1932

Abstract

Ecological networks of species interactions are popular and provide powerful analytical tools for understanding variation in community structure and ecosystem functioning. However, network analyses and commonly used metrics such as nestedness and connectance have also attracted criticism. One major concern is that observed patterns are misinterpreted as niche properties such as specialization, whereas they may instead merely reflect variation in sampling, abundance, and/or diversity. As a result, studies potentially draw flawed conclusions about ecological function, stability, or coextinction risks. We highlight potential biases in analyzing and interpreting species-interaction networks and review the solutions available to overcome them, among which we particularly recommend the use of null models that account for species abundances. We show why considering variation across species and networks is important for understanding species interactions and their consequences. Network analyses can advance knowledge on the principles of species interactions but only when judiciously applied.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-102722-021904
2024-11-04
2025-05-21
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/55/1/annurev-ecolsys-102722-021904.html?itemId=/content/journals/10.1146/annurev-ecolsys-102722-021904&mimeType=html&fmt=ahah

Literature Cited

  1. Allesina S, Tang S. 2012.. Stability criteria for complex ecosystems. . Nature 483::2058
    [Crossref] [Google Scholar]
  2. Almeida-Neto M, Guimarães P, Guimarães PR Jr., Loyola RD, Ulrich W. 2008.. A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. . Oikos 117::122739
    [Crossref] [Google Scholar]
  3. Ballantyne G, Baldock KCR, Willmer PG. 2015.. Constructing more informative plant–pollinator networks: visitation and pollen deposition networks in a heathland plant community. . Proc. R. Soc. B 282::20151130
    [Crossref] [Google Scholar]
  4. Banasek-Richter C, Cattin MF, Bersier LF. 2004.. Sampling effects and the robustness of quantitative and qualitative food-web descriptors. . J. Theor. Biol. 226::2332
    [Crossref] [Google Scholar]
  5. Barbosa M, Fernandes GW, Lewis OT, Morris RJ. 2017.. Experimentally reducing species abundance indirectly affects food web structure and robustness. . J. Anim. Ecol. 86::32736
    [Crossref] [Google Scholar]
  6. Barbour MA, Fortuna MA, Bascompte J, Nicholson JR, Julkunen-Tiitto R, et al. 2016.. Genetic specificity of a plant–insect food web: implications for linking genetic variation to network complexity. . PNAS 113::212833
    [Crossref] [Google Scholar]
  7. Baronio GJ, Souza CS, Maruyama PK, Raizer J, Sigrist MR, Aoki C. 2021.. Natural fire does not affect the structure and beta diversity of plant-pollinator networks, but diminishes floral-visitor specialization in Cerrado. . Flora 281::151869
    [Crossref] [Google Scholar]
  8. Bascompte J, Jordano P. 2007.. Plant-animal mutualistic networks: the architecture of biodiversity. . Annu. Rev. Ecol. Evol. Syst. 38::56793
    [Crossref] [Google Scholar]
  9. Bascompte J, Jordano P. 2013.. Mutualistic Networks. Princeton, NJ:: Princeton Univ. Press
    [Google Scholar]
  10. Bascompte J, Jordano P, Melián CJ, Olesen JM. 2003.. The nested assembly of plant–animal mutualistic networks. . PNAS 100::938387
    [Crossref] [Google Scholar]
  11. Bastolla U, Fortuna MA, Pascual-Garcia A, Ferrera A, Luque B, Bascompte J. 2009.. The architecture of mutualistic networks minimizes competition and increases biodiversity. . Nature 458::101820
    [Crossref] [Google Scholar]
