1932

Abstract

There is broad concern that the range shifts of global flora and fauna will not keep up with climate change, increasing the likelihood of population declines and extinctions. Many populations of nonnative species already have advantages over native species, including widespread human-aided dispersal and release from natural enemies. But do nonnative species also have an advantage with climate change? Here, we review observed and potential range shifts for native and nonnative species globally. We show that nonnative species are expanding their ranges orders of magnitude faster than native species, reflecting both traits that enable rapid spread and ongoing human-mediated introduction. We further show that nonnative species have large potential ranges and range expansions with climate change, likely due to a combination of widespread introduction and broader climatic tolerances. With faster spread rates and larger potential to persist or expand, nonnative populations have a decided advantage in a changing climate.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-102722-013135
2024-11-04
2025-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/55/1/annurev-ecolsys-102722-013135.html?itemId=/content/journals/10.1146/annurev-ecolsys-102722-013135&mimeType=html&fmt=ahah

Literature Cited

  1. Allen JM, Bradley BA. 2016.. Out of the weeds? Reduced plant invasion risk with climate change in the continental United States. . Biol. Conserv. 203::30612
    [Crossref] [Google Scholar]
  2. Bates AE, McKelvie CM, Sorte CJB, Morley SA, Jones NAR, et al. 2013.. Geographical range, heat tolerance and invasion success in aquatic species. . Proc. R. Soc. B 280:(1772):20131958
    [Crossref] [Google Scholar]
  3. Bayón Á, Vilà M. 2019.. Horizon scanning to identify invasion risk of ornamental plants marketed in Spain. . NeoBiota 52::4786
    [Crossref] [Google Scholar]
  4. Beaury EM, Patrick M, Bradley BA. 2021.. Invaders for sale: the ongoing spread of invasive species by the plant trade industry. . Front. Ecol. Environ. 19:(10):55056
    [Crossref] [Google Scholar]
  5. Bellard C, Cassey P, Blackburn TM. 2016.. Alien species as a driver of recent extinctions. . Biol. Lett. 12:(2):20150623
    [Crossref] [Google Scholar]
  6. Bowler DE, Callaghan CT, Bhandari N, Henle K, Barth MB, et al. 2022.. Temporal trends in the spatial bias of species occurrence records. . Ecography 2022:(8):e06219
    [Crossref] [Google Scholar]
  7. Bradley BA, Blumenthal DM, Early R, Grosholz ED, Lawler JJ, et al. 2012.. Global change, global trade, and the next wave of plant invasions. . Front. Ecol. Environ. 10:(1):2028
    [Crossref] [Google Scholar]
  8. Bradley BA, Early R, Sorte CJB. 2015.. Space to invade? Comparative range infilling and potential range of invasive and native plants. . Global Ecol. Biogeogr. 24:(3):34859
    [Crossref] [Google Scholar]
  9. Bradley BA, Laginhas BB, Whitlock R, Allen JM, Bates AE, et al. 2019.. Disentangling the abundance–impact relationship for invasive species. . PNAS 116:(20):991924
    [Crossref] [Google Scholar]
  10. Bradley BA, Oppenheimer M, Wilcove DS. 2009.. Climate change and plant invasions: restoration opportunities ahead?. Global Change Biol. 15:(6):151121
    [Crossref] [Google Scholar]
  11. Breed MF, Harrison PA, Bischoff A, Durruty P, Gellie NJC, et al. 2018.. Priority actions to improve provenance decision-making. . BioScience 68:(7):51016
    [Crossref] [Google Scholar]
  12. Burrows MT, Schoeman DS, Buckley LB, Moore P, Poloczanska ES, et al. 2011.. The pace of shifting climate in marine and terrestrial ecosystems. . Science 334:(6056):65255
    [Crossref] [Google Scholar]
  13. Capellini I, Baker J, Allen WL, Street SE, Venditti C. 2015.. The role of life history traits in mammalian invasion success. . Ecol. Lett. 18:(10):1099107
    [Crossref] [Google Scholar]
  14. Castagné P, Paz-Vinas I, Boulêtreau S, Ferriol J, Loot G, et al. 2023.. Patterns of genetic variation in native and non-native populations of European catfish Silurus glanis across Europe. . Biodivers Conserv. 32:(6):212747
    [Crossref] [Google Scholar]
  15. Catford JA, Baumgartner JB, Vesk PA, White M, Buckley YM, McCarthy MA. 2016.. Disentangling the four demographic dimensions of species invasiveness. . J. Ecol. 104:(6):174558
