1932

Abstract

After almost 50 years of scrutiny, the ideas that Ehrlich and Raven presented in their classical paper on the coevolution between butterflies and plants are still very much alive. Much of this interest has involved the potential for codiversification, both in how the interaction itself diversifies and how the interaction affects modes and rates of speciation. Despite high levels of conservatism and specialization, diversification of the interaction appears to be mainly a consequence of host shifts, but this somewhat paradoxical conclusion can be understood by an appreciation of the ecological as well as genetic mechanisms behind host shifts. There are several ways that the interaction can influence speciation, with or without host-plant-based divergent selection on reproductive barriers. One current debate is over the relative importance of radiations following shifts to new adaptive zones and elevated rates of speciation in groups with plastic and diverse host use.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-102710-145024
2011-12-01
2025-06-19
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/42/1/annurev-ecolsys-102710-145024.html?itemId=/content/journals/10.1146/annurev-ecolsys-102710-145024&mimeType=html&fmt=ahah

Literature Cited

  1. Agosta SJ. 2006. On ecological fitting, plant-insect associations, herbivore host shifts, and host plant selection. Oikos 114:556–65 [Google Scholar]
  2. Agosta SJ, Janz N, Brooks DR. 2010. How specialists can be generalists: resolving the “parasite paradox” and implications for emerging infectious disease. Zoologia 27:151–62 [Google Scholar]
  3. Agosta SJ, Klemens JA. 2008. Ecological fitting by phenotypically flexible genotypes: implications for species associations, community assembly and evolution. Ecol. Lett. 11:1123–34 [Google Scholar]
  4. Agrawal AA. 2007. Macroevolution of plant defense strategies. Trends Ecol. Evol. 22:103–9 [Google Scholar]
  5. Agrawal AA, Fishbein M, Halitschke R, Hastings AP, Rabosky DL, Rasmann S. 2009. Evidence for adaptive radiation from a phylogenetic study of plant defenses. Proc. Natl. Acad. Sci. USA 106:18067–72 [Google Scholar]
  6. Agrawal AA, Lajeunesse MJ, Fishbein M. 2008. Evolution of latex and its constituent defensive chemistry in milkweeds (Asclepias): a phylogenetic test of plant defense escalation. Entomol. Exp. Appl. 128:126–38 [Google Scholar]
  7. Becerra JX. 1997. Insects on plants: macroevolutionary chemical trends in host use. Science 276:253–56 [Google Scholar]
  8. Becerra JX, Noge K, Venable DL. 2009. Macroevolutionary chemical escalation in an ancient plant-herbivore arms race. Proc. Natl. Acad. Sci. USA 106:18062–66 [Google Scholar]
  9. Berenbaum MR. 1983. Coumarins and caterpillars: a case for coevolution. Evolution 37:163–79 [Google Scholar]
  10. Berenbaum MR. 2002. Postgenomic chemical ecology: from genetic code to ecological interactions. J. Chem. Ecol. 28:873–96 [Google Scholar]
  11. Berenbaum MR, Favret C, Schuler MA. 1996. On defining “key innovations” in an adaptive radiation: cytochrome P450s and Papilionidae. Am. Nat. 148:S139–55 [Google Scholar]
  12. Berlocher SH, Feder JL. 2002. Sympatric speciation in phytophagous insects: moving beyond controversy?. Annu. Rev. Entomol. 47:773–815 [Google Scholar]
  13. Braby MF, Trueman JWH. 2006. Evolution of larval host plant associations and adaptive radiation in pierid butterflies. J. Evol. Biol. 19:1677–90 [Google Scholar]
  14. Brooks DR. 1979. Testing the context and extent of host-parasite coevolution. Syst. Zool. 28:299–307 [Google Scholar]
