1932

Abstract

The globalization of trade and increased human mobility have facilitated the introduction and spread of nonnative species, posing significant threats to biodiversity and human well-being. As centers of global trade and human populations, cities are foci for the introduction, establishment, and spread of nonnative species. We present a global synthesis of urban characteristics that drive biological invasions within and across cities, focusing on four axes: () connectivity, () physical properties, () culture and socioeconomics, and () biogeography and climate. Urban characteristics such as increased connectivity within and among cities, city size and age, and wealth emerged as important drivers of nonnative species diversity and spread, while the relative importance of biogeographic and climate drivers varied considerably. Elaborating how these characteristics shape biological invasions in cities is crucial for designing and implementing strategies to mitigate the impacts of invasions on ecological systems and human well-being.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-102722-012749
2024-11-04
2025-02-06
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/55/1/annurev-ecolsys-102722-012749.html?itemId=/content/journals/10.1146/annurev-ecolsys-102722-012749&mimeType=html&fmt=ahah

Literature Cited

  1. Abellán P, Tella JL, Carrete M, Cardador L, Anadón JD. 2017.. Climate matching drives spread rate but not establishment success in recent unintentional bird introductions. . PNAS 114:(35):938590
    [Crossref] [Google Scholar]
  2. Ahrens C, Ecker G, Auer C. 2011.. The intersection of ecological risk assessment and plant communities: an analysis of Agrostis and Panicum species in the northeastern US. . Plant Ecol. 212::162942
    [Crossref] [Google Scholar]
  3. Arazmi FN, Ismail NA, Daud UNS, Abidin KZ, Nor SM, Mansor MS. 2022.. Spread of the invasive Javan myna along an urban–suburban gradient in peninsular Malaysia. . Urban Ecosyst. 25:(3):100714
    [Crossref] [Google Scholar]
  4. Aronson MF, La Sorte FA, Nilon CH, Katti M, Goddard MA, et al. 2014.. A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. . Proc. R. Soc. B 281:(1780):20133330
    [Crossref] [Google Scholar]
  5. Aronson MF, Patel MV, O'Neill KM, Ehrenfeld JG. 2017.. Urban riparian systems function as corridors for both native and invasive plant species. . Biol. Invasions 19::364557
    [Crossref] [Google Scholar]
  6. Banks NC, Paini DR, Bayliss KL, Hodda M. 2015.. The role of global trade and transport network topology in the human-mediated dispersal of alien species. . Ecol. Lett. 18:(2):18899
    [Crossref] [Google Scholar]
  7. Bayón Á, Godoy O, Maurel N, van Kleunen M, Vilà M. 2021.. Proportion of non-native plants in urban parks correlates with climate, socioeconomic factors and plant traits. . Urban For. Urban Green. 63::127215
    [Crossref] [Google Scholar]
  8. Blackburn TM, Cassey P, Duncan RP. 2020.. Colonization pressure: a second null model for invasion biology. . Biol. Invasions 22::122133
    [Crossref] [Google Scholar]
  9. Blanchet É, Penone C, Maurel N, Billot C, Rivallan R, et al. 2015.. Multivariate analysis of polyploid data reveals the role of railways in the spread of the invasive South African ragwort (Senecio inaequidens). . Conserv. Genet. 16::52333
    [Crossref] [Google Scholar]
  10. Blouin D, Pellerin S, Poulin M. 2019.. Increase in non-native species richness leads to biotic homogenization in vacant lots of a highly urbanized landscape. . Urban Ecosyst. 22::87992
    [Crossref] [Google Scholar]
  11. Borden JB, Flory SL. 2021.. Urban evolution of invasive species. . Front. Ecol. Environ. 19:(3):18491
    [Crossref] [Google Scholar]
  12. Britton DK, McMahon RF. 2005.. Analysis of trailered boat traffic and the potential westward spread of zebra mussels across the 100th meridian. . Am. Malacological Bull. 20:(1/2):14760
