1932

Abstract

Phenology—the timing of critical stages of growth and reproduction and the transitions between them—determines environmental conditions and biotic interactions. Hence, phenology is a key functional trait influencing organisms’ survival and fitness; however, the role of phenology in community assembly processes has been less considered. Here we review the importance of phenology in environmental and biotic filtering, structuring priority effects, and species coexistence in the context of the assembly of native communities, as well as in invasions and restoration. We highlight the complexity of the life-history aspect of phenology, which makes simple trade-offs—such as between growth timing and competitive ability—part of larger plant strategies shaped by a framework of risk, reward, and investment over multiple timescales. Embracing this complexity could yield insights into how phenology shapes communities.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-102722-011653
2024-11-04
2024-12-09
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/55/1/annurev-ecolsys-102722-011653.html?itemId=/content/journals/10.1146/annurev-ecolsys-102722-011653&mimeType=html&fmt=ahah

Literature Cited

  1. Abrams P. 1983.. The theory of limiting similarity. . Annu. Rev. Ecol. Syst. 14::35976
    [Crossref] [Google Scholar]
  2. Adler PB, Salguero-Gómez R, Compagnoni A, Hsu JS, Ray-Mukherjee J, et al. 2014.. Functional traits explain variation in plant life history strategies. . PNAS 111:(2):74045
    [Crossref] [Google Scholar]
  3. Alexander JM, Levine JM. 2019.. Earlier phenology of a nonnative plant increases impacts on native competitors. . PNAS 116:(13):6199204
    [Crossref] [Google Scholar]
  4. Alford RA, Wilbur HM. 1985.. Priority effects in experimental pond communities: competition between Bufo and Rana. . Ecology 66:(4):1097105
    [Crossref] [Google Scholar]
  5. Augspurger CK. 2013.. Reconstructing patterns of temperature, phenology, and frost damage over 124 years: Spring damage risk is increasing. . Ecology 94:(1):4150
    [Crossref] [Google Scholar]
  6. Augspurger CK, Cheeseman J, Salk C. 2005.. Light gains and physiological capacity of understorey woody plants during phenological avoidance of canopy shade. . Funct. Ecol. 19::53746
    [Crossref] [Google Scholar]
  7. Baumgarten F, Zohner CM, Gessler A, Vitasse Y. 2021.. Chilled to be forced: the best dose to wake up buds from winter dormancy. . New Phytol. 230:(4):136677
    [Crossref] [Google Scholar]
  8. Bazzaz FA, Chiariello NR, Coley PD, Pitelka LF. 1987.. Allocating resources to reproduction and defense. . BioScience 37:(1):5867
    [Crossref] [Google Scholar]
  9. Blackford C, Germain RM, Gilbert B. 2020.. Species differences in phenology shape coexistence. . Am. Nat. 195:(6):E16880
    [Crossref] [Google Scholar]
  10. Blumenthal DM, Mueller KE, Kray JA, Ocheltree TW, Augustine DJ, Wilcox KR. 2020.. Traits link drought resistance with herbivore defence and plant economics in semi-arid grasslands: the central roles of phenology and leaf dry matter content. . J. Ecol. 108:(6):233651
    [Crossref] [Google Scholar]
  11. Bolmgren K, Cowan PD. 2008.. Time–size tradeoffs: a phylogenetic comparative study of flowering time, plant height and seed mass in a north-temperate flora. . Oikos 117:(3):42429
    [Crossref] [Google Scholar]
  12. Buonaiuto DM, Morales-Castilla I, Wolkovich EM. 2021.. Reconciling competing hypotheses regarding flower-leaf sequences in temperate forests for fundamental and global change biology. . New Phytol. 229:(3):120614
    [Crossref] [Google Scholar]
  13. Buonaiuto DM, Wolkovich EM. 2023.. Contrasting responses to climate variability generate seasonal priority effects between native and invasive forest herbs. . J. Ecol. 111::171121
    [Crossref] [Google Scholar]
