1932

Abstract

Species diversification—the balance between speciation and extinction—is fundamental to our understanding of how species richness varies in space and time and throughout the Tree of Life. Phylogenetic approaches provide insights into species diversification by enabling support for alternative diversification scenarios to be compared and speciation and extinction rates to be estimated. Here, we review the current toolkit available for conducting such analyses. We first highlight how modeling efforts over the past decade have fostered a notable transition from overly simplistic evolutionary scenarios to a more nuanced understanding of how and why diversification rates vary through time and across lineages. Using the latitudinal diversity gradient as a case study, we then illustrate the impact that modeling choices can have on the results obtained. Finally, we review recent progress in two areas that are still lagging behind: phylogenetic insights into microbial diversification and the speciation process.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-102722-020508
2024-11-04
2025-06-17
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/55/1/annurev-ecolsys-102722-020508.html?itemId=/content/journals/10.1146/annurev-ecolsys-102722-020508&mimeType=html&fmt=ahah

Literature Cited

  1. Abbott R, Albach D, Ansell S, Arntzen JW, Baird SJE, et al. 2013.. Hybridization and speciation. . J. Evol. Biol. 26::22946
    [Crossref] [Google Scholar]
  2. Alfaro ME, Santini F, Brock C, Alamillo H, Dornburg A, et al. 2009.. Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. . PNAS 106::1341014
    [Crossref] [Google Scholar]
  3. Andréoletti J, Zwaans A, Warnock RCM, Aguirre-Fernández G, Barido-Sottani J, et al. 2022.. The occurrence birth–death process for combined-evidence analysis in macroevolution and epidemiology. . Syst. Biol. 71::144052
    [Crossref] [Google Scholar]
  4. Barido-Sottani J, Vaughan TG, Stadler T. 2020.. A multitype birth–death model for Bayesian inference of lineage-specific birth and death rates. . Syst. Biol. 69::97386
    [Crossref] [Google Scholar]
  5. Barnosky AD. 2001.. Distinguishing the effects of the Red Queen and Court Jester on Miocene mammal evolution in the northern Rocky Mountains. . J. Vertebr. Paleontol. 21::17285
    [Crossref] [Google Scholar]
  6. Beaulieu JM, O'Meara BC. 2016.. Detecting hidden diversification shifts in models of trait-dependent speciation and extinction. . Syst. Biol. 65::583601
    [Crossref] [Google Scholar]
  7. Benton MJ. 2009.. The Red Queen and the Court Jester: species diversity and the role of biotic and abiotic factors through time. . Science 323::72832
    [Crossref] [Google Scholar]
  8. Benton MJ, Pearson PN. 2001.. Speciation in the fossil record. . Trends Ecol. Evol. 16::40511
    [Crossref] [Google Scholar]
  9. Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M, et al. 2019.. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. . PLOS Comput. Biol. 15::e1006650
    [Crossref] [Google Scholar]
  10. Burbrink FT, Ruane S, Rabibisoa N, Raselimanana AP, Raxworthy CJ, Kuhn A. 2023.. Speciation rates are unrelated to the formation of population structure in Malagasy gemsnakes. . Ecol. Evol. 13::e10344
    [Crossref] [Google Scholar]
  11. Chichorro F, Juslén A, Cardoso P. 2019.. A review of the relation between species traits and extinction risk. . Biol. Conserv. 237::22029
    [Crossref] [Google Scholar]
  12. Claramunt S, Derryberry EP, Remsen JV, Brumfield RT. 2012.. High dispersal ability inhibits speciation in a continental radiation of passerine birds. . Proc. R. Soc. B 279::156774
    [Crossref] [Google Scholar]
  13. Cogni R, Quental TB, Guimarães PR. 2022.. Ehrlich and Raven escape and radiate coevolution hypothesis at different levels of organization: past and future perspectives. . Evolution 76::110823
    [Crossref] [Google Scholar]
  14. Cohan FM. 2001.. Bacterial species and speciation. . Syst. Biol. 50::51324
    [Crossref] [Google Scholar]
  15. Cohan FM, Koeppel AF. 2008.. The origins of ecological diversity in prokaryotes. . Curr. Biol. 18::R102434
    [Crossref] [Google Scholar]
  16. Condamine FL, Rolland J, Morlon H. 2013.. Macroevolutionary perspectives to environmental change. . Ecol. Lett. 16::7285
    [Crossref] [Google Scholar]
  17. Condamine FL, Rolland J, Morlon H. 2019.. Assessing the causes of diversification slowdowns: Temperature-dependent and diversity-dependent models receive equivalent support. . Ecol. Lett. 22::190012
    [Crossref] [Google Scholar]
  18. Condamine FL, Silvestro D, Koppelhus EB, Antonelli A. 2020.. The rise of angiosperms pushed conifers to decline during global cooling. . PNAS 117::2886775
    [Crossref] [Google Scholar]