  15. Brooks DR, McLennan DA. 1991. Phylogeny, Ecology, and Behavior Chicago, IL: Univ. Chicago Press [Google Scholar]
  16. Brooks DR, McLennan DA. 2002. The Nature of Diversity: An Evolutionary Voyage of Discovery Chicago, IL: Univ. Chicago Press [Google Scholar]
  17. Bush GL. 1969. Sympatric host race formation and speciation in frugivorous flies of the genus Rhagoletis (Diptera, Tephritidae). Evolution 23:237–51 [Google Scholar]
  18. Bush GL. 1994. Sympatric speciation in animals: new wine in old bottles. Trends Ecol. Evol. 9:285–88 [Google Scholar]
  19. Crispo E. 2007. The Baldwin effect and genetic assimilation: revisiting two mechanisms of evolutionary change mediated by phenotypic plasticity. Evolution 61:2469–79 [Google Scholar]
  20. De Vienne DM, Giraud T, Shykoff JA. 2007. When can host shifts produce congruent host and parasite phylogenies? A simulation approach. J. Evol. Biol. 20:1428–38 [Google Scholar]
  21. Dethier VG. 1941. Chemical factors determining the choice of food plants by Papilio larvae. Am. Nat. 75:61–73 [Google Scholar]
  22. Dobler S, Mardulyn P, Pasteels JM, Rowell-Rahier M. 1996. Host-plant switches and the evolution of chemical defense and life history in the leaf beetle genus Oreina. Evolution 50:2373–86 [Google Scholar]
  23. Donoghue MJ. 2005. Key innovations, convergence, and success: macroevolutionary lessons from plant phylogeny. Paleobiology 31:77–93 [Google Scholar]
  24. Ehrlich PR, Raven PH. 1964. Butterflies and plants: a study in coevolution. Evolution 18:586–608 [Google Scholar]
  25. Emelianov I, Simpson F, Narang P, Mallet J. 2003. Host choice promotes reproductive isolation between host races of the larch budmoth Zeiraphera diniana. J. Evol. Biol. 16:208–18 [Google Scholar]
  26. Farrell B, Mitter C. 1990. Phylogenesis of insect/plant interactions: Have Phyllobrotica leaf beetles (Chrysomelidae) and the Lamiales diversified in parallel?. Evolution 44:1389–403 [Google Scholar]
  27. Farrell BD, Dussourd DE, Mitter C. 1991. Escalation of plant defense: Do latex and resin canals spur plant diversification?. Am. Nat. 138:881–900 [Google Scholar]
  28. Feeny P. 1976. Plant apparency and chemical defence. Recent Advances in Phytochemistry: Biological Interactions Between Plants and Insects JW Wallace, RL Nansel 101–40 New York: Plenum [Google Scholar]
  29. Fordyce JA. 2010. Host shifts and evolutionary radiations of butterflies. Proc. R. Soc. Lond. Ser. B 277:3735–43 [Google Scholar]
  30. Funk DJ. 1998. Isolating a role for natural selection in speciation: host adaptation and sexual isolation in Neochlamisus bebbianae leaf beetles. Evolution 52:1744–59 [Google Scholar]
  31. Funk DJ, Nosil P. 2008. Comparative analyses of ecological speciation. See Tilmon 2008 117–35
  32. Futuyma DJ. 2008. Sympatric speciation: norm or exception?. See Tilmon 2008 136–48
  33. Futuyma DJ, Keese MC, Funk DJ. 1995. Genetic constraints on macroevolution: the evolution of host affiliation in the leaf beetle genus Ophraella. Evolution 49:797–809 [Google Scholar]
  34. Futuyma DJ, Mitter C. 1996. Insect-plant interactions: the evolution of component communities. Philos. Trans. R. Soc. Lond. Ser. B 351:1361–66 [Google Scholar]
  35. Futuyma DJ, Slatkin M. 1983. Introduction. Coevolution DJ Futuyma, M Slatkin 1–13 Sunderland, MA: Sinauer [Google Scholar]
  36. Gilbert LE. 1979. Development of theory in the analysis of insect-plant interactions. Analysis of Ecological Systems D Horn, R Mitchell, G Stairs 117–54 Columbus, OH: Ohio State Univ. Press [Google Scholar]