  14. CaraDonna PJ, Iler AM, Inouye DW. 2014.. Shifts in flowering phenology reshape a subalpine plant community. . PNAS 111:(13):491621
    [Crossref] [Google Scholar]
  15. Caruso CM, Eisen KE, Martin RA, Sletvold N. 2019.. A meta-analysis of the agents of selection on floral traits. . Evolution 73:(1):414
    [Crossref] [Google Scholar]
  16. Cavender-Bares J. 2019.. Diversification, adaptation, and community assembly of the American oaks (Quercus), a model clade for integrating ecology and evolution. . New Phytol. 221:(2):66992
    [Crossref] [Google Scholar]
  17. Chamberlain CJ, Cook BI, García de Cortázar-Atauri I, Wolkovich EM. 2019.. Rethinking false spring risk. . Glob. Change Biol. 25:(7):220920
    [Crossref] [Google Scholar]
  18. Chase JM. 2003.. Community assembly: When should history matter?. Oecologia 136::48998
    [Crossref] [Google Scholar]
  19. Chesson P. 1994.. Multispecies competition in variable environments. . Theor. Popul. Biol. 45:(3):22776
    [Crossref] [Google Scholar]
  20. Chesson P. 2000.. Mechanisms of maintenance of species diversity. . Annu. Rev. Ecol. Syst. 31::34366
    [Crossref] [Google Scholar]
  21. Chesson P, Gebauer RLE, Schwinning S, Huntly N, Wiegand K, et al. 2004.. Resource pulses, species interactions, and diversity maintenance in arid and semi-arid environments. . Oecologia 141:(2):23653
    [Crossref] [Google Scholar]
  22. Chesson P, Huntly N. 1993.. Temporal hierarchies of variation and the maintenance of diversity. . Plant Species Biol. 8:(2–3):195206
    [Crossref] [Google Scholar]
  23. Chuine I. 2000.. A unified model for budburst of trees. . J. Theor. Biol. 207:(3):33747
    [Crossref] [Google Scholar]
  24. Chuine I. 2010.. Why does phenology drive species distribution?. Philos. Trans. R. Soc. B 365:(1555):314960
    [Crossref] [Google Scholar]
  25. Chuine I, Régnière J. 2017.. Process-based models of phenology for plants and animals. . Annu. Rev. Ecol. Evol. Syst. 48::15982
    [Crossref] [Google Scholar]
  26. Cleland EE, Allen JM, Crimmins TM, Dunne JA, Pau S, et al. 2012.. Phenological tracking enables positive species responses to climate change. . Ecology 93:(8):176571
    [Crossref] [Google Scholar]
  27. Cleland EE, Esch E, McKinney J. 2015.. Priority effects vary with species identity and origin in an experiment varying the timing of seed arrival. . Oikos 124:(1):3340
    [Crossref] [Google Scholar]
  28. Cleland EE, Larios L, Suding KN. 2013.. Strengthening invasion filters to reassemble native plant communities: soil resources and phenological overlap. . Restor. Ecol. 21:(3):39098
    [Crossref] [Google Scholar]
  29. Connolly J, Wayne P. 1996.. Asymmetric competition between plant species. . Oecologia 108::31120
    [Crossref] [Google Scholar]
  30. Cook BI, Wolkovich EM, Parmesan C. 2012.. Divergent responses to spring and winter warming drive community level flowering trends. . PNAS 109:(23):90005
    [Crossref] [Google Scholar]
  31. Cope OL, Burkle LA, Croy JR, Mooney KA, Yang LH, Wetzel WC. 2022.. The role of timing in intraspecific trait ecology. . Trends Ecol. Evol. 37:(11):9971005
    [Crossref] [Google Scholar]
  32. Craine JM, Dybzinski R. 2013.. Mechanisms of plant competition for nutrients, water and light. . Funct. Ecol. 27:(4):83340
    [Crossref] [Google Scholar]
  33. Davies TJ, Wolkovich EM, Kraft NJB, Salamin N, Allen JM, et al. 2013.. Phylogenetic conservatism in plant phenology. . J. Ecol. 101:(6):152030
    [Crossref] [Google Scholar]
  34. Davis CC, Willis CG, Primack RB, Miller-Rushing AJ. 2010.. The importance of phylogeny to the study of phenological response to global climate change. . Philos. Trans. R. Soc. B 365:(1555):320113
    [Crossref] [Google Scholar]
  35. Diamond JM. 1975.. Assembly of species communities. . In Ecology and Evolution of Communities, ed. ML Cody, JM Diamond , pp. 342444. Cambridge, MA:: Harvard Univ. Press
    [Google Scholar]