  19. Coyne JA, Orr HA. 2004.. Speciation. Sunderland, MA:: Sinauer Associates, Inc.
    [Google Scholar]
  20. Cunha Crescente Alves DM, Felizola Diniz-Filho JA, Villalobos F. 2017.. Geographical diversification and the effect of model and data inadequacies: the bat diversity gradient as a case study. . Biol. J. Linn. Soc. 121::894906
    [Crossref] [Google Scholar]
  21. DeBaun D, Rabibisoa N, Raselimanana AP, Raxworthy CJ, Burbrink FT. 2023.. Widespread reticulate evolution in an adaptive radiation. . Evolution 77::93145
    [Crossref] [Google Scholar]
  22. De Queiroz K. 2007.. Species concepts and species delimitation. . Syst. Biol. 56::87986
    [Crossref] [Google Scholar]
  23. Dismukes W, Braga MP, Hembry DH, Heath TA, Landis MJ. 2022.. Cophylogenetic methods to untangle the evolutionary history of ecological interactions. . Annu. Rev. Ecol. Evol. Syst. 53::27598
    [Crossref] [Google Scholar]
  24. Donoghue MJ, Sanderson MJ. 2015.. Confluence, synnovation, and depauperons in plant diversification. . New Phytol. 207::26074
    [Crossref] [Google Scholar]
  25. Dykhuizen DE. 1998.. Santa Rosalia revisited: Why are there so many species of bacteria?. Antonie Van Leeuwenhoek 73::2533
    [Crossref] [Google Scholar]
  26. Elworth RAL, Ogilvie HA, Zhu J, Nakhleh L. 2018.. Advances in computational methods for phylogenetic networks in the presence of hybridization. . In Bioinformatics and Phylogenetics: Seminal Contributions of Bernard Moret, ed. T Warnow , pp. 31760. Comp. Biol. 29 . Cham, Switz:.: Springer
    [Google Scholar]
  27. Etienne RS, Haegeman B, Stadler T, Aze T, Pearson PN, et al. 2012.. Diversity-dependence brings molecular phylogenies closer to agreement with the fossil record. . Proc. R. Soc. B 279::13009
    [Crossref] [Google Scholar]
  28. Etienne RS, Morlon H, Lambert A. 2014.. Estimating the duration of speciation from phylogenies. . Evolution 68::243040
    [Crossref] [Google Scholar]
  29. Etienne RS, Rosindell J. 2012.. Prolonging the past counteracts the pull of the present: Protracted speciation can explain observed slowdowns in diversification. . Syst. Biol. 61::204
    [Crossref] [Google Scholar]
  30. Fenchel T, Finlay BJ. 2006.. The diversity of microbes: resurgence of the phenotype. . Philos. Trans. R. Soc. B 361::196573
    [Crossref] [Google Scholar]
  31. Fernandes NM, Schrago CG. 2019.. A multigene timescale and diversification dynamics of Ciliophora evolution. . Mol. Phylogenet. Evol. 139::106521
    [Crossref] [Google Scholar]
  32. Fine PVA. 2015.. Ecological and evolutionary drivers of geographic variation in species diversity. . Annu. Rev. Ecol. Evol. Syst. 46::36992
    [Crossref] [Google Scholar]
  33. FitzJohn RG. 2012.. Diversitree: comparative phylogenetic analyses of diversification in R. . Methods Ecol. Evol. 3::108492
    [Crossref] [Google Scholar]
  34. Fraser C, Hanage WP, Spratt BG. 2007.. Recombination and the nature of bacterial speciation. . Science 315::47680
    [Crossref] [Google Scholar]
  35. Gavrilets S. 2000.. Waiting time to parapatric speciation. . Proc. R. Soc. B 267::248392
    [Crossref] [Google Scholar]
  36. Goldberg EE, Lancaster LT, Ree RH. 2011.. Phylogenetic inference of reciprocal effects between geographic range evolution and diversification. . Syst. Biol. 60::45165