    [Google Scholar]
  13. Brunzel S, Fischer SF, Schneider J, Jetzkowitz J, Brandl R. 2009.. Neo- and archaeophytes respond more strongly than natives to socio-economic mobility and disturbance patterns along an urban–rural gradient. . J. Biogeogr. 36:(5):83544
    [Crossref] [Google Scholar]
  14. Buczkowski G. 2017.. Prey-baiting as a conservation tool: selective control of invasive ants with minimal non-target effects. . Insect Conserv. Diversity 10:(4):3029
    [Crossref] [Google Scholar]
  15. Cadotte MW, Yasui SLE, Livingstone S, MacIvor JS. 2017.. Are urban systems beneficial, detrimental, or indifferent for biological invasion?. Biol. Invasions 19::3489503
    [Crossref] [Google Scholar]
  16. Callaghan CT, Bino G, Major RE, Martin JM, Lyons MB, Kingsford RT. 2019.. Heterogeneous urban green areas are bird diversity hotspots: insights using continental-scale citizen science data. . Landsc. Ecol. 34::123146
    [Crossref] [Google Scholar]
  17. Caughlin TT, Clark M, Jochems LW, Kolarik N, Zaiats A, et al. 2023.. Socio-ecological interactions promote outbreaks of a harmful invasive plant in an urban landscape. . Ecol. Solut. Evidence 4:(2):e12247
    [Crossref] [Google Scholar]
  18. Celesti-Grapow L, Blasi C. 1998.. A comparison of the urban flora of different phytoclimatic regions in Italy. . Global Ecol. Biogeogr. Lett. 7:(5):36778
    [Google Scholar]
  19. Celesti-Grapow L, Pyšek P, Jarošík V, Blasi C. 2006.. Determinants of native and alien species richness in the urban flora of Rome. . Divers. Distrib. 12:(5):490501
    [Crossref] [Google Scholar]
  20. Celesti-Grapow L, Ricotta C. 2021.. Plant invasion as an emerging challenge for the conservation of heritage sites: the spread of ornamental trees on ancient monuments in Rome, Italy. . Biol. Invasions 23:(4):1191206
    [Crossref] [Google Scholar]
  21. Čeplová N, Kalusová V, Lososová Z. 2017.. Effects of settlement size, urban heat island and habitat type on urban plant biodiversity. . Landsc. Urban Plann. 159::1522
    [Crossref] [Google Scholar]
  22. Chamberlain D, Reynolds C, Amar A, Henry D, Caprio E, Batáry P. 2020.. Wealth, water and wildlife: Landscape aridity intensifies the urban luxury effect. . Global Ecol. Biogeogr. 29:(9):1595605
    [Crossref] [Google Scholar]
  23. Chapman DS, Gunn ID, Pringle HE, Siriwardena GM, Taylor P, et al. 2020.. Invasion of freshwater ecosystems is promoted by network connectivity to hotspots of human activity. . Global Ecol. Biogeogr. 29:(4):64555
    [Crossref] [Google Scholar]
  24. Clark JS. 1998.. Why trees migrate so fast: confronting theory with dispersal biology and the paleorecord. . Am. Nat. 152:(2):20424
    [Crossref] [Google Scholar]
  25. Cordonnier M, Bellec A, Escarguel G, Kaufmann B. 2020.. Effects of urbanization–climate interactions on range expansion in the invasive European pavement ant. . Basic Appl. Ecol. 44::4654
    [Crossref] [Google Scholar]
  26. Crowe TM. 1979.. Lots of weeds: insular phytogeography of vacant urban lots. . J. Biogeogr. 1::16981
    [Crossref] [Google Scholar]
  27. Cubino JP, Subirós JV, Lozano CB. 2015.. Propagule pressure from invasive plant species in gardens in low-density suburban areas of the Costa Brava (Spain). . Urban For. Urban Green. 14:(4):94151
    [Crossref] [Google Scholar]
  28. Cuddington K, Sobek-Swant S, Crosthwaite JC, Lyons DB, Sinclair BJ. 2018.. Probability of emerald ash borer impact for Canadian cities and North America: a mechanistic model. . Biol. Invasions 20::266177
    [Crossref] [Google Scholar]
  29. Davis MA, Grime JP, Thompson K. 2000.. Fluctuating resources in plant communities: a general theory of invasibility. . J. Ecol. 88:(3):52834
    [Crossref] [Google Scholar]
  30. de Andrade AC. 2022.. Density of marmosets in highly urbanised areas and the positive effect of arboreous vegetation. . Urban Ecosyst. 25:(1):1019