  12. Batagelj V, Mrvar A. 2004.. Pajek—analysis and visualization of large networks. . In Graph Drawing Software, ed. M Jünger, P Mutzel , pp. 77103. Berlin, Heidelberg:: Springer
    [Google Scholar]
  13. Bell KL, Fowler J, Burgess KS, Dobbs EK, Gruenewald D, et al. 2017.. Applying pollen DNA metabarcoding to the study of plant–pollinator interactions. . Appl. Plant Sci. 5::1600124
    [Crossref] [Google Scholar]
  14. Benadi G, Blüthgen N, Hovestadt T, Poethke H-J. 2013.. When can plant-pollinator interactions promote plant diversity?. Am. Nat. 182::13146
    [Crossref] [Google Scholar]
  15. Benadi G, Hovestadt T, Poethke HJ, Blüthgen N. 2014.. Specialization and phenological synchrony of plant–pollinator interactions along an altitudinal gradient. . J. Anim. Ecol. 83::63950
    [Crossref] [Google Scholar]
  16. Bergamini LL, Lewinsohn TM, Jorge LR, Almeida-Neto M. 2017.. Manifold influences of phylogenetic structure on a plant–herbivore network. . Oikos 126::70312
    [Crossref] [Google Scholar]
  17. Bersier LF, Banasek-Richter C, Cattin MF. 2002.. Quantitative descriptors of food-web matrices. . Ecology 83::2394407
    [Crossref] [Google Scholar]
  18. Bierbach D, Oster S, Jourdan J, Arias-Rodriguez L, Krause J, et al. 2014.. Social network analysis resolves temporal dynamics of male dominance relationships. . Behav. Ecol. Sociobiol. 68::93545
    [Crossref] [Google Scholar]
  19. Blanchet FG, Cazelles K, Gravel D. 2020.. Co-occurrence is not evidence of ecological interactions. . Ecol. Lett. 23::105063
    [Crossref] [Google Scholar]
  20. Blüthgen N. 2010.. Why network analysis is often disconnected from community ecology: a critique and an ecologist's guide. . Basic Appl. Ecol. 11::18595
    [Crossref] [Google Scholar]
  21. Blüthgen N, Fründ J, Vázquez DP, Menzel F. 2008.. What do interaction network metrics tell us about specialization and biological traits?. Ecology 89::338799
    [Crossref] [Google Scholar]
  22. Blüthgen N, Menzel F, Blüthgen N. 2006.. Measuring specialization in species interaction networks. . BMC Ecol. 6::9
    [Crossref] [Google Scholar]
  23. Blüthgen N, Menzel F, Hovestadt T, Fiala B, Blüthgen N. 2007.. Specialization, constraints, and conflicting interests in mutualistic networks. . Curr. Biol. 17::34146
    [Crossref] [Google Scholar]
  24. Blüthgen N, Staab M. 2021.. Mammals, interaction networks and the relevance of scale. . Curr. Biol. 31::R85053
    [Crossref] [Google Scholar]
  25. Bosch J, González AMM, Rodrigo A, Navarro D. 2009.. Plant–pollinator networks: adding the pollinator's perspective. . Ecol. Lett. 12::40919
    [Crossref] [Google Scholar]
  26. Brimacombe C, Bodner K, Fortin MJ. 2022.. How network size strongly determines trophic specialisation: a technical comment on Luna et al. (2022). . Ecol. Lett. 25::191416
    [Crossref] [Google Scholar]
  27. Burnham KP, Anderson DR. 1998.. Model Selection and Inference: A Practical Information-Theoretic Approach. New York:: Springer
    [Google Scholar]
  28. Canard EF, Mouquet N, Mouillot D, Stanko M, Miklisova D, Gravel D. 2014.. Empirical evaluation of neutral interactions in host-parasite networks. . Am. Nat. 183::46879
    [Crossref] [Google Scholar]
  29. Cao HX, Klein AM, Zhu CD, Staab M, Durka W, et al. 2018.. Intra- and interspecific tree diversity promotes multitrophic plant–Hemiptera–ant interactions in a forest diversity experiment. . Basic Appl. Ecol. 29::8997
    [Crossref] [Google Scholar]
  30. CaraDonna PJ, Burkle LA, Schwarz B, Resasco J, Knight TM, et al. 2021.. Seeing through the static: the temporal dimension of plant–animal mutualistic interactions. . Ecol. Lett. 24::14961