    [Crossref] [Google Scholar]
  37. Gubry-Rangin C, Kratsch C, Williams TA, McHardy AC, Embley TM, et al. 2015.. Coupling of diversification and pH adaptation during the evolution of terrestrial Thaumarchaeota. . PNAS 112::937075
    [Crossref] [Google Scholar]
  38. Harvey MG, Bravo GA, Claramunt S, Cuervo AM, Derryberry GE, et al. 2020.. The evolution of a tropical biodiversity hotspot. . Science 370::134348
    [Crossref] [Google Scholar]
  39. Harvey MG, Rabosky DL. 2018.. Continuous traits and speciation rates: alternatives to state-dependent diversification models. . Methods Ecol. Evol. 9::98493
    [Crossref] [Google Scholar]
  40. Harvey MG, Seeholzer GF, Smith BT, Rabosky DL, Cuervo AM, Brumfield RT. 2017.. Positive association between population genetic differentiation and speciation rates in New World birds. . PNAS 114::632833
    [Crossref] [Google Scholar]
  41. Harvey MG, Singhal S, Rabosky DL. 2019.. Beyond reproductive isolation: demographic controls on the speciation process. . Annu. Rev. Ecol. Evol. Syst. 50::7595
    [Crossref] [Google Scholar]
  42. Heath TA, Huelsenbeck JP, Stadler T. 2014.. The fossilized birth–death process for coherent calibration of divergence-time estimates. . PNAS 111::E295766
    [Google Scholar]
  43. Hembry DH, Weber MG. 2020.. Ecological interactions and macroevolution: a new field with old roots. . Annu. Rev. Ecol. Evol. Syst. 51::21543
    [Crossref] [Google Scholar]
  44. Hernández-Hernández T, Miller EC, Román-Palacios C, Wiens JJ. 2021.. Speciation across the Tree of Life. . Biol. Rev. 96::120542
    [Crossref] [Google Scholar]
  45. Hua X, Bromham L. 2017.. Darwinism for the genomic age: connecting mutation to diversification. . Front. Genet. 8::12
    [Crossref] [Google Scholar]
  46. Hua X, Herdha T, Burden CJ. 2022.. Protracted speciation under the state-dependent speciation and extinction approach. . Syst. Biol. 71::136277
    [Crossref] [Google Scholar]
  47. Igea J, Tanentzap AJ. 2020.. Angiosperm speciation cools down in the tropics. . Ecol. Lett. 23::692700
    [Crossref] [Google Scholar]
  48. Jablonski D. 2004.. Extinction: past and present. . Nature 427::589
    [Crossref] [Google Scholar]
  49. Jablonski D, Roy K, Valentine JW. 2006.. Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. . Science 314::1026
    [Crossref] [Google Scholar]
  50. Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO. 2012.. The global diversity of birds in space and time. . Nature 491::44448
    [Crossref] [Google Scholar]
  51. Jønsson KA, Fabre P-H, Fritz SA, Etienne RS, Ricklefs RE, et al. 2012.. Ecological and evolutionary determinants for the adaptive radiation of the Madagascan vangas. . PNAS 109::662025
    [Crossref] [Google Scholar]
  52. Justison JA, Solis-Lemus C, Heath TA. 2023.. SiPhyNetwork: an R package for simulating phylogenetic networks. . Methods Ecol. Evol. 14::168798
    [Crossref] [Google Scholar]
  53. Kulmuni J, Butlin RK, Lucek K, Savolainen V, Westram AM. 2020.. Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers. . Philos. Trans. R. Soc. B 375::20190528
    [Crossref] [Google Scholar]