    [Crossref] [Google Scholar]
  31. Derraik JG. 2004.. Exotic mosquitoes in New Zealand: a review of species intercepted, their pathways and ports of entry. . Aust. New Zealand J. Public Health 28:(5):43344
    [Crossref] [Google Scholar]
  32. Drayton B, Primack RB. 1996.. Plant species lost in an isolated conservation area in metropolitan Boston from 1894 to 1993. . Conserv. Biol. 10::3039
    [Crossref] [Google Scholar]
  33. Duchesneau K, Derickx L, Antunes PM. 2021.. Assessing the relative importance of human and spatial pressures on non-native plant establishment in urban forests using citizen science. . NeoBiota 65::121
    [Crossref] [Google Scholar]
  34. Dyer EE, Cassey P, Redding DW, Collen B, Franks V, et al. 2017.. The global distribution and drivers of alien bird species richness. . PLOS Biol. 15:(1):e2000942
    [Crossref] [Google Scholar]
  35. Epanchin-Niell RS, Brockerhoff EG, Kean JM, Turner JA. 2014.. Designing cost-efficient surveillance for early detection and control of multiple biological invaders. . Ecol. Appl. 24:(6):125874
    [Crossref] [Google Scholar]
  36. Estévez RA, Anderson CB, Pizarro JC, Burgman MA. 2015.. Clarifying values, risk perceptions, and attitudes to resolve or avoid social conflicts in invasive species management. . Conserv. Biol. 29:(1):1930
    [Crossref] [Google Scholar]
  37. Figueroa JA, Castro SA, Reyes M, Teillier S. 2018.. Urban park area and age determine the richness of native and exotic plants in parks of a Latin American city: Santiago as a case study. . Urban Ecosyst. 21::64555
    [Crossref] [Google Scholar]
  38. Fridley JD, Stachowicz JJ, Naeem S, Sax D, Seabloom E, et al. 2007.. The invasion paradox: reconciling pattern and process in species invasions. . Ecology 88:(1):317
    [Crossref] [Google Scholar]
  39. Gaertner M, Larson BM, Irlich UM, Holmes PM, Stafford L, et al. 2016.. Managing invasive species in cities: a framework from Cape Town, South Africa. . Landsc. Urban Plann. 151::19
    [Crossref] [Google Scholar]
  40. Gao Z, Pan Y, Van Bodegom PM, Cieraad E, Xing D, et al. 2023.. Beta diversity of urban spontaneous plants and its drivers in 9 major cities of Yunnan Province, China. . Landsc. Urban Plann. 234::104741
    [Crossref] [Google Scholar]
  41. Garcillán PP, Dana ED, Rebman JP, Peñas J. 2014.. Effects of alien species on homogenization of urban floras across continents: a tale of two Mediterranean cities on two different continents. . Plant Ecol. Evol. 147:(1):39
    [Crossref] [Google Scholar]
  42. Géron C, Lembrechts JJ, Borgelt J, Lenoir J, Hamdi R, et al. 2021.. Urban alien plants in temperate oceanic regions of Europe originate from warmer native ranges. . Biol. Invasions 23:(6):176579
    [Crossref] [Google Scholar]
  43. Gochnour BM, Suiter DR, Booher D. 2019.. Ant (Hymenoptera: Formicidae) fauna of the marine Port of Savannah, Garden City, Georgia (USA). . J. Entomol. Sci. 54:(4):41729
    [Google Scholar]
  44. Gopal D, von der Lippe M, Kowarik I. 2019.. Sacred sites, biodiversity and urbanization in an Indian megacity. . Urban Ecosyst. 22::16172
    [Crossref] [Google Scholar]
  45. Gottschalk MS, De Toni DC, Valente VL, Hofmann PR. 2007.. Changes in Brazilian Drosophilidae (Diptera) assemblages across an urbanisation gradient. . Neotropical Entomol. 36::84862
    [Crossref] [Google Scholar]
  46. Grez AA, Zaviezo T, Gardiner MM, Alaniz AJ. 2019.. Urbanization filters coccinellids composition and functional trait distributions in greenspaces across greater Santiago, Chile. . Urban For. Urban Green. 38::33745
    [Crossref] [Google Scholar]
  47. Grimalt S, Thompson D, Chartrand D, McFarlane J, Helson B, et al. 2011.. Foliar residue dynamics of azadirachtins following direct stem injection into white and green ash trees for control of emerald ash borer. . Pest Manag. Sci. 67:(10):127784
    [Crossref] [Google Scholar]