  37. Gomulkiewicz R, Thompson JN, Holt RD, Nuismer SL, Hochberg ME. 2000. Hot spots, cold spots, and the geographic mosaic theory of coevolution. Am. Nat. 156:156–74 [Google Scholar]
  38. Haloin JR, Strauss SY. 2008. Interplay between ecological communities and evolution: review of feedbacks from microevolutionary to macroevolutionary scales. Ann. N.Y. Acad. Sci. 1133:87–125 [Google Scholar]
  39. Harvey JA, Biere A, Fortuna T, Vet LEM, Engelkes T. et al. 2010. Ecological fits, mis-fits and lotteries involving insect herbivores on the invasive plant, Bunias orientalis. Biol. Invasions 12:3045–59 [Google Scholar]
  40. Hawkins BA, Field R, Cornell HV, Currie DJ, Guégan JF. et al. 2003. Energy, water, and broad-scale geographic patterns of species richness. Ecology 84:3105–17 [Google Scholar]
  41. Hawthorne DJ, Via S. 2001. Genetic linkage of ecological specialization and reproductive isolation in pea aphids. Nature 412:904–7 [Google Scholar]
  42. Heidel-Fischer HM, Freitak D, Janz N, Soderlind L, Vogel H, Nylin S. 2009. Phylogenetic relatedness and host plant growth form influence gene expression of the polyphagous comma butterfly (Polygonia c-album). BMC Genomics 10:506 [Google Scholar]
  43. Hoberg EP, Brooks DR. 2008. A macroevolutionary mosaic: episodic host-switching, geographical colonization and diversification in complex host-parasite systems. J. Biogeogr. 35:1533–50 [Google Scholar]
  44. Janz N, Nylin S. 1998. Butterflies and plants: a phylogenetic study. Evolution 52:486–502 [Google Scholar]
  45. Janz N, Nylin S. 2008. The oscillation hypothesis of host-plant range and speciation. See Tilmon 2008 203–15
  46. Janz N, Nylin S, Nyblom K. 2001. Evolutionary dynamics of host plant specialization: a case study of the tribe Nymphalini. Evolution 55:783–96 [Google Scholar]
  47. Janz N, Nylin S, Wahlberg N. 2006. Diversity begets diversity: host expansions and the diversification of plant-feeding insects. BMC Evol. Biol. 6:4 [Google Scholar]
  48. Janz N, Thompson JN. 2002. Plant polyploidy and host expansion in an insect herbivore. Oecologia 130:570–75 [Google Scholar]
  49. Janzen DH. 1980. When is it coevolution?. Evolution 34:611–12 [Google Scholar]
  50. Janzen DH. 1985. On ecological fitting. Oikos 45:308–10 [Google Scholar]
  51. Jermy T. 1984. Evolution of insect/host plant relationships. Am. Nat. 124:609–30 [Google Scholar]
  52. Keeler MS, Chew FS. 2008. Escaping an evolutionary trap: preference and performance of a native insect on an exotic invasive host. Oecologia 156:559–68 [Google Scholar]
  53. Kelley ST, Farrell BD. 1998. Is specialization a dead end? The phylogeny of host use in Dendroctonus bark beetles (Scolytidae). Evolution 52:1731–43 [Google Scholar]
  54. Kennedy JS. 1953. Host plant selection in Aphididae. Trans. 9th Int. Congr. Entomol. 2:106–13 [Google Scholar]
  55. Kergoat GJ, Silvain JF, Delobel A, Tuda M, Anton KW. 2007. Defining the limits of taxonomic conservatism in host-plant use for phytophagous insects: molecular systematics and evolution of host-plant associations in the seed-beetle genus Bruchus Linnaeus (Coleoptera: Chrysomelidae: Bruchinae). Mol. Phylogenet. Evol. 43:251–69 [Google Scholar]
  56. Kruger O, Sorenson MD, Davies NB. 2009. Does coevolution promote species richness in parasitic cuckoos?. Proc. Biol. Sci. 276:3871–79 [Google Scholar]
  57. Kursar TA, Dexter KG, Lokvam J, Pennington RT, Richardson JE. et al. 2009. The evolution of antiherbivore defenses and their contribution to species coexistence in the tropical tree genus Inga. Proc. Natl. Acad. Sci. USA 106:18073–78 [Google Scholar]