  54. Landis MJ, Quintero I, Muñoz MM, Zapata F, Donoghue MJ. 2022.. Phylogenetic inference of where species spread or split across barriers. . PNAS 119::e2116948119
    [Crossref] [Google Scholar]
  55. Lewitus E. 2018.. Clade-specific diversification dynamics of marine diatoms since the Jurassic. . Nat. Ecol. Evol. 2::171523
    [Crossref] [Google Scholar]
  56. Louca S. 2022.. The rates of global bacterial and archaeal dispersal. . ISME J. 16::15967
    [Crossref] [Google Scholar]
  57. Louca S, Shih PM, Pennell MW, Fischer WW, Parfrey LW, Doebeli M. 2018.. Bacterial diversification through geological time. . Nat. Ecol. Evol. 2::145867
    [Crossref] [Google Scholar]
  58. MacPherson A, Louca S, McLaughlin A, Joy JB, Pennell MW. 2021.. Unifying phylogenetic birth–death models in epidemiology and macroevolution. . Syst. Biol. 71::17289
    [Crossref] [Google Scholar]
  59. Maddison WP, Midford PE, Otto SP. 2007.. Estimating a binary character's effect on speciation and extinction. . Syst. Biol. 56::70110
    [Crossref] [Google Scholar]
  60. Maliet O, Hartig F, Morlon H. 2019.. A model with many small shifts for estimating species-specific diversification rates. . Nat. Ecol. Evol. 3::108692
    [Crossref] [Google Scholar]
  61. Maliet O, Morlon H. 2022.. Fast and accurate estimation of species-specific diversification rates using data augmentation. . Syst. Biol. 71::35366
    [Crossref] [Google Scholar]
  62. Manceau M, Gupta A, Vaughan T, Stadler T. 2021.. The probability distribution of the ancestral population size conditioned on the reconstructed phylogenetic tree with occurrence data. . J. Theor. Biol. 509::110400
    [Crossref] [Google Scholar]
  63. Marin J, Battistuzzi FU, Brown AC, Hedges SB. 2016.. The timetree of prokaryotes: new insights into their evolution and speciation. . Mol. Biol. Evol. 34::43746
    [Google Scholar]
  64. Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, et al. 2006.. Microbial biogeography: putting microorganisms on the map. . Nat. Rev. Microbiol. 4::10212
    [Crossref] [Google Scholar]
  65. Maya-Lastra CA, Eaton DAR, 2021.. Genetic incompatibilities do not snowball in a demographic model of speciation. . bioRxiv 2021.02.23.432472. https://doi.org/10.1101/2021.02.23.432472
  66. Mazet N, Morlon H, Fabre P-H, Condamine FL. 2023.. Estimating clade-specific diversification rates and palaeodiversity dynamics from reconstructed phylogenies. . Methods Ecol. Evol. 14::257591
    [Crossref] [Google Scholar]
  67. Meseguer AS, Condamine FL. 2020.. Ancient tropical extinctions at high latitudes contributed to the latitudinal diversity gradient. . Evolution 74::196687
    [Crossref] [Google Scholar]
  68. Mitchell JS, Etienne RS, Rabosky DL. 2019.. Inferring diversification rate variation from phylogenies with fossils. . Syst. Biol. 68::118
    [Crossref] [Google Scholar]
  69. Mittelbach GG, Schemske DW, Cornell HV, Allen AP, Brown JM, et al. 2007.. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. . Ecol. Lett. 10::31531
    [Crossref] [Google Scholar]
  70. Moen D, Morlon H. 2014.. Why does diversification slow down?. Trends Ecol. Evol. 29::19097
    [Crossref] [Google Scholar]
  71. Morin MM, Moret BME, 2006.. NetGen: generating phylogenetic networks with diploid hybrids. . Bioinformatics 22::192123