  48. Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu J, et al. 2008.. Global change and the ecology of cities. . Science 319:(5864):75660
    [Crossref] [Google Scholar]
  49. Gruver A, CaraDonna P. 2021.. Chicago bees: Urban areas support diverse bee communities but with more non-native bee species compared to suburban areas. . Environ. Entomol. 50:(4):98294
    [Crossref] [Google Scholar]
  50. Guagliardo SAJ, Lee Y, Pierce AA, Wong J, Chu YY, et al. 2019.. The genetic structure of Aedes aegypti populations is driven by boat traffic in the Peruvian Amazon. . PLOS Negl. Trop. Dis. 13:(9):e0007552
    [Crossref] [Google Scholar]
  51. Helmus MR, Mahler DL, Losos JB. 2014.. Island biogeography of the Anthropocene. . Nature 513:(7519):54346
    [Crossref] [Google Scholar]
  52. Hope D, Gries C, Zhu W, Fagan WF, Redman CL, et al. 2003.. Socioeconomics drive urban plant diversity. . PNAS 100:(15):878892
    [Crossref] [Google Scholar]
  53. Horsák M, Lososová Z, Čejka T, Juřičková L, Chytrý M. 2013.. Diversity and biotic homogenization of urban land-snail faunas in relation to habitat types and macroclimate in 32 Central European cities. . PLOS ONE 8:(8):e71783
    [Crossref] [Google Scholar]
  54. Hui C, Richardson DM, Visser V. 2017.. Ranking of invasive spread through urban green areas in the world's 100 most populous cities. . Biol. Invasions 19:(12):352739
    [Crossref] [Google Scholar]
  55. Hulme PE. 2011.. Addressing the threat to biodiversity from botanic gardens. . Trends Ecol. Evol. 26:(4):16874
    [Crossref] [Google Scholar]
  56. Hulme PE. 2017.. Climate change and biological invasions: evidence, expectations, and response options. . Biol. Rev. 92:(3):1297313
    [Crossref] [Google Scholar]
  57. Hüse B, Szabó S, Deák B, Tóthmérész B. 2016.. Mapping an ecological network of green habitat patches and their role in maintaining urban biodiversity in and around Debrecen city (Eastern Hungary). . Land Use Policy 57::57481
    [Crossref] [Google Scholar]
  58. Jacob G, Prévot-Julliard A-C, Baudry E. 2015.. The geographic scale of genetic differentiation in the feral pigeon (Columba livia): implications for management. . Biol. Invasions 17::2329
    [Crossref] [Google Scholar]
  59. Jehlík V, Dostálek J, Frantík T. 2019.. Alien plants in central European river ports. . NeoBiota 45::93115
    [Crossref] [Google Scholar]
  60. Jin C, Hu S, Huang L, Huang J, Jim CY, et al. 2021.. Landscape plants in major Chinese cities: diverse origins and climatic congruence vis-à-vis climate change resilience. . Urban For. Urban Green. 64::127292
    [Crossref] [Google Scholar]
  61. Jin C, Zheng M, Huang L, Qian S, Jim CY, et al. 2020.. Co-existence between humans and nature: heritage trees in China's Yangtze River region. . Urban For. Urban Green. 54::126748
    [Crossref] [Google Scholar]
  62. Kalwij JM, Milton SJ, McGeoch MA. 2008.. Road verges as invasion corridors? A spatial hierarchical test in an arid ecosystem. . Landsc. Ecol. 23::43951
    [Crossref] [Google Scholar]
  63. Kowarik I, von der Lippe M, Cierjacks A, et al. 2013.. Prevalence of alien versus native species of woody plants in Berlin differs between habitats and at different scales. . Preslia 85:(2):11332
    [Google Scholar]
  64. Kühn I, Brandl R, Klotz S. 2004.. The flora of German cities is naturally species rich. . Evol. Ecol. Res. 6:(5):74964
    [Google Scholar]
  65. Kühn I, Wolf J, Schneider A. 2017.. Is there an urban effect in alien plant invasions?. Biol. Invasions 19::350513
    [Crossref] [Google Scholar]
  66. Kulfan J, Zach P, Holec J, Brown PM, Sarvašová L, et al. 2020.. The invasive box tree moth five years after introduction in Slovakia: damage risk to box trees in urban habitats. . Forests 11:(9):999
    [Crossref] [Google Scholar]
  67. La Sorte FA, Aronson MF, Williams NS, Celesti-Grapow L, Cilliers S, et al. 2014.. Beta diversity of urban floras among European and non-European cities. . Global Ecol. Biogeogr. 23:(7):76979