  58. Labandeira CC. 2006. The four phases of plant-arthropod associations in deep time. Geol. Acta 4:409–38 [Google Scholar]
  59. Larkin LL, Neff JL, Simpson BB. 2008. The evolution of a pollen diet: host choice and diet breadth of Andrena bees (Hymenoptera: Andrenidae). Apidologie 39:133–45 [Google Scholar]
  60. Lawton JH. 1983. Plant architecture and the diversity of phytophagous insects. Annu. Rev. Entomol. 28:23–39 [Google Scholar]
  61. Linnen CR, Farrell BD. 2010. A test of the sympatric host race formation hypothesis in Neodiprion (Hymenoptera: Diprionidae). Proc. R. Soc. Lond. Ser. B. 277:3131–38 [Google Scholar]
  62. Lopez-Vaamonde C, Charles H, Godfray J, Cook JM. 2003. Evolutionary dynamics of host-plant use in a genus of leaf-mining moths. Evolution 57:1804–21 [Google Scholar]
  63. Mao W, Schuler MA, Berenbaum MR. 2007. Cytochrome P450s in Papilio multicaudatus and the transition from oligophagy to polyphagy in the Papilionidae. Insect Mol. Biol. 16:481–90 [Google Scholar]
  64. Matsubayashi KW, Ohshima I, Nosil P. 2010. Ecological speciation in phytophagous insects. Entomol. Exp. Appl. 134:1–27 [Google Scholar]
  65. McLeish MJ, Chapman TW, Schwarz MP. 2007. Host-driven diversification of gall-inducing Acacia thrips and the aridification of Australia. BMC Biol. 5:3 [Google Scholar]
  66. Miller JS. 1987. Host-plant relationships in the Papilionidae (Lepidoptera): parallel cladogenesis or colonization?. Cladistics 3:105–20 [Google Scholar]
  67. Mitter C, Brooks DR. 1983. Phylogenetic aspects of coevolution. Coevolution, ed. D Futuyma, M Slatkin 65–98 Sunderland, MA: Sinauer [Google Scholar]
  68. Mitter C, Farrell B, Wiegmann B. 1988. The phylogenetic study of adaptive zones: Has phytophagy promoted insect diversification?. Am. Nat. 132:107–28 [Google Scholar]
  69. Mode CJ. 1958. A mathematical model for the co-evolution of obligate parasites and their hosts. Evolution 12:158–65 [Google Scholar]
  70. Moran NA. 1988. The evolution of host-plant alternation in aphids: evidence for specialization as a dead end. Am. Nat. 132:681–706 [Google Scholar]
  71. Nosil P, Mooers . 2005. Testing hypotheses about ecological specialization using phylogenetic trees. Evolution 59:2256–63 [Google Scholar]
  72. Nylin S, Janz N. 2009. Butterfly host plant range: an example of plasticity as a promoter of speciation?. Evol. Ecol. 23:137–46 [Google Scholar]
  73. Nylin S, Wahlberg N. 2008. Does plasticity drive speciation? Host-plant shifts and diversification in nymphaline butterflies (Lepidoptera: Nymphalidae) during the Tertiary. Biol. J. Linn. Soc. 94:115–30 [Google Scholar]
  74. Nyman T. 2010. To speciate, or not to speciate? Resource heterogeneity, the subjectivity of similarity, and the macroevolutionary consequences of niche-width shifts in plant-feeding insects. Biol. Rev. 85:393–411 [Google Scholar]
  75. Nyman T, Farrell BD, Zinovjev AG, Vikberg V. 2006. Larval habits, host-plant associations, and speciation in nematine sawflies (Hymenoptera: Tenthredinidae). Evolution 60:1622–37 [Google Scholar]
  76. Nyman T, Vikberg V, Smith DR, Boeve JL. 2010. How common is ecological speciation in plant-feeding insects? A “higher” Nematinae perspective. BMC Evol. Biol. 10:266 [Google Scholar]
  77. Page RDM. 1993. Parasites, phylogeny and cospeciation. Int. J. Parasitol. 23:499–506 [Google Scholar]
  78. Päivinen J, Grapputo A, Kaitala V, Komonen A, Kotiaho JS. et al. 2005. Negative density-distribution relationship in butterflies. BMC Biol. 3:5 [Google Scholar]