  36. Díaz S, Kattge J, Cornelissen JH, Wright IJ, Lavorel S, et al. 2016.. The global spectrum of plant form and function. . Nature 529:(7585):16771
    [Crossref] [Google Scholar]
  37. Donohue K. 2005.. Niche construction through phenological plasticity: life history dynamics and ecological consequences. . New Phytol. 166:(1):8392
    [Crossref] [Google Scholar]
  38. Donohue K, Rubio de Casas R, Burghardt L, Kovach K, Willis CG. 2010.. Germination, postgermination adaptation, and species ecological ranges. . Annu. Rev. Ecol. Evol. Syst. 41::293319
    [Crossref] [Google Scholar]
  39. Du G, Qi W. 2010.. Trade-offs between flowering time, plant height, and seed size within and across 11 communities of a Qinghai-Tibetan flora. . Plant Ecol. 209::32133
    [Crossref] [Google Scholar]
  40. Duchenne F, Fontaine C, Teulière E, Thébault E. 2021.. Phenological traits foster persistence of mutualistic networks by promoting facilitation. . Ecol. Lett. 24:(10):208899
    [Crossref] [Google Scholar]
  41. Duniway M. 2023.. Jornada Basin LTER: Wireless meteorological station at NPP C-CALI site: Daily average soil volumetric water content data: 2013 - ongoing Ver. 36. . Environmental Data Initiative. https://doi.org/10.6073/pasta/48000a94106fa0284305f9c556c7814a
  42. Dyer AR, Fenech A, Rice K. 2000.. Accelerated seedling emergence in interspecific competitive neighbourhoods. . Ecol. Lett. 3:(6):52329
    [Crossref] [Google Scholar]
  43. Ejsmond MJ, Czarnołeski M, Kapustka F, Kozłowski J. 2010.. How to time growth and reproduction during the vegetative season: an evolutionary choice for indeterminate growers in seasonal environments. . Am. Nat. 175:(5):55163
    [Crossref] [Google Scholar]
  44. Elton CS. 1958.. The Ecology of Invasions by Animals and Plants. Chicago:: Univ. Chicago Press
    [Google Scholar]
  45. Ettinger A, Gee S, Wolkovich EM. 2018.. Phenological sequences: how early-season events define those that follow. . Am. J. Bot. 105:(10):177180
    [Crossref] [Google Scholar]
  46. Fox GA. 1992.. The evolution of life history traits in desert annuals: adaptation and constraint. . Evol. Trends Plants 6:(1):2531
    [Google Scholar]
  47. Fridley JD. 2012.. Extended leaf phenology and the autumn niche in deciduous forest invasions. . Nature 485:(7398):35962
    [Crossref] [Google Scholar]
  48. Fukami T. 2015.. Historical contingency in community assembly: integrating niches, species pools, and priority effects. . Annu. Rev. Ecol. Evol. Syst. 46::123
    [Crossref] [Google Scholar]
  49. Funk JL, Wolf AA. 2016.. Testing the trait-based community framework: Do functional traits predict competitive outcomes?. Ecology 97:(9):220611
    [Crossref] [Google Scholar]
  50. Gause GF. 1932.. Experimental studies on the struggle for existence: I. Mixed population of two species of yeast. . J. Exp. Biol. 9:(4):389402
    [Crossref] [Google Scholar]
  51. Gillespie LM, Volaire FA. 2017.. Are winter and summer dormancy symmetrical seasonal adaptive strategies? The case of temperate herbaceous perennials. . Ann. Bot. 119:(3):31123
    [Crossref] [Google Scholar]
  52. Gioria M, Osborne BA. 2014.. Resource competition in plant invasions: emerging patterns and research needs. . Front. Plant Sci. 5::501
    [Crossref] [Google Scholar]
  53. Godoy O, Levine JM. 2014.. Phenology effects on invasion success: insights from coupling field experiments to coexistence theory. . Ecology 95:(3):72636
    [Crossref] [Google Scholar]
  54. Godoy O, Richardson DM, Valladares F, Castro-Díez P. 2009.. Flowering phenology of invasive alien plant species compared with native species in three Mediterranean-type ecosystems. . Ann. Bot. 103:(3):48594
    [Crossref] [Google Scholar]
  55. Gotelli NJ, Graves GR. 1996.. The temporal niche. . In Null Models in Ecology, ed. NJ Gotelli, GR Graves , pp. 95111. Washington, DC:: Smithson. Inst.