    [Crossref] [Google Scholar]
  68. Lima JMT, Staudhammer CL, Brandeis TJ, Escobedo FJ, Zipperer W. 2013.. Temporal dynamics of a subtropical urban forest in San Juan, Puerto Rico, 2001–2010. . Landsc. Urban Plann. 120::96106
    [Crossref] [Google Scholar]
  69. López-Collar D, Cabrero-Sañudo FJ. 2021.. Update on the invasion status of the Argentine ant, Linepithema humile (Mayr, 1868), in Madrid, a large city in the interior of the Iberian Peninsula. . J. Hymenoptera Res. 85::16177
    [Crossref] [Google Scholar]
  70. López-Legentil S, Legentil ML, Erwin PM, Turon X. 2015.. Harbor networks as introduction gateways: contrasting distribution patterns of native and introduced ascidians. . Biol. Invasions 17::162338
    [Crossref] [Google Scholar]
  71. Lososová Z, Chytrý M, Tichý L, Danihelka J, Fajmon K, et al. 2012a.. Native and alien floras in urban habitats: a comparison across 32 cities of central Europe. . Global Ecol. Biogeogr. 21:(5):54555
    [Crossref] [Google Scholar]
  72. Lososová Z, Chytrý M, Tichý L, Danihelka J, Fajmon K, et al. 2012b.. Biotic homogenization of central European urban floras depends on residence time of alien species and habitat types. . Biol. Conserv. 145:(1):17984
    [Crossref] [Google Scholar]
  73. Lowenstein DM, Minor ES. 2016.. Diversity in flowering plants and their characteristics: integrating humans as a driver of urban floral resources. . Urban Ecosyst. 19::173548
    [Crossref] [Google Scholar]
  74. Lubbe CS, Siebert SJ, Cilliers SS, et al. 2010.. Political legacy of South Africa affects the plant diversity patterns of urban domestic gardens along a socio-economic gradient. . Sci. Res. Essays 5:(19):290010
    [Google Scholar]
  75. Maceda-Veiga A, Escribano-Alacid J, Martínez-Silvestre A, Verdaguer I, Mac Nally R. 2019.. What's next? The release of exotic pets continues virtually unabated 7 years after enforcement of new legislation for managing invasive species. . Biol. Invasions 21::293347
    [Crossref] [Google Scholar]
  76. Matthies SA, Rüter S, Prasse R, Schaarschmidt F. 2015.. Factors driving the vascular plant species richness in urban green spaces: using a multivariable approach. . Landsc. Urban Plann. 134::17787
    [Crossref] [Google Scholar]
  77. McKinney ML. 2006.. Urbanization as a major cause of biotic homogenization. . Biol. Conserv. 127:(3):24760
    [Crossref] [Google Scholar]
  78. McLean P, Gallien L, Wilson JR, Gaertner M, Richardson DM. 2017.. Small urban centres as launching sites for plant invasions in natural areas: insights from South Africa. . Biol. Invasions 19:(12):354155
    [Crossref] [Google Scholar]
  79. Mumaw L, Bekessy S. 2017.. Wildlife gardening for collaborative public–private biodiversity conservation. . Australas. J. Environ. Manag. 24:(3):24260
    [Crossref] [Google Scholar]
  80. Nekola JC, White PS. 1999.. The distance decay of similarity in biogeography and ecology. . J. Biogeogr. 26:(4):86778
    [Crossref] [Google Scholar]
  81. Nguyen N-A, Eskelson BN, Gergel SE, Murray T. 2021.. The occurrence of invasive plant species differed significantly across three urban greenspace types of metro Vancouver, Canada. . Urban For. Urban Green. 59::126999
    [Crossref] [Google Scholar]
  82. O'Donnell J, Gallagher RV, Wilson PD, Downey PO, Hughes L, Leishman MR. 2012.. Invasion hotspots for non-native plants in Australia under current and future climates. . Glob. Change Biol. 18:(2):61729
    [Crossref] [Google Scholar]
  83. Olden JD, Whattam E, Wood SA. 2021.. Online auction marketplaces as a global pathway for aquatic invasive species. . Hydrobiologia 848::196779
    [Crossref] [Google Scholar]
  84. O'Malia EM, Johnson LB, Hoffman JC. 2018.. Pathways and places associated with nonindigenous aquatic species introductions in the Laurentian Great Lakes. . Hydrobiologia 817::2340