  79. Peña C, Nylin S, Wahlberg N. 2010. The radiation of Satyrini butterflies (Nymphalidae: Satyrinae): a challenge for phylogenetic methods. Zool. J. Linn. Soc. 161:64–87 [Google Scholar]
  80. Peña C, Wahlberg N. 2008. Prehistorical climate change increased diversification of a group of butterflies. Biol. Lett. 4:274–78 [Google Scholar]
  81. Percy DM. 2003. Radiation, diversity, and host-plant interactions among island and continental legume-feeding psyllids. Evolution 57:2540–56 [Google Scholar]
  82. Percy DM, Page RDM, Cronk QCB. 2004. Plant-insect interactions: double-dating associated insect and plant lineages reveals asynchronous radiations. Syst. Biol. 53:120–27 [Google Scholar]
  83. Rabosky DL. 2009. Ecological limits and diversification rate: alternative paradigms to explain the variation in species richness among clades and regions. Ecol. Lett. 12:735–43 [Google Scholar]
  84. Ronquist F, Sanmartín I. 2011. Phylogenetic methods in biogeography. Annu. Rev. Ecol. Evol. Syst. 42:441–64 [Google Scholar]
  85. Roy BA. 2001. Patterns of association between crucifers and their flower-mimic pathogens: Host jumps are more common than coevolution or cospeciation. Evolution 55:41–53 [Google Scholar]
  86. Rundle HD, Nosil P. 2005. Ecological speciation. Ecol. Lett. 8:336–52 [Google Scholar]
  87. Scheffer SJ, Wiegmann BM. 2000. Molecular phylogenetics of the holly leaf miners (Diptera: Agromyzidae: Phytomyza): species limits, speciation, and dietary specialization. Mol. Phylogenet. Evol. 17:244–55 [Google Scholar]
  88. Schluter D. 2009. Evidence for ecological speciation and its alternative. Science 323:737–41 [Google Scholar]
  89. Schluter D, Price T, Mooers , Ludwig D. 1997. Likelihood of ancestor states in adaptive radiation. Evolution 51:1699–711 [Google Scholar]
  90. Scriber JM. 2010. Integrating ancient patterns and current dynamics of insect-plant interactions: taxonomic and geographic variation in herbivore specialization. Insect Sci. 17:471–507 [Google Scholar]
  91. Scriber JM, Larsen ML, Allen GR, Walker PW, Zalucki MP. 2008. Interactions between Papilionidae and ancient Australian Angiosperms: evolutionary specialization or ecological monophagy?. Entomol. Exp. Appl. 128:230–39 [Google Scholar]
  92. Segraves KA, Thompson JN, Soltis PS, Soltis DE. 1999. Multiple origins of polyploidy and the geographic structure of Heuchera grossulariifolia. Mol. Ecol. 8:253–62 [Google Scholar]
  93. Servedio MR, Noor MAF. 2003. The role of reinforcement in speciation: theory and data. Annu. Rev. Ecol. Evol. Syst. 34:339–64 [Google Scholar]
  94. Singer MC, Thomas CD, Parmesan C. 1993. Rapid human-induced evolution of insect-host associations. Nature 366:681–83 [Google Scholar]
  95. Singer MC, Wee B, Hawkins S, Butcher M. 2008. Rapid natural and anthropogenic diet evolution: three examples from checkerspot butterflies. See Tilmon 2008 311–24
  96. Slove J, Janz N. 2011. The relationship between diet breadth and geographic range size in the butterfly subfamily Nymphalinae—a study of global scale. PLoS ONE 6:e16057 [Google Scholar]
  97. Smith CI, Godsoe WKW, Tank S, Yoder JB, Pellmyr O. 2008. Distinguishing coevolution from covicariance in an obligate pollination mutualism: asynchronous divergence in Joshua tree and its pollinators. Evolution 62:2676–87 [Google Scholar]
  98. Stireman JO. 2005. The evolution of generalization? Parasitoid flies and the perils of inferring host range evolution from phylogenies. J. Evol. Biol. 18:325–36 [Google Scholar]
  99. Strauss SY, Sahli H, Conner JK. 2005. Toward a more trait-centered approach to diffuse (co)evolution. New Phytol. 165:81–89 [Google Scholar]