    [Google Scholar]
  56. Grime JP. 1977.. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. . Am. Nat. 111:(982):116994
    [Crossref] [Google Scholar]
  57. Grman E, Suding KN. 2010.. Within-year soil legacies contribute to strong priority effects of exotics on native California grassland communities. . Restor. Ecol. 18:(5):66470
    [Crossref] [Google Scholar]
  58. Gulmon S, Chiariello N, Mooney H, Chu C. 1983.. Phenology and resource use in three co-occurring grassland annuals. . Oecologia 58::3342
    [Crossref] [Google Scholar]
  59. Hallett LM, Shoemaker LG, White CT, Suding KN. 2019.. Rainfall variability maintains grass-forb species coexistence. . Ecol. Lett. 22:(10):165867
    [Crossref] [Google Scholar]
  60. Heberling JM, Cassidy ST, Fridley JD, Kalisz S. 2019.. Carbon gain phenologies of spring-flowering perennials in a deciduous forest indicate a novel niche for a widespread invader. . New Phytol. 221:(2):77888
    [Crossref] [Google Scholar]
  61. Henry GHR, Molau U. 1997.. Tundra plants and climate change: the International Tundra Experiment (ITEX). . Glob. Change Biol. 3::19
    [Crossref] [Google Scholar]
  62. Hess MC, Mesléard F, Buisson E. 2019.. Priority effects: emerging principles for invasive plant species management. . Ecol. Eng. 127::4857
    [Crossref] [Google Scholar]
  63. HilleRisLambers J, Adler PB, Harpole WS, Levine JM, Mayfield MM. 2012.. Rethinking community assembly through the lens of coexistence theory. . Annu. Rev. Ecol. Evol. Syst. 43::22748
    [Crossref] [Google Scholar]
  64. Holt BR. 1972.. Effect of arrival time on recruitment, mortality, and reproduction in successional plant populations. . Ecology 53:(4):66873
    [Crossref] [Google Scholar]
  65. Horbach S, Rauschkolb R, Römermann C. 2023.. Flowering and leaf phenology are more variable and stronger associated to functional traits in herbaceous compared to tree species. . Flora 300::152218
    [Crossref] [Google Scholar]
  66. Hubbell SP. 2001.. The Unified Neutral Theory of Biodiversity. Princeton, NJ:: Princeton Univ. Press
    [Google Scholar]
  67. Hutchinson GE. 1959.. Homage to Santa-Rosalia or why are there so many kinds of animals?. Am. Nat. 93:(870):14559
    [Crossref] [Google Scholar]
  68. Iler AM, CaraDonna PJ, Forrest JR, Post E. 2021.. Demographic consequences of phenological shifts in response to climate change. . Annu. Rev. Ecol. Evol. Syst. 52::22145
    [Crossref] [Google Scholar]
  69. Inouye BD, Ehrlen J, Underwood N. 2019.. Phenology as a process rather than an event: from individual reaction norms to community metrics. . Ecol. Monogr. 89:(2):e01352
    [Crossref] [Google Scholar]
  70. Inouye DW. 2008.. Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. . Ecology 89:(2):35362
    [Crossref] [Google Scholar]
  71. Iwasa Y, Cohen D. 1989.. Optimal growth schedule of a perennial plant. . Am. Nat. 133:(4):480505
    [Crossref] [Google Scholar]
  72. Joswig JS, Wirth C, Schuman MC, Kattge J, Reu B, et al. 2022.. Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. . Nat. Ecol. Evol. 6:(1):3650
    [Crossref] [Google Scholar]
  73. Kardol P, Souza L, Classen AT. 2013.. Resource availability mediates the importance of priority effects in plant community assembly and ecosystem function. . Oikos 122:(1):8494
    [Crossref] [Google Scholar]