    [Crossref] [Google Scholar]
  85. Padayachee AL, Irlich UM, Faulkner KT, Gaertner M, Procheş Ş, et al. 2017.. How do invasive species travel to and through urban environments?. Biol. Invasions 19::355770
    [Crossref] [Google Scholar]
  86. Palomino D, Carrascal LM. 2005.. Birds on novel island environments. A case study with the urban avifauna of Tenerife (Canary Islands). . Ecol. Res. 20::61117
    [Crossref] [Google Scholar]
  87. Panitsa M, Iliadou E, Kokkoris I, Kallimanis A, Patelodimou C, et al. 2020.. Distribution patterns of ruderal plant diversity in Greece. . Biodivers. Conserv. 29::86991
    [Crossref] [Google Scholar]
  88. Perrings C, Fenichel E, Kinzig A. 2010.. Globalization and Invasive Alien Species: Trade, Pests, and Pathogens. New York:: Oxford Univ. Press
    [Google Scholar]
  89. Pickett ST, Cadenasso ML, Grove JM, Nilon CH, Pouyat RV, et al. 2001.. Urban ecological systems: linking terrestrial ecological, physical, and socioeconomic components of metropolitan areas. . Annu. Rev. Ecol. Syst. 32::12757
    [Crossref] [Google Scholar]
  90. Pineda M-C, Lorente B, Lopez-Legentil S, Palacin C, Turon X. 2016.. Stochasticity in space, persistence in time: genetic heterogeneity in harbour populations of the introduced ascidian Styela plicata. . PeerJ 4::e2158
    [Crossref] [Google Scholar]
  91. Polidori C, García-Gila J, Blasco-Aróstegui J, Gil-Tapetado D. 2021.. Urban areas are favouring the spread of an alien mud-dauber wasp into climatically non-optimal latitudes. . Acta Oecologica 110::103678
    [Crossref] [Google Scholar]
  92. Potgieter LJ, Aronson M, Brandt AJ, Cook CN, Gaertner M, et al. 2022a.. Prioritization and thresholds for managing biological invasions in urban ecosystems. . Urban Ecosyst. 25:(1):25371
    [Crossref] [Google Scholar]
  93. Potgieter LJ, Cadotte MW. 2020.. The application of selected invasion frameworks to urban ecosystems. . NeoBiota 62::36586
    [Crossref] [Google Scholar]
  94. Potgieter LJ, Gaertner M, Kueffer C, Larson BM, Livingstone SW, et al. 2017.. Alien plants as mediators of ecosystem services and disservices in urban systems: a global review. . Biol. Invasions 19::357188
    [Crossref] [Google Scholar]
  95. Potgieter LJ, Gaertner M, O'Farrell PJ, Richardson DM. 2019.. Perceptions of impact: invasive alien plants in the urban environment. . J. Environ. Manag. 229::7687
    [Crossref] [Google Scholar]
  96. Potgieter LJ, Shrestha N, Cadotte MW. 2022b.. Prioritizing terrestrial invasive alien plant species for management in urban ecosystems. . J. Appl. Ecol. 59:(3):87283
    [Crossref] [Google Scholar]
  97. Pyšek P. 1998.. Alien and native species in Central European urban floras: a quantitative comparison. . J. Biogeogr. 25:(1):15563
    [Crossref] [Google Scholar]
  98. Pyšek P, Bacher S, Kühn I, Novoa A, Catford JA, et al. 2020.. Macroecological framework for invasive aliens (MAFIA): disentangling large-scale context dependence in biological invasions. . NeoBiota 62::40761
    [Crossref] [Google Scholar]
  99. Pyšek P, Chytrý M. 2014.. Habitat invasion research: where vegetation science and invasion ecology meet. . J. Veg. Sci. 25:(5):118187
    [Crossref] [Google Scholar]
  100. Pyšek P, Jarošík V, Hulme PE, Kühn I, Wild J, et al. 2010.. Disentangling the role of environmental and human pressures on biological invasions across Europe. . PNAS 107:(27):1215762
    [Crossref] [Google Scholar]
  101. Ramage BS, Roman LA, Dukes JS. 2013.. Relationships between urban tree communities and the biomes in which they reside. . Appl. Veg. Sci. 16:(1):820
    [Crossref] [Google Scholar]
  102. Rat MM, Gavrilović MT, Radak B, Bokić BS, Jovanović SD, et al. 2017.. Urban flora in the southeast Europe and its correlation with urbanization. . Urban Ecosyst. 20::81122
    [Crossref] [Google Scholar]