    [Crossref] [Google Scholar]
  72. Morlon H. 2014.. Phylogenetic approaches for studying diversification. . Ecol. Lett. 17::50825
    [Crossref] [Google Scholar]
  73. Morlon H, Kemps BD, Plotkin JB, Brisson D. 2012.. Explosive radiation of a bacterial species group. . Evolution 66::257786
    [Crossref] [Google Scholar]
  74. Moyle RG, Filardi CE, Smith CE, Diamond J. 2009.. Explosive Pleistocene diversification and hemispheric expansion of a “great speciator. .” PNAS 106::186368
    [Crossref] [Google Scholar]
  75. Nee S, May RM, Harvey PH. 1994.. The reconstructed evolutionary process. . Philos. Trans. R. Soc. B 344::30511
    [Crossref] [Google Scholar]
  76. Nee S, Mooers AO, Harvey PH. 1992.. Tempo and mode of evolution revealed from molecular phylogenies. . PNAS 89::832226
    [Crossref] [Google Scholar]
  77. Palazzesi L, Hidalgo O, Barreda VD, Forest F, Höhna S. 2022.. The rise of grasslands is linked to atmospheric CO2 decline in the late Palaeogene. . Nat. Commun. 13::293
    [Crossref] [Google Scholar]
  78. Pennell MW, Harmon LJ. 2013.. An integrative view of phylogenetic comparative methods: connections to population genetics, community ecology, and paleobiology. . Ann. N. Y. Acad. Sci. 1289::90105
    [Crossref] [Google Scholar]
  79. Perez-Lamarque B, Morlon H. 2019.. Characterizing symbiont inheritance during host–microbiota evolution: application to the great apes gut microbiota. . Mol. Ecol. Resour. 19::165971
    [Crossref] [Google Scholar]
  80. Perez-Lamarque B, Öpik M, Maliet O, Afonso Silva AC, Selosse M-A, et al. 2022.. Analyzing diversification dynamics using barcoding data: the case of an obligate mycorrhizal symbiont. . Mol. Ecol. 31::3496512
    [Crossref] [Google Scholar]
  81. Pulido-Santacruz P, Weir JT. 2016.. Extinction as a driver of avian latitudinal diversity gradients. : Evolution 70::86072
    [Crossref] [Google Scholar]
  82. Pyron RA, Wiens JJ. 2013.. Large-scale phylogenetic analyses reveal the causes of high tropical amphibian diversity. . Proc. R. Soc. B 280::20131622
    [Crossref] [Google Scholar]
  83. Quental TB, Marshall CR. 2010.. Diversity dynamics: Molecular phylogenies need the fossil record. . Trends Ecol. Evol. 25::43441
    [Crossref] [Google Scholar]
  84. Quintero I, Jetz W. 2018.. Global elevational diversity and diversification of birds. . Nature 555::24650
    [Crossref] [Google Scholar]
  85. Quintero I, Landis MJ, Jetz W, Morlon H. 2023.. The build-up of the present-day tropical diversity of tetrapods. . PNAS 120::e2220672120
    [Crossref] [Google Scholar]
  86. Quintero I, Lartillot N, Morlon H. 2024.. Imbalanced speciation pulses sustain the radiation of mammals. . Science 384::100712
    [Crossref] [Google Scholar]
  87. Rabosky DL. 2009.. Ecological limits and diversification rate: alternative paradigms to explain the variation in species richness among clades and regions. . Ecol. Lett. 12::73543
    [Crossref] [Google Scholar]
  88. Rabosky DL. 2010.. Extinction rates should not be estimated from molecular phylogenies. . Evolution 64::181624
    [Crossref] [Google Scholar]
  89. Rabosky DL. 2014.. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. . PLOS ONE 9::e89543