  74. Keever C. 1950.. Causes of succession on old fields of the Piedmont, North Carolina. . Ecol. Monogr. 20:(3):22950
    [Crossref] [Google Scholar]
  75. Kharouba HM, Ehrlén J, Gelman A, Bolmgren K, Allen JM, et al. 2018.. Global shifts in the phenological synchrony of species interactions over recent decades. . PNAS 115:(20):521116
    [Crossref] [Google Scholar]
  76. Kimball S, Angert AL, Huxman TE, Venable DL. 2010.. Contemporary climate change in the Sonoran Desert favors cold-adapted species. . Glob. Change Biol. 16:(5):155565
    [Crossref] [Google Scholar]
  77. König P, Tautenhahn S, Cornelissen JHC, Kattge J, Bönisch G, Römermann C. 2018.. Advances in flowering phenology across the Northern Hemisphere are explained by functional traits. . Glob. Ecol. Biogeogr. 27:(3):31021
    [Crossref] [Google Scholar]
  78. Kooyers NJ. 2015.. The evolution of drought escape and avoidance in natural herbaceous populations. . Plant Sci. 234::15562
    [Crossref] [Google Scholar]
  79. Körner C, Möhl P, Hiltbrunner E. 2023.. Four ways to define the growing season. . Ecol. Lett. (26):127792
    [Crossref] [Google Scholar]
  80. Kraft NJ, Adler PB, Godoy O, James EC, Fuller S, Levine JM. 2015.. Community assembly, coexistence and the environmental filtering metaphor. . Funct. Ecol. 29:(5):59299
    [Crossref] [Google Scholar]
  81. Kubo T, Iwasa Y. 1996.. Phenological pattern of tree regeneration in a model for forest species diversity. . Theor. Popul. Biol. 49:(1):90117
    [Crossref] [Google Scholar]
  82. Larcher W. 1980.. Plant Physiological Ecology. Berlin:: Springer-Verlag
    [Google Scholar]
  83. Larson JE, Funk JL. 2016.. Regeneration: an overlooked aspect of trait-based plant community assembly models. . J. Ecol. 104:(5):128498
    [Crossref] [Google Scholar]
  84. Laughlin DC, Leppert JJ, Moore MM, Sieg CH. 2010.. A multi-trait test of the leaf-height-seed plant strategy scheme with 133 species from a pine forest flora. . Funct. Ecol. 24:(3):493501
    [Crossref] [Google Scholar]
  85. Law R. 1979.. The cost of reproduction in annual meadow grass. . Am. Nat. 113:(1):316
    [Crossref] [Google Scholar]
  86. Lenz A, Hoch G, Vitasse Y, Korner C. 2013.. European deciduous trees exhibit similar safety margins against damage by spring freeze events along elevational gradients. . New Phytol. 200:(4):116675
    [Crossref] [Google Scholar]
  87. Leverett LD. 2017.. Germination phenology determines the propensity for facilitation and competition. . Ecology 98:(9):243746
    [Crossref] [Google Scholar]
  88. Levine JI, Levine JM, Gibbs T, Pacala SW. 2022.. Competition for water and species coexistence in phenologically structured annual plant communities. . Ecol. Lett. 25:(5):111025
    [Crossref] [Google Scholar]
  89. Levine JM, McEachern AK, Cowan C. 2011.. Seasonal timing of first rain storms affects rare plant population dynamics. . Ecology 92:(12):223647
    [Crossref] [Google Scholar]
  90. Liu Y, Li G, Wu X, Niklas KJ, Yang Z, Sun S. 2021.. Linkage between species traits and plant phenology in an alpine meadow. . Oecologia 195::40919
    [Crossref] [Google Scholar]
  91. Marushia RG, Cadotte MW, Holt JS. 2010.. Phenology as a basis for management of exotic annual plants in desert invasions. . J. Appl. Ecol. 47:(6):129099
    [Crossref] [Google Scholar]
  92. Mazer SJ. 1990.. Seed mass of Indiana Dune genera and families: taxonomic and ecological correlates. . Evol. Ecol. 4::32657