  103. Reyes-López J, Carpintero S. 2014.. Comparison of the exotic and native ant communities (Hymenoptera: Formicidae) in urban green areas at inland, coastal and insular sites in Spain. . Eur. J. Entomol. 111:(3):42128
    [Crossref] [Google Scholar]
  104. Rittel HW, Webber MM. 1973.. Dilemmas in a general theory of planning. . Policy Sci. 4:(2):15569
    [Crossref] [Google Scholar]
  105. Seebens H, Essl F, Dawson W, Fuentes N, Moser D, et al. 2015.. Global trade will accelerate plant invasions in emerging economies under climate change. . Global Change Biol. 21:(11):412840
    [Crossref] [Google Scholar]
  106. Sexton JP, McIntyre PJ, Angert AL, Rice KJ. 2009.. Evolution and ecology of species range limits. . Annu. Rev. Ecol. Evol. Syst. 40::41536
    [Crossref] [Google Scholar]
  107. Shackleton CM, Gwedla N. 2021.. The legacy effects of colonial and apartheid imprints on urban greening in South Africa: spaces, species, and suitability. . Front. Ecol. Evol. 8::579813
    [Crossref] [Google Scholar]
  108. Shackleton RT, Richardson DM, Shackleton CM, Bennett B, Crowley SL, et al. 2019.. Explaining people's perceptions of invasive alien species: a conceptual framework. . J. Environ. Manag. 229::1026
    [Crossref] [Google Scholar]
  109. Sharp RL, Larson LR, Green GT. 2011.. Factors influencing public preferences for invasive alien species management. . Biol. Conserv. 144:(8):2097104
    [Crossref] [Google Scholar]
  110. Silva-Ortega M, Muñoz-Pacheco CB, Villaseñor NR. 2023.. Abundance of non-native birds in the city: spatial variation and relationship with socioeconomics in a South American city. . Animals 13:(11):1737
    [Crossref] [Google Scholar]
  111. Sobrinho Soares AC, dos Santos RO, Soares RN, Cantuaria PC, de Lima RB, da Silva e Silva BM. 2021.. Paradox of afforestation in cities in the Brazilian Amazon: an understanding of the composition and floristic similarity of these urban green spaces. . Urban For. Urban Green. 66::127374
    [Crossref] [Google Scholar]
  112. Štajerová K, Šmilauer P, Brůna J, Pyšek P. 2017.. Distribution of invasive plants in urban environment is strongly spatially structured. . Landsc. Ecol. 32::68192
    [Crossref] [Google Scholar]
  113. Stephens AE, Stringer LD, Suckling DM. 2016.. Advance, retreat, resettle? Climate change could produce a zero-sum game for invasive species. . Austral Entomol. 55:(2):17784
    [Crossref] [Google Scholar]
  114. Sukopp H, Wurzel A. 2003.. The effects of climate change on the vegetation of central European cities. . Urban Habitats 1::6686
    [Google Scholar]
  115. Tang Q, Jiang H, Li Y, Bourguignon T, Evans TA. 2016.. Population structure of the German cockroach, Blattella germanica, shows two expansions across China. . Biol. Invasions 18::2391402
    [Crossref] [Google Scholar]
  116. Taylor PD, Fahrig L, Henein K, Merriam G. 1993.. Connectivity is a vital element of landscape structure. . Oikos 68:(3):57173
    [Crossref] [Google Scholar]
  117. Thuiller W, Richardson DM, Pyšek P, Midgley GF, Hughes GO, Rouget M. 2005.. Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. . Global Change Biol. 11:(12):223450
    [Crossref] [Google Scholar]
  118. Tsang TP, Dyer EE, Bonebrake TC. 2019.. Alien species richness is currently unbounded in all but the most urbanized bird communities. . Ecography 42:(8):142635
    [Crossref] [Google Scholar]
  119. Ulman A, Ferrario J, Forcada A, Arvanitidis C, Occhipinti-Ambrogi A, Marchini A. 2019.. A hitchhiker's guide to Mediterranean marina travel for alien species. . J. Environ. Manag. 241::32839
    [Crossref] [Google Scholar]
  120. Vakhlamova T, Rusterholz H-P, Kanibolotskaya Y, Baur B. 2016.. Effects of road type and urbanization on the diversity and abundance of alien species in roadside verges in western Siberia. . Plant Ecol. 217::24152
    [Crossref] [Google Scholar]
  121. Vall-Llosera M, Cassey P. 2017.. Leaky doors: private captivity as a prominent source of bird introductions in Australia. . PLOS ONE 12:(2):e0172851