    [Crossref] [Google Scholar]
  90. Rabosky DL. 2016.. Reproductive isolation and the causes of speciation rate variation in nature. . Biol. J. Linn. Soc. 118::1325
    [Crossref] [Google Scholar]
  91. Rabosky DL, Chang J, Title PO, Cowman PF, Sallan L, et al. 2018.. An inverse latitudinal gradient in speciation rate for marine fishes. . Nature 559::39295
    [Crossref] [Google Scholar]
  92. Rabosky DL, Goldberg EE. 2015.. Model inadequacy and mistaken inferences of trait-dependent speciation. . Syst. Biol. 64::34055
    [Crossref] [Google Scholar]
  93. Rabosky DL, Goldberg EE. 2017.. FiSSE: a simple nonparametric test for the effects of a binary character on lineage diversification rates. . Evolution 71::143242
    [Crossref] [Google Scholar]
  94. Rabosky DL, Matute DR. 2013.. Macroevolutionary speciation rates are decoupled from the evolution of intrinsic reproductive isolation in Drosophila and birds. . PNAS 110::1535459
    [Crossref] [Google Scholar]
  95. Rolland J, Condamine FL, Jiguet F, Morlon H. 2014.. Faster speciation and reduced extinction in the tropics contribute to the mammalian latitudinal diversity gradient. . PLOS Biol. 12::e1001775
    [Crossref] [Google Scholar]
  96. Rolland J, Henao-Diaz LF, Doebeli M, Germain R, Harmon LJ, et al. 2023.. Conceptual and empirical bridges between micro- and macroevolution. . Nat. Ecol. Evol. 7::118193
    [Crossref] [Google Scholar]
  97. Ronquist F, Kudlicka J, Senderov V, Borgström J, Lartillot N, et al. 2021.. Universal probabilistic programming offers a powerful approach to statistical phylogenetics. . Commun. Biol. 4::244
    [Crossref] [Google Scholar]
  98. Satokangas I, Martin SH, Helanterä H, Saramäki J, Kulmuni J. 2020.. Multi-locus interactions and the build-up of reproductive isolation. . Philos. Trans. R. Soc. B 375::20190543
    [Crossref] [Google Scholar]
  99. Schluter D. 2000.. The Ecology of Adaptive Radiation. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  100. Schluter D, Pennell MW. 2017.. Speciation gradients and the distribution of biodiversity. . Nature 546::4855
    [Crossref] [Google Scholar]
  101. Scholl JP, Wiens JJ. 2016.. Diversification rates and species richness across the Tree of Life. . Proc. R. Soc. B 283::20161334
    [Crossref] [Google Scholar]
  102. Silvestro D, Salamin N, Schnitzler J. 2014.. PyRate: a new program to estimate speciation and extinction rates from incomplete fossil data. . Methods Ecol. Evol. 5::112631
    [Crossref] [Google Scholar]
  103. Silvestro D, Warnock RCM, Gavryushkina A, Stadler T. 2018.. Closing the gap between palaeontological and neontological speciation and extinction rate estimates. . Nat. Commun. 9::5237
    [Crossref] [Google Scholar]
  104. Simpson GG. 1953.. The Major Features of Evolution. New York:: Columbia Univ. Press
    [Google Scholar]
  105. Singer D, Mitchell EAD, Payne RJ, Blandenier Q, Duckert C, et al. 2019.. Dispersal limitations and historical factors determine the biogeography of specialized terrestrial protists. . Mol. Ecol. 28::3089100
    [Crossref] [Google Scholar]
  106. Singhal S, Colli GR, Grundler MR, Costa GC, Prates I, Rabosky DL. 2022.. No link between population isolation and speciation rate in squamate reptiles. . PNAS 119::e2113388119