    [Crossref] [Google Scholar]
  16. Chen I-C, Hill JK, Ohlemüller R, Roy DB, Thomas CD. 2011.. Rapid range shifts of species associated with high levels of climate warming. . Science 333:(6045):102426
    [Crossref] [Google Scholar]
  17. Clark JS, Lewis M, Horvath L. 2001.. Invasion by extremes: population spread with variation in dispersal and reproduction. . Am. Nat. 157:(5):53754
    [Crossref] [Google Scholar]
  18. Clark JS, Silman M, Kern R, Macklin E, HilleRisLambers J. 1999.. Seed dispersal near and far: patterns across temperate and tropical forests. . Ecology 80:(5):147594
    [Crossref] [Google Scholar]
  19. Colautti RI, Grigorovich IA, MacIsaac HJ. 2006.. Propagule pressure: a null model for biological invasions. . Biol. Invasions 8:(5):102337
    [Crossref] [Google Scholar]
  20. Davis MB, Shaw RG. 2001.. Range shifts and adaptive responses to quaternary climate change. . Science 292:(5517):67379
    [Crossref] [Google Scholar]
  21. DeWalt SJ, Denslow JS, Ickes K. 2004.. Natural-enemy release facilitates habitat expansion of the invasive tropical shrub Clidemia hirta. . Ecology 85:(2):47183
    [Crossref] [Google Scholar]
  22. Dobrowski SZ, Parks SA. 2016.. Climate change velocity underestimates climate change exposure in mountainous regions. . Nat. Commun. 7:(1):12349
    [Crossref] [Google Scholar]
  23. Dukes JS, Mooney HA. 1999.. Does global change increase the success of biological invaders?. Trends Ecol. Evol. 14:(4):13539
    [Crossref] [Google Scholar]
  24. Elith J, Leathwick JR. 2009.. Species distribution models: ecological explanation and prediction across space and time. . Annu. Rev. Ecol. Evol. Syst. 40::67797
    [Crossref] [Google Scholar]
  25. Essl F, Dullinger S, Genovesi P, Hulme PE, Jeschke JM, et al. 2019.. A conceptual framework for range-expanding species that track human-induced environmental change. . BioScience 69:(11):90819
    [Crossref] [Google Scholar]
  26. Galán Díaz J, De la Riva E, Martín-Forés I, Vilà M. 2023.. Which features at home make a plant prone to become invasive? Advancing research on alien species and biological invasions. . NeoBiota 86::120
    [Crossref] [Google Scholar]
  27. Gallardo B, Aldridge DC, González-Moreno P, Pergl J, Pizarro M, et al. 2017.. Protected areas offer refuge from invasive species spreading under climate change. . Global Change Biol. 23:(12):533143
    [Crossref] [Google Scholar]
  28. Gallardo B, Clavero M, Sánchez MI, Vilà M. 2016.. Global ecological impacts of invasive species in aquatic ecosystems. . Global Change Biol. 22:(1):15163
    [Crossref] [Google Scholar]
  29. González-Moreno P, Diez JM, Richardson DM, Vilà M. 2015.. Beyond climate: disturbance niche shifts in invasive species. . Global Ecol. Biogeogr. 24:(3):36070
    [Crossref] [Google Scholar]
  30. Gu S, Qi T, Rohr JR, Liu X. 2023.. Meta-analysis reveals less sensitivity of non-native animals than natives to extreme weather worldwide. . Nat. Ecol. Evol. 7::200427
    [Crossref] [Google Scholar]
  31. Hänfling B. 2007.. Understanding the establishment success of non-indigenous fishes: lessons from population genetics. . J. Fish Biol. 71:(sd):11535
    [Crossref] [Google Scholar]
  32. Hellmann JJ, Byers JE, Bierwagen BG, Dukes JS. 2008.. Five potential consequences of climate change for invasive species. . Conserv. Biol. 22:(3):53443
    [Crossref] [Google Scholar]
  33. Horvitz N, Wang R, Wan F-H, Nathan R. 2017.. Pervasive human-mediated large-scale invasion: analysis of spread patterns and their underlying mechanisms in 17 of China's worst invasive plants. . J. Ecol. 105:(1):8594
    [Crossref] [Google Scholar]
  34. Hulme PE, Bacher S, Kenis M, Klotz S, Kühn I, et al. 2008.. Grasping at the routes of biological invasions: a framework for integrating pathways into policy. . J. Appl. Ecol. 45:(2):40314
    [Crossref] [Google Scholar]
  35. Hutchinson GE. 1957.. Concluding remarks. Cold Spring Harbor Symp. . Quant. Biol. 22::41527
    [Crossref] [Google Scholar]
  36. Ibáñez I, Silander JA Jr., Allen JM, Treanor SA, Wilson A. 2009.. Identifying hotspots for plant invasions and forecasting focal points of further spread. . J. Appl. Ecol. 46:(6):121928
    [Crossref] [Google Scholar]