    [Crossref] [Google Scholar]
  122. van Heezik Y, Adams AL. 2016.. Vulnerability of native and exotic urban birds to housing densification and changing gardening and landscaping trends. . Urban Ecosyst. 19::155163
    [Crossref] [Google Scholar]
  123. van Heezik Y, Freeman C, Porter S, Dickinson KJ. 2013.. Garden size, householder knowledge, and socio-economic status influence plant and bird diversity at the scale of individual gardens. . Ecosystems 16::144254
    [Crossref] [Google Scholar]
  124. Vargo EL, Crissman JR, Booth W, Santangelo RG, Mukha DV, Schal C. 2014.. Hierarchical genetic analysis of German cockroach (Blattella germanica) populations from within buildings to across continents. . PLOS ONE 9:(7):e102321
    [Crossref] [Google Scholar]
  125. Vojík M, Sádlo J, Petřík P, Pyšek P, Man M, Pergl J. 2020.. Two faces of parks: sources of invasion and habitat for threatened native plants. . Preslia 92:(4):35373
    [Crossref] [Google Scholar]
  126. von der Lippe M, Kowarik I. 2008.. Do cities export biodiversity? Traffic as a dispersal vector across urban–rural gradients. . Divers. Distributions 14:(1):1825
    [Crossref] [Google Scholar]
  127. Vonshak M, Gordon DM. 2015.. Intermediate disturbance promotes invasive ant abundance. . Biol. Conserv. 186::35967
    [Crossref] [Google Scholar]
  128. Wang X, Svenning J-C, Liu J, Zhao Z, Zhang Z, et al. 2021.. Regional effects of plant diversity and biotic homogenization in urban greenspace – the case of university campuses across China. . Urban For. Urban Green. 62::127170
    [Crossref] [Google Scholar]
  129. Warren PS, Lerman SB, Andrade R, Larson KL, Bateman HL. 2019.. The more things change: species losses detected in Phoenix despite stability in bird–socioeconomic relationships. . Ecosphere 10:(3):e02624
    [Crossref] [Google Scholar]
  130. Wheeler MM, Neill C, Groffman PM, Avolio M, Bettez N, et al. 2017.. Continental-scale homogenization of residential lawn plant communities. . Landsc. Urban Plann. 165::5463
    [Crossref] [Google Scholar]
  131. Whittaker RH. 1956.. Vegetation of the Great Smoky Mountains. . Ecol. Monogr. 26:(1):280
    [Crossref] [Google Scholar]
  132. Yang J, La Sorte FA, Pyšek P, Yan P, Nowak D, McBride J. 2015.. The compositional similarity of urban forests among the world's cities is scale dependent. . Global Ecol. Biogeogr. 24:(12):141323
    [Crossref] [Google Scholar]
  133. Yemshanov D, Koch FH, Ducey M, Koehler K. 2012.. Trade-associated pathways of alien forest insect entries in Canada. . Biol. Invasions 14::797812
    [Crossref] [Google Scholar]
  134. Yücedağ C, Aşik Y. 2023.. Association between socioeconomic status and woody plant diversity in neighborhood parks. . Urban Ecosyst. 26::107180
    [Crossref] [Google Scholar]
  135. Zengeya T, Ivey P, Woodford DJ, Weyl O, Novoa A, . 2017.. Managing conflict-generating invasive species in South Africa: challenges and trade-offs. . Bothalia Afr. Biodivers. Conserv. 47:(2):a2160
    [Google Scholar]
  136. Zerbe S, Maurer U, Schmitz S, Sukopp H. 2003.. Biodiversity in Berlin and its potential for nature conservation. . Landsc. Urban Plann. 62:(3):13948
    [Crossref] [Google Scholar]
  137. Zhang S, Zheng Y, Zhan A, Dong C, Zhao J, Yao M. 2022.. Environmental DNA captures native and non-native fish community variations across the lentic and lotic systems of a megacity. . Sci. Adv. 8:(6):eabk0097
    [Crossref] [Google Scholar]
  138. Zhu Z-X, Roeder M, Xie J, Nizamani MM, Friedman CR, Wang H-F. 2019.. Plant taxonomic richness and phylogenetic diversity across different cities in China. . Urban For. Urban Green. 39::5566
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-102722-012749
Loading
/content/journals/10.1146/annurev-ecolsys-102722-012749
Loading

Data & Media loading...

Supplemental Materials

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error