    [Crossref] [Google Scholar]
  107. Singhal S, Huang H, Grundler MR, Marchán-Rivadeneira MR, Holmes I, et al. 2018.. Does population structure predict the rate of speciation? A comparative test across Australia's most diverse vertebrate radiation. . Am. Nat. 192::43247
    [Crossref] [Google Scholar]
  108. Smyčka J, Toszogyova A, Storch D. 2023.. The relationship between geographic range size and rates of species diversification. . Nat. Commun. 14::5559
    [Crossref] [Google Scholar]
  109. Stadler T. 2010.. Sampling-through-time in birth–death trees. . J. Theor. Biol. 267::396404
    [Crossref] [Google Scholar]
  110. Stadler T. 2013.. Recovering speciation and extinction dynamics based on phylogenies. . J. Evol. Biol. 26::120319
    [Crossref] [Google Scholar]
  111. Stadler T, Gavryushkina A, Warnock RCM, Drummond AJ, Heath TA. 2018.. The fossilized birth-death model for the analysis of stratigraphic range data under different speciation modes. . J. Theor. Biol. 447::4155
    [Crossref] [Google Scholar]
  112. Straub TJ, Zhaxybayeva O. 2017.. A null model for microbial diversification. . PNAS 114::E541423
    [Crossref] [Google Scholar]
  113. Upham NS, Esselstyn JA, Jetz W. 2021.. Molecules and fossils tell distinct yet complementary stories of mammal diversification. . Curr. Biol. 31::4195206.e3
    [Crossref] [Google Scholar]
  114. Valente L, Phillimore AB, Melo M, Warren BH, Clegg SM, et al. 2020.. A simple dynamic model explains the diversity of island birds worldwide. . Nature 579::9296
    [Crossref] [Google Scholar]
  115. Van Valen L. 1973.. A new evolutionary law. . Evol. Theory 1::130
    [Google Scholar]
  116. Varga T, Krizsán K, Földi C, Dima B, Sánchez-García M, et al. 2019.. Megaphylogeny resolves global patterns of mushroom evolution. . Nat. Ecol. Evol. 3::66878
    [Crossref] [Google Scholar]
  117. Westram AM, Stankowski S, Surendranadh P, Barton N. 2022.. What is reproductive isolation?. J. Evol. Biol. 35::114364
    [Crossref] [Google Scholar]
  118. Wiens D, Slaton MR. 2012.. The mechanism of background extinction. . Biol. J. Linn. Soc. 105::25568
    [Crossref] [Google Scholar]
  119. Wiens JJ, Donoghue MJ. 2004.. Historical biogeography, ecology and species richness. . Trends Ecol. Evol. 19::63944
    [Crossref] [Google Scholar]
  120. Wright AM, Bapst DW, Barido-Sottani J, Warnock RCM. 2022.. Integrating fossil observations into phylogenetics using the fossilized birth–death model. . Annu. Rev. Ecol. Evol. Syst. 53::25173
    [Crossref] [Google Scholar]
  121. Yang Y, Zhang C, Lenton TM, Yan X, Zhu M, et al. 2021.. The evolution pathway of ammonia-oxidizing archaea shaped by major geological events. . Mol. Biol. Evol. 38::363748
    [Crossref] [Google Scholar]
  122. Zhang C, Ogilvie HA, Drummond AJ, Stadler T. 2018.. Bayesian inference of species networks from multilocus sequence data. . Mol. Biol. Evol. 35::50417
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-102722-020508
Loading
/content/journals/10.1146/annurev-ecolsys-102722-020508
Loading

Data & Media loading...

Supplemental Materials

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error