    [Crossref] [Google Scholar]
  31. CaraDonna PJ, Waser NM. 2020.. Temporal flexibility in the structure of plant–pollinator interaction networks. . Oikos 129::136980
    [Crossref] [Google Scholar]
  32. Carpentier C, Barabás G, Spaak JW, De Laender F. 2021.. Reinterpreting the relationship between number of species and number of links connects community structure and stability. . Nat. Ecol. Evol. 5::11029
    [Crossref] [Google Scholar]
  33. Carstens CJ. 2015.. Proof of uniform sampling of binary matrices with fixed row sums and column sums for the fast Curveball algorithm. . Phys. Rev. E 91::042812
    [Crossref] [Google Scholar]
  34. Castro-Urgal R, Tur C, Albrecht M, Traveset A. 2012.. How different link weights affect the structure of quantitative flower-visitation networks. . Basic Appl. Ecol. 13::5008
    [Crossref] [Google Scholar]
  35. Ceballos SJ, Chacoff NP, Malizia A. 2016.. Interaction network of vascular epiphytes and trees in a subtropical forest. . Acta Oecol. 77::15259
    [Crossref] [Google Scholar]
  36. Chacoff NP, Resasco J, Vázquez DP. 2018.. Interaction frequency, network position, and the temporal persistence of interactions in a plant–pollinator network. . Ecology 99::2128
    [Crossref] [Google Scholar]
  37. Chacoff NP, Vázquez DP, Lomáscolo SB, Stevani EL, Dorado J, Padrón B. 2012.. Evaluating sampling completeness in a desert plant–pollinator network. . J. Anim. Ecol. 81::190200
    [Crossref] [Google Scholar]
  38. Chao A, Jost L. 2012.. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. . Ecology 93::253347
    [Crossref] [Google Scholar]
  39. Chiu CH, Chao AN, Vogel S, Kriegel P, Thorn S. 2023.. Quantifying and estimating ecological network diversity based on incomplete sampling data. . Philos. Trans. R. Soc. B 378::20220183
    [Crossref] [Google Scholar]
  40. Cirtwill AR, Eklöf A, Roslin T, Wootton K, Gravel D. 2019.. A quantitative framework for investigating the reliability of empirical network construction. . Methods Ecol. Evol. 10::90211
    [Crossref] [Google Scholar]
  41. Cohen JE, Schittler DN, Raffaelli DG, Reuman DC. 2009.. Food webs are more than the sum of their tritrophic parts. . PNAS 106::2233540
    [Crossref] [Google Scholar]
  42. Csardi G, Nepusz T. 2006.. The igraph software package for complex network research. . InterJournal Complex Syst. 1695:. https://igraph.org
    [Google Scholar]
  43. Dalsgaard B, Maruyama PK, Sonne J, Hansen K, Zanata TB, et al. 2021.. The influence of biogeographical and evolutionary histories on morphological trait-matching and resource specialization in mutualistic hummingbird–plant networks. . Funct. Ecol. 35::112033
    [Crossref] [Google Scholar]
  44. Dalsgaard B, Schleuning M, Maruyama PK, Dehling DM, Sonne J, et al. 2017.. Opposed latitudinal patterns of network-derived and dietary specialization in avian plant–frugivore interaction systems. . Ecography 40::1395401
    [Crossref] [Google Scholar]
  45. Dáttilo W, Sánchez-Galván I, Lange D, Del-Claro K, Rico-Gray V. 2014.. Importance of interaction frequency in analysis of ant-plant networks in tropical environments. . J. Trop. Ecol. 30::16568
    [Crossref] [Google Scholar]
  46. Dáttilo W, Vizentin-Bugoni J, Debastiani VJ, Jordano P, Izzo TJ. 2019.. The influence of spatial sampling scales on ant–plant interaction network architecture. . J. Anim. Ecol. 88::90314
    [Crossref] [Google Scholar]
  47. Delmas E, Besson M, Brice MH, Burkle LA, Dalla Riva GV, et al. 2019.. Analysing ecological networks of species interactions. . Biol. Rev. 94::1636
    [Crossref] [Google Scholar]