  37. IPCC (Intergov. Panel Clim. Change). 2023.. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switz:.
    [Google Scholar]
  38. Jackson ST, Overpeck JT, Webb T III, Keattch SE, Anderson KH. 1997.. Mapped plant-macrofossil and pollen records of late quaternary vegetation change in Eastern North America. . Quat. Sci. Rev. 16:(1):170
    [Crossref] [Google Scholar]
  39. Jacobi WR, Hardin JG, Goodrich BA, Cleaver CM. 2012.. Retail firewood can transport live tree pests. . J. Econ. Entomol. 105:(5):164558
    [Crossref] [Google Scholar]
  40. Jauni M, Gripenberg S, Ramula S. 2015.. Non-native plant species benefit from disturbance: a meta-analysis. . Oikos 124:(2):12229
    [Crossref] [Google Scholar]
  41. Jeschke JM, Pyšek P. 2018.. Tens rule. . In Invasion Biology: Hypotheses and Evidence, ed. JM Jeschke, T Heger , pp. 12432. Wallingford, UK:: CABI
    [Google Scholar]
  42. Kawecki TJ. 2008.. Adaptation to marginal habitats. . Annu. Rev. Ecol. Evol. Syst. 39::32142
    [Crossref] [Google Scholar]
  43. Kolbe JJ, Glor RE, Schettino LR, Lara AC, Larson A, Losos JB. 2007.. Multiple sources, admixture, and genetic variation in introduced Anolis lizard populations. . Conserv. Biol. 21:(6):161225
    [Crossref] [Google Scholar]
  44. Kremen C, Cameron A, Moilanen A, Phillips SJ, Thomas CD, et al. 2008.. Aligning conservation priorities across taxa in Madagascar with high-resolution planning tools. . Science 320:(5873):22226
    [Crossref] [Google Scholar]
  45. Langham GM, Schuetz JG, Distler T, Soykan CU, Wilsey C. 2015.. Conservation status of North American birds in the face of future climate change. . PLOS ONE 10:(9):e0135350
    [Crossref] [Google Scholar]
  46. Lenoir J, Bertrand R, Comte L, Bourgeaud L, Hattab T, et al. 2020.. Species better track climate warming in the oceans than on land. . Nat. Ecol. Evol. 4:(8):104459
    [Crossref] [Google Scholar]
  47. Lenoir J, Svenning J-C. 2015.. Climate-related range shifts—a global multidimensional synthesis and new research directions. . Ecography 38:(1):1528
    [Crossref] [Google Scholar]
  48. Liebhold AM, Brockerhoff EG, Kalisz S, Nuñez MA, Wardle DA, Wingfield MJ. 2017.. Biological invasions in forest ecosystems. . Biol. Invasions 19:(11):343758
    [Crossref] [Google Scholar]
  49. Liu C, Wolter C, Xian W, Jeschke JM. 2020.. Most invasive species largely conserve their climatic niche. . PNAS 117:(38):2364351
    [Crossref] [Google Scholar]
  50. Liu H, Stiling P. 2006.. Testing the enemy release hypothesis: a review and meta-analysis. . Biol. Invasions. 8:(7):153545
    [Crossref] [Google Scholar]
  51. Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD. 2009.. The velocity of climate change. . Nature 462:(7276):105255
    [Crossref] [Google Scholar]
  52. Lockwood JL, Welbourne DJ, Romagosa CM, Cassey P, Mandrak NE, et al. 2019.. When pets become pests: the role of the exotic pet trade in producing invasive vertebrate animals. . Front. Ecol. Environ. 17:(6):32330
    [Crossref] [Google Scholar]
  53. Maron JL, Vilà M. 2001.. When do herbivores affect plant invasion? Evidence for the natural enemies and biotic resistance hypotheses. . Oikos 95:(3):36173
    [Crossref] [Google Scholar]
  54. Mason RAB, Cooke J, Moles AT, Leishman MR. 2008.. Reproductive output of invasive versus native plants. . Global Ecol. Biogeogr. 17:(5):63340