  100. Strong DR. 1988. Insect host range. Ecology 69:885 [Google Scholar]
  101. Strong DR, Lawton JH, Southwood R. 1984. Insects on Plants Cambridge, MA: Harvard Univ. Press [Google Scholar]
  102. Strutzenberger P, Fiedler K. 2011. Temporal patterns of diversification in Andean Eois, a species-rich clade of moths (Lepidoptera, Geometridae). J. Evol. Biol. 24:919–25 [Google Scholar]
  103. Tabashnik BE. 1983. Host range evolution: the shift from native legume hosts to alfalfa by the butterfly, Colias philodice eriphyle. Evolution 37:150–62 [Google Scholar]
  104. Thomas CD, Ng D, Singer MC, Mallet JLB, Parmesan C, Billington HL. 1987. Incorporation of a European weed into the diet of a North American herbivore. Evolution 41:892–901 [Google Scholar]
  105. Thompson JN. 1994. The Coevolutionary Process Chicago, IL: Univ. Chicago Press [Google Scholar]
  106. Thompson JN. 1997. Evaluating the dynamics of coevolution among geographically structured populations. Ecology 78:1619–23 [Google Scholar]
  107. Thompson JN. 1999. Specific hypotheses on the geographic mosaic of coevolution. Am. Nat. 153:S1–S14 [Google Scholar]
  108. Thompson JN. 2005. The Geographic Mosaic of Coevolution Chicago, IL: Univ. Chicago Press [Google Scholar]
  109. Thompson JN. 2009. The coevolving web of life (American Society of Naturalists Presidential Address). Am. Nat. 173:125–40 [Google Scholar]
  110. Thompson JN, Cunningham BM. 2002. Geographic structure and dynamics of coevolutionary selection. Nature 417:735–38 [Google Scholar]
  111. Thompson JN, Cunningham BM, Segraves KA, Althoff DM, Wagner D. 1997. Plant polyploidy and insect/plant interactions. Am. Nat. 150:730–43 [Google Scholar]
  112. Thompson JN, Fernandez CC. 2006. Temporal dynamics of antagonism and mutualism in a geographically variable plant-insect interaction. Ecology 87:103–12 [Google Scholar]
  113. Thompson JN, Nuismer SL, Merg K. 2004. Plant polyploidy and the evolutionary ecology of plant/animal interactions. Biol. J. Linn. Soc. 82:511–19 [Google Scholar]
  114. Tilmon KJ. 2008. Specialization, Speciation, and Radiation: The Evolutionary Biology of Herbivorous Insects Berkeley, CA: Univ. Calif. Press [Google Scholar]
  115. Wahlberg N. 2001. The phylogenetics and biochemistry of host plant specialization in melitaeine butterflies (Lepidoptera: Nymphalidae). Evolution 55:522–37 [Google Scholar]
  116. Weingartner E, Wahlberg N, Nylin S. 2006. Dynamics of host plant use and species diversity in Polygonia butterflies (Nymphalidae). J. Evol. Biol. 19:483–91 [Google Scholar]
  117. West-Eberhard MJ. 2003. Developmental Plasticity and Evolution New York: Oxford Univ. Press [Google Scholar]
  118. West-Eberhard MJ. 2005. Phenotypic accommodation: adaptive innovation due to developmental plasticity. J. Exp. Zool. B 304:610–18 [Google Scholar]
  119. Wheat CW, Vogel H, Wittstock U, Braby MF, Underwood D, Mitchell-Olds T. 2007. The genetic basis of a plant-insect coevolutionary key innovation. Proc. Natl. Acad. Sci. USA 104:20427–31 [Google Scholar]
  120. Wiens JJ. 2004. Speciation and ecology revisited: phylogenetic niche conservatism and the origin of species. Evolution 58:193–97 [Google Scholar]
  121. Winkler IS, Mitter CM. 2008. The phylogenetic dimension of insect/plant assemblages: a review of recent evidence. See Tilmon 2008 240–63
  122. Yoder JB, Nuismer SL. 2010. When does coevolution promote diversification?. Am. Nat. 176:802–17 [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-102710-145024
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error