  48. Dorado J, Vázquez DP, Stevani EL, Chacoff NP. 2011.. Rareness and specialization in plant–pollinator networks. . Ecology 92::1925
    [Crossref] [Google Scholar]
  49. Doré M, Fontaine C, Thébault E. 2021.. Relative effects of anthropogenic pressures, climate, and sampling design on the structure of pollination networks at the global scale. . Glob. Change Biol. 27::126680
    [Crossref] [Google Scholar]
  50. Dormann CF. 2023.. The rise, and possible fall, of network ecology. . In Defining Agroecology: A Festschrift for Teja Tscharntke, ed. CF Dormann, P Batáry, I Grass, A-M Klein, J Loos, et al. , pp. 14359. Hamburg, Ger:.: Tredition
    [Google Scholar]
  51. Dormann CF, Fründ J, Blüthgen N, Gruber B. 2009.. Indices, graphs and null models: analyzing bipartite ecological networks. . Open Ecol. J. 2::724
    [Crossref] [Google Scholar]
  52. Dormann CF, Fründ J, Schaefer HM. 2017.. Identifying causes of patterns in ecological networks: opportunities and limitations. . Annu. Rev. Ecol. Evol. Syst. 48::55984
    [Crossref] [Google Scholar]
  53. Dormann CF, Strauss R. 2014.. A method for detecting modules in quantitative bipartite networks. . Methods Ecol. Evol. 5::9098
    [Crossref] [Google Scholar]
  54. Dunne JA, Williams RJ, Martinez ND. 2002.. Food-web structure and network theory: the role of connectance and size. . PNAS 99::1291722
    [Crossref] [Google Scholar]
  55. Ehrlich PR, Raven PH. 1964.. Butterflies and plants: a study in coevolution. . Evolution 18::586608
    [Crossref] [Google Scholar]
  56. Feit B, Blüthgen N, Daouti E, Straub C, Traugott M, Jonsson M. 2021.. Landscape complexity promotes resilience of biological pest control to climate change. . Proc. R. Soc. B 288::20210547
    [Crossref] [Google Scholar]
  57. Fornoff F, Klein AM, Blüthgen N, Staab M. 2019.. Tree diversity increases robustness of multi-trophic interactions. . Proc. R. Soc. B 286::20182399
    [Crossref] [Google Scholar]
  58. Frank K, Krell FT, Slade EM, Raine EH, Chiew LY, et al. 2018.. Global dung webs: high trophic generalism of dung beetles along the latitudinal diversity gradient. . Ecol. Lett. 21::122936
    [Crossref] [Google Scholar]
  59. Freckleton RP. 2002.. On the misuse of residuals in ecology: regression of residuals versus multiple regression. . J. Anim. Ecol. 71::54245
    [Crossref] [Google Scholar]
  60. Fründ J, Dormann CF, Holzschuh A, Tscharntke T. 2013.. Bee diversity effects on pollination depend on functional complementarity and niche shifts. . Ecology 94::204254
    [Crossref] [Google Scholar]
  61. Fründ J, McCann KS, Williams NM. 2016.. Sampling bias is a challenge for quantifying specialization and network structure: lessons from a quantitative niche model. . Oikos 125::50213
    [Crossref] [Google Scholar]
  62. Gibson RH, Knott B, Eberlein T, Memmott J. 2011.. Sampling method influences the structure of plant–pollinator networks. . Oikos 120::82231
    [Crossref] [Google Scholar]
  63. Goberna M, Verdú M. 2022.. Cautionary notes on the use of co-occurrence networks in soil ecology. . Soil Biol. Biochem. 166::108534
    [Crossref] [Google Scholar]
  64. Gotelli NJ, Colwell RK. 2001.. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. . Ecol. Lett. 4::37991
    [Crossref] [Google Scholar]
  65. Gotelli NJ, Graves GR. 1996.. Null Models in Ecology. Washington, DC:: Smithson. Inst. Press
    [Google Scholar]
  66. Gripenberg S, Basset Y, Lewis OT, Terry JCD, Wright SJ, et al. 2019.. A highly resolved food web for insect seed predators in a species-rich tropical forest. . Ecol. Lett. 22::163849
    [Crossref] [Google Scholar]