    [Crossref] [Google Scholar]
  55. Mason SC, Palmer G, Fox R, Gillings S, Hill JK, et al. 2015.. Geographical range margins of many taxonomic groups continue to shift polewards. . Biol. J. Linnean Soc. 115:(3):58697
    [Crossref] [Google Scholar]
  56. McLachlan JS, Hellmann JJ, Schwartz MW. 2007.. A framework for debate of assisted migration in an era of climate change. . Conserv. Biol. 21:(2):297302
    [Crossref] [Google Scholar]
  57. Nackley LL, West AG, Skowno AL, Bond WJ. 2017.. The nebulous ecology of native invasions. . Trends Ecol. Evol. 32:(11):81424
    [Crossref] [Google Scholar]
  58. Padilla DK, Williams SL. 2004.. Beyond ballast water: aquarium and ornamental trades as sources of invasive species in aquatic ecosystems. . Front. Ecol. Environ. 2:(3):13138
    [Crossref] [Google Scholar]
  59. Parmesan C, Yohe G. 2003.. A globally coherent fingerprint of climate change impacts across natural systems. . Nature 421:(6918):3742
    [Crossref] [Google Scholar]
  60. Pearson RG, Dawson TP. 2003.. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful?. Global Ecol. Biogeogr. 12:(5):36171
    [Crossref] [Google Scholar]
  61. Pecl GT, Araújo MB, Bell JD, Blanchard J, Bonebrake TC, et al. 2017.. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. . Science 355:(6332):eaai9214
    [Crossref] [Google Scholar]
  62. Petsch DK, dos Santos Bertoncin AP, Ortega JCG, Thomaz SM. 2022.. Non-native species drive biotic homogenization, but it depends on the realm, beta diversity facet and study design: a meta-analytic systematic review. . Oikos 2022:(6):e08768
    [Crossref] [Google Scholar]
  63. Pfadenhauer WG, Bradley BA. 2024.. Quantifying vulnerability to plant invasion across global ecosystems. . bioRxiv 2024.02.21.581382. https://doi.org/10.1101/2024.02.21.581382
  64. Pfadenhauer WG, Nelson MF, Laginhas BB, Bradley BA. 2023.. Remember your roots: Biogeographic properties of plants’ native habitats can inform invasive plant risk assessments. . Divers. Distrib. 29:(1):418
    [Crossref] [Google Scholar]
  65. Quintero I, Wiens JJ. 2013.. Rates of projected climate change dramatically exceed past rates of climatic niche evolution among vertebrate species. . Ecol. Lett. 16:(8):1095103
    [Crossref] [Google Scholar]
  66. Radinger J, García-Berthou E. 2020.. The role of connectivity in the interplay between climate change and the spread of alien fish in a large Mediterranean river. . Global Change Biol. 26:(11):638398
    [Crossref] [Google Scholar]
  67. Rapoport EH. 2000.. Remarks on the biogeography of land invasions. . Rev. Chil. Hist. Nat. 73:(2):36780
    [Crossref] [Google Scholar]
  68. Reichard SH, White P. 2001.. Horticulture as a pathway of invasive plant introductions in the United States: Most invasive plants have been introduced for horticultural use by nurseries, botanical gardens, and individuals. . BioScience 51:(2):10313
    [Crossref] [Google Scholar]
  69. Resasco J, Haddad NM, Orrock JL, Shoemaker D, Brudvig LA, et al. 2014.. Landscape corridors can increase invasion by an exotic species and reduce diversity of native species. . Ecology 95:(8):203339
    [Crossref] [Google Scholar]
  70. Rilov G, Galil B. 2009.. Marine bioinvasions in the Mediterranean Sea – history, distribution and ecology. . In Biological Invasions in Marine Ecosystems: Ecological, Management, and Geographic Perspectives, ed. G Rilov, JA Crooks , pp. 54975. Berlin, Heidelberg:: Springer