    [Crossref] [Google Scholar]
  93. McEwan RW, Birchfield MK, Schoergendorfer A, Arthur MA. 2009.. Leaf phenology and freeze tolerance of the invasive shrub Amur honeysuckle and potential native competitors. . J. Torrey Bot. Soc. 136:(2):21220
    [Crossref] [Google Scholar]
  94. McPeek MA. 2022.. Coexistence in Ecology: A Mechanistic Perspective. Princeton, NJ:: Princeton Univ. Press
    [Google Scholar]
  95. Meineke EK, Davis CC, Davies TJ. 2021.. Phenological sensitivity to temperature mediates herbivory. . Glob. Change Biol. 27:(11):231527
    [Crossref] [Google Scholar]
  96. Menzel A, Yuan Y, Matiu M, Sparks T, Scheifinger H, et al. 2020.. Climate change fingerprints in recent European plant phenology. . Glob. Change Biol. 26:(4):2599612
    [Crossref] [Google Scholar]
  97. Morin X, Augspurger C, Chuine I. 2007.. Process-based modeling of species' distributions: What limits temperate tree species' range boundaries?. Ecology 88:(9):228091
    [Crossref] [Google Scholar]
  98. Morin X, Lechowicz MJ, Augspurger C, O'Keefe J, Viner D, Chuine I. 2009.. Leaf phenology in 22 North American tree species during the 21st century. . Glob. Change Biol. 15:(4):96175
    [Crossref] [Google Scholar]
  99. Munguía-Rosas MA, Ollerton J, Parra-Tabla V, De-Nova JA. 2011.. Meta-analysis of phenotypic selection on flowering phenology suggests that early flowering plants are favoured. . Ecol. Lett. 14:(5):51121
    [Crossref] [Google Scholar]
  100. Padilla F, Pugnaire F. 2007.. Rooting depth and soil moisture control Mediterranean woody seedling survival during drought. . Funct. Ecol. 21::48995
    [Crossref] [Google Scholar]
  101. Park JS, Post E. 2022.. Seasonal timing on a cyclical Earth: towards a theoretical framework for the evolution of phenology. . PLOS Biol. 20:(12):e3001952
    [Crossref] [Google Scholar]
  102. Parmesan C, Hanley ME. 2015.. Plants and climate change: complexities and surprises. . Ann. Bot. 116:(6):84964
    [Crossref] [Google Scholar]
  103. Piao S, Liu Q, Chen A, Janssens IA, Fu Y, et al. 2019.. Plant phenology and global climate change: current progresses and challenges. . Glob. Change Biol. 25:(6):192240
    [Crossref] [Google Scholar]
  104. Post ES, Pedersen C, Wilmers CC, Forchhammer MC. 2008.. Phenological sequences reveal aggregate life history response to climatic warming. . Ecology 89:(2):36370
    [Crossref] [Google Scholar]
  105. Primack RB. 1987.. Relationships among flowers, fruits, and seeds. . Annu. Rev. Ecol. Syst. 18::40930
    [Crossref] [Google Scholar]
  106. Pywell RF, Bullock JM, Roy DB, Warman L, Walker KJ, Rothery P. 2003.. Plant traits as predictors of performance in ecological restoration. . J. Appl. Ecol. 40:(1):6577
    [Crossref] [Google Scholar]
  107. Rathcke B, Lacey EP. 1985.. Phenological patterns of terrestrial plants. . Annu. Rev. Ecol. Syst. 16::179214
    [Crossref] [Google Scholar]
  108. Ross MA, Harper JL. 1972.. Occupation of biological space during seedling establishment. . J. Ecol. 60::7788
    [Crossref] [Google Scholar]
  109. Rudolf VH. 2019.. The role of seasonal timing and phenological shifts for species coexistence. . Ecol. Lett. 22:(8):132438
    [Crossref] [Google Scholar]
  110. Sakai AK, Larcher W. 1987.. Frost Survival of Plants: Responses and Adaptation to Freezing Stress. Berlin:: Springer-Verlag
    [Google Scholar]
