive plant species. . Ecol. Lett. 13:(2):23545
    [Crossref] [Google Scholar]
  107. Vaudo AD, Tooker JF, Grozinger CM, Patch HM. 2015.. Bee nutrition and floral resource restoration. . Curr. Opin. Insect Sci. 10::13341
    [Crossref] [Google Scholar]
  108. Vázquez DP. 2007.. Introduced herbivores and the Allee effect in animal-pollinated plants. . Ecol. Austral 17:(1):2136
    [Google Scholar]
  109. Vázquez DP, Chacoff NP, Cagnolo L. 2009.. Evaluating multiple determinants of the structure of plant–animal mutualistic networks. . Ecology 90:(8):203946
    [Crossref] [Google Scholar]
  110. Vázquez DP, Melián CJ, Williams NM, Blüthgen N, Krasnov BR, Poulin R. 2007.. Species abundance and asymmetric interaction strength in ecological networks. . Oikos 116:(7):112027
    [Crossref] [Google Scholar]
  111. Vázquez DP, Simberloff D. 2003.. Changes in interaction biodiversity induced by an introduced ungulate. . Ecol. Lett. 6:(12):107783
    [Crossref] [Google Scholar]
  112. Vázquez DP, Simberloff D. 2004.. Indirect effects of an introduced ungulate on pollination and plant reproduction. . Ecol. Monogr. 74:(2):281308
    [Crossref] [Google Scholar]
  113. Vitali A, Ruiz-Suarez S, Vázquez DP, Schleuning M, Rodríguez-Cabal MA, et al. 2023.. Invasive species modulate the structure and stability of a multilayer mutualistic network. . Proc. R. Soc. B 290:(2001):20230132
    [Crossref] [Google Scholar]
  114. Vogelsang KM, Bever JD. 2009.. Mycorrhizal densities decline in association with nonnative plants and contribute to plant invasion. . Ecology 90:(2):399407
    [Crossref] [Google Scholar]
  115. Vollstädt MGR, Galetti M, Kaiser-Bunbury CN, Simmons BI, Gonçalves F, et al. 2022.. Plant–frugivore interactions across the Caribbean islands: modularity, invader complexes and the importance of generalist species. . Divers. Distrib. 28:(11):236174
    [Crossref] [Google Scholar]
  116. Wang B, Lu M, Peng YQ, Segar ST. 2021.. Direct and indirect effects of invasive vs. native ant-hemipteran mutualism: a meta-analysis that supports the mutualism intensity hypothesis. . Agronomy 11:(11):2323
    [Crossref] [Google Scholar]
  117. White EM, Wilson JC, Clarke AR. 2006.. Biotic indirect effects: a neglected concept in invasion biology. . Divers. Distrib. 12:(4):44355
    [Crossref] [Google Scholar]
  118. Yu H, He Y, Zhang W, Chen L, Zhang J, et al. 2022.. Greater chemical signaling in root exudates enhances soil mutualistic associations in invasive plants compared to natives. . New Phytol. 236:(3):114053
    [Crossref] [Google Scholar]
  119. Zhang Z, Liu Y, Brunel C, van Kleunen M. 2020.. Soil-microorganism-mediated invasional meltdown in plants. . Nat. Ecol. Evol. 4:(12):161221
    [Crossref] [Google Scholar]
  120. Zhou A, Lu Y, Zeng L, Xu Y, Liang G. 2012.. Does mutualism drive the invasion of two alien species? The case of Solenopsis invicta and Phenacoccus solenopsis. . PLOS ONE 7:(7):e41856
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-102622-031210
Loading
/content/journals/10.1146/annurev-ecolsys-102622-031210
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error