    [Google Scholar]
  71. Rius M, Darling JA. 2014.. How important is intraspecific genetic admixture to the success of colonising populations?. Trends Ecol. Evol. 29:(4):23342
    [Crossref] [Google Scholar]
  72. Roy HE, Pauchard A, Stoett P, Renard Truong T, Bacher S, et al. 2023.. IPBES Invasive Alien Species Assessment: Summary for Policymakers. IPBES Secr., Bonn, Germany:. https://doi.org/10.5281/zenodo.10127924
    [Google Scholar]
  73. Rubenstein MA, Weiskopf SR, Bertrand R, Carter SL, Comte L, et al. 2024.. CoRE (Contractions or Range Expansions) Database: Global Database of Species Range Shifts from 1802–2019. US Geological Survey, Reston, VA:, updated Mar. 29. https://doi.org/10.5066/P99VP2TW
    [Google Scholar]
  74. Seebens H, Blackburn TM, Dyer EE, Genovesi P, Hulme PE, et al. 2017.. No saturation in the accumulation of alien species worldwide. . Nat. Commun. 8:(1):14435
    [Crossref] [Google Scholar]
  75. Seebens H, Blackburn TM, Hulme PE, van Kleunen M, Liebhold AM, et al. 2021.. Around the world in 500 years: inter-regional spread of alien species over recent centuries. . Global Ecol. Biogeogr. 30:(8):162132
    [Crossref] [Google Scholar]
  76. Simberloff D. 2000.. Global climate change and introduced species in United States forests. . Sci. Total Environ. 262:(3):25361
    [Crossref] [Google Scholar]
  77. Smith AL, Hodkinson TR, Villellas J, Catford JA, Csergő AM, et al. 2020.. Global gene flow releases invasive plants from environmental constraints on genetic diversity. . PNAS 117:(8):421827
    [Crossref] [Google Scholar]
  78. Somero GN. 2010.. The physiology of climate change: How potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers.’. J. Exp. Biol. 213:(6):91220
    [Crossref] [Google Scholar]
  79. Sorte CJB, Williams SL, Carlton JT. 2010.. Marine range shifts and species introductions: comparative spread rates and community impacts. . Global Ecol. Biogeogr. 19:(3):30316
    [Crossref] [Google Scholar]
  80. Suarez AV, Holway DA, Case TJ. 2001.. Patterns of spread in biological invasions dominated by long-distance jump dispersal: insights from Argentine ants. . PNAS 98:(3):1095100
    [Crossref] [Google Scholar]
  81. Tallamy DW, Shropshire KJ. 2009.. Ranking lepidopteran use of native versus introduced plants. . Conserv. Biol. 23:(4):94147
    [Crossref] [Google Scholar]
  82. Theoharides KA, Dukes JS. 2007.. Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. . New Phytologist 176:(2):25673
    [Crossref] [Google Scholar]
  83. Torchin ME, Mitchell CE. 2004.. Parasites, pathogens, and invasions by plants and animals. . Front. Ecol. Environ. 2:(4):18390
    [Crossref] [Google Scholar]
  84. Twardek WM, Taylor JJ, Rytwinski T, Aitken SN, MacDonald AL, et al. 2023.. The application of assisted migration as a climate change adaptation tactic: an evidence map and synthesis. . Biol. Conserv. 280::109932
    [Crossref] [Google Scholar]
  85. USFWS (US Fish Wildl. Serv.). 2023.. Endangered and Threatened Wildlife and Plants; Designation of Experimental Populations. 88 FR 42642 , USFWS, Washington, DC:. https://www.federalregister.gov/documents/2023/07/03/2023-13672/endangered-and-threatened-wildlife-and-plants-designation-of-experimental-populations
    [Google Scholar]