  111. Salisbury EJ. 1926.. The geographical distribution of plants in relation to climatic factors. . Geogr. J. 67:(4):31235
    [Crossref] [Google Scholar]
  112. Schaffer WM. 1974.. Optimal reproductive effort in fluctuating environments. . Am. Nat. 108:(964):78390
    [Crossref] [Google Scholar]
  113. Seabloom EW, Harpole WS, Reichman O, Tilman D. 2003.. Invasion, competitive dominance, and resource use by exotic and native California grassland species. . PNAS 100:(23):1338489
    [Crossref] [Google Scholar]
  114. Segrestin J, Navas M-L, Garnier E. 2020.. Reproductive phenology as a dimension of the phenotypic space in 139 plant species from the Mediterranean. . New Phytol. 225:(2):74053
    [Crossref] [Google Scholar]
  115. Sporbert M, Jakubka D, Bucher SF, Hensen I, Freiberg M, et al. 2022.. Functional traits influence patterns in vegetative and reproductive plant phenology–a multi-botanical garden study. . New Phytol. 235:(6):2199210
    [Crossref] [Google Scholar]
  116. Stanton ML, Roy BA, Thiede DA. 2000.. Evolution in stressful environments. I. Phenotypic variability, phenotypic selection, and response to selection in five distinct environmental stresses. . Evolution 54:(1):93111
    [Google Scholar]
  117. Stearns SC. 1998.. The Evolution of Life Histories. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  118. Thomson DM, King RA, Schultz EL. 2017.. Between invaders and a risky place: Exotic grasses alter demographic tradeoffs of native forb germination timing. . Ecosphere 8:(10):e01987
    [Crossref] [Google Scholar]
  119. Valliere JM, Flores RG, Cason BJ, Hernández MJ. 2022.. Phenological and physiological advantages of invasive annuals are strengthened by nitrogen enrichment. . Funct. Ecol. 36:(11):281932
    [Crossref] [Google Scholar]
  120. Van Noordwijk AJ, De Jong G. 1986.. Acquisition and allocation of resources: their influence on variation in life history tactics. . Am. Nat. 128:(1):13742
    [Crossref] [Google Scholar]
  121. Vannette RL, Fukami T. 2014.. Historical contingency in species interactions: towards niche-based predictions. . Ecol. Lett. 17:(1):11524
    [Crossref] [Google Scholar]
  122. Varpe Ø, Jørgensen C, Tarling GA, Fiksen Ø. 2009.. The adaptive value of energy storage and capital breeding in seasonal environments. . Oikos 118:(3):36370
    [Crossref] [Google Scholar]
  123. Verdú M, Traveset A. 2005.. Early emergence enhances plant fitness: a phylogenetically controlled meta-analysis. . Ecology 86:(6):138594
    [Crossref] [Google Scholar]
  124. Violle C, Navas M-L, Vile D, Kazakou E, Fortunel C, et al. 2007.. Let the concept of trait be functional!. Oikos 116:(5):88292
    [Crossref] [Google Scholar]
  125. Vitasse Y, Lenz A, Hoch G, Körner C. 2014.. Earlier leaf-out rather than difference in freezing resistance puts juvenile trees at greater risk of damage than adult trees. . J. Ecol. 102:(4):98188
    [Crossref] [Google Scholar]
  126. Wagg C, Ebeling A, Roscher C, Ravenek J, Bachmann D, et al. 2017.. Functional trait dissimilarity drives both species complementarity and competitive disparity. . Funct. Ecol. 31:(12):232029
    [Crossref] [Google Scholar]
  127. Wainwright CE, Wolkovich EM, Cleland EE. 2012.. Seasonal priority effects: implications for invasion and restoration in a semi-arid system. . J. Appl. Ecol. 49:(1):23441
    [Crossref] [Google Scholar]