  86. Václavík T, Meentemeyer RK. 2012.. Equilibrium or not? Modelling potential distribution of invasive species in different stages of invasion. . Divers. Distrib. 18:(1):7383
    [Crossref] [Google Scholar]
  87. Van der Veken S, Hermy M, Vellend M, Knapen A, Verheyen K. 2008.. Garden plants get a head start on climate change. . Front. Ecol. Environ. 6:(4):21216
    [Crossref] [Google Scholar]
  88. van Kleunen M, Bossdorf O, Dawson W. 2018a.. The ecology and evolution of alien plants. . Annu. Rev. Ecol. Evol. Syst. 49::2547
    [Crossref] [Google Scholar]
  89. van Kleunen M, Essl F, Pergl J, Brundu G, Carboni M, et al. 2018b.. The changing role of ornamental horticulture in alien plant invasions. . Biol. Rev. 93:(3):142137
    [Crossref] [Google Scholar]
  90. Vilà M, Dunn AM, Essl F, Gómez-Díaz E, Hulme PE, et al. 2021.. Viewing emerging human infectious epidemics through the lens of invasion biology. . BioScience 71:(7):72240
    [Crossref] [Google Scholar]
  91. Vilà M, Ibáñez I. 2011.. Plant invasions in the landscape. . Landscape Ecol. 26:(4):46172
    [Crossref] [Google Scholar]
  92. Vu Ho K, Kröel-Dulay G, Tölgyesi C, Bátori Z, Tanács E, et al. 2023.. Non-native tree plantations are weak substitutes for near-natural forests regarding plant diversity and ecological value. . Forest Ecol. Manag. 531::120789
    [Crossref] [Google Scholar]
  93. Wallingford PD, Morelli TL, Allen JM, Beaury EM, Blumenthal DM, et al. 2020.. Adjusting the lens of invasion biology to focus on the impacts of climate-driven range shifts. . Nat. Clim. Chang. 10:(5):398405
    [Crossref] [Google Scholar]
  94. Warren R, Price J, Graham E, Forstenhaeusler N, VanDerWal J. 2018.. The projected effect on insects, vertebrates, and plants of limiting global warming to 1.5°C rather than 2°C. . Science 360:(6390):79195
    [Crossref] [Google Scholar]
  95. Whittaker RH. 1970.. Communities and Ecosystems. London:: Macmillan
    [Google Scholar]
  96. Williams JW, Jackson ST, Kutzbach JE. 2007.. Projected distributions of novel and disappearing climates by 2100 AD. . PNAS 104:(14):573842
    [Crossref] [Google Scholar]
  97. Willis CG, Ruhfel BR, Primack RB, Miller-Rushing AJ, Losos JB, Davis CC. 2010.. Favorable climate change response explains non-native species’ success in Thoreau's woods. . PLOS ONE 5:(1):e8878
    [Crossref] [Google Scholar]
  98. Willis KJ, MacDonald GM. 2011.. Long-term ecological records and their relevance to climate change predictions for a warmer world. . Annu. Rev. Ecol. Evol. Syst. 42::26787
    [Crossref] [Google Scholar]
  99. Zerebecki RA, Sorte CJB. 2011.. Temperature tolerance and stress proteins as mechanisms of invasive species success. . PLOS ONE 6:(4):e14806
    [Crossref] [Google Scholar]
  100. Zhang J, Nielsen SE, Chen Y, Georges D, Qin Y, et al. 2017.. Extinction risk of North American seed plants elevated by climate and land-use change. . J. Appl. Ecol. 54:(1):30312
    [Crossref] [Google Scholar]
  101. Zhao Y-Z, Liu M-C, Feng Y-L, Wang D, Feng W-W, et al. 2020.. Release from below- and aboveground natural enemies contributes to invasion success of a temperate invader. . Plant Soil 452:(1):1928
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-102722-013135
Loading
/content/journals/10.1146/annurev-ecolsys-102722-013135
Loading

Data & Media loading...

Supplemental Materials

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error