  128. Waterton J, Cleland EE. 2016.. Trade-off between early emergence and herbivore susceptibility mediates exotic success in an experimental California plant community. . Ecol. Evol. 6:(24):894253
    [Crossref] [Google Scholar]
  129. Waterton J, Mazer SJ, Meyer JR, Cleland EE. 2021.. Trade-off drives pareto optimality of within- and among-year emergence timing in response to increasing aridity. . Evol. Appl. 14:(3):65873
    [Crossref] [Google Scholar]
  130. Westoby M. 1998.. A leaf-height-seed (LHS) plant ecology strategy scheme. . Plant Soil 199::21327
    [Crossref] [Google Scholar]
  131. Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ. 2002.. Plant ecological strategies: some leading dimensions of variation between species. . Annu. Rev. Ecol. Syst. 33::12559
    [Crossref] [Google Scholar]
  132. Whitehead DR. 1969.. Wind pollination in the angiosperms: evolutionary and environmental considerations. . Evolution 23::2835
    [Crossref] [Google Scholar]
  133. Williams RJ, Myers BA, Muller W, Duff GA, Eamus D. 1997.. Leaf phenology of woody species in a North Australian tropical savanna. . Ecology 78:(8):254258
    [Crossref] [Google Scholar]
  134. Wilsey B. 2021.. Restoration in the face of changing climate: importance of persistence, priority effects, and species diversity. . Restor. Ecol. 29::e13132
    [Crossref] [Google Scholar]
  135. Wilsey BJ, Daneshgar PP, Polley HW. 2011.. Biodiversity, phenology and temporal niche differences between native- and novel exotic-dominated grasslands. . Perspect. Plant Ecol. Evol. Syst. 13:(4):26576
    [Crossref] [Google Scholar]
  136. Wolkovich EM, Cleland EE. 2011.. The phenology of plant invasions: a community ecology perspective. . Front. Ecol. Environ. 9:(5):28794
    [Crossref] [Google Scholar]
  137. Wolkovich EM, Cleland EE. 2014.. Phenological niches and the future of invaded ecosystems with climate change. . AoB Plants 6::plu013
    [Crossref] [Google Scholar]
  138. Wolkovich EM, Cook BI, Allen JM, Crimmins T, Betancourt JL, et al. 2012.. Warming experiments underpredict plant phenological responses to climate change. . Nature 485:(7399):49497
    [Crossref] [Google Scholar]
  139. Wolkovich EM, Donahue MJ. 2021.. How phenological tracking shapes species and communities in non-stationary environments. . Biol. Rev. 96:(6):281027
    [Crossref] [Google Scholar]
  140. Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, et al. 2004.. The worldwide leaf economics spectrum. . Nature 428:(6985):82127
    [Crossref] [Google Scholar]
  141. Young TP, Stuble KL, Balachowski JA, Werner CM. 2017.. Using priority effects to manipulate competitive relationships in restoration. . Restor. Ecol. 25::S11423
    [Crossref] [Google Scholar]
  142. Zettlemoyer MA, Ellis SL, Hale CW, Horne EC, Thoen RD, DeMarche ML. 2022.. Limited evidence for phenological differences between non-native and native species. . Front. Ecol. Evol. 10::983172
    [Crossref] [Google Scholar]
  143. Zhou H, Min X, Chen J, Lu C, Huang Y, et al. 2023.. Climate warming interacts with other global change drivers to influence plant phenology: a meta-analysis of experimental studies. . Ecol. Lett. 26::137081
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-102722-011653
Loading
/content/journals/10.1146/annurev-ecolsys-102722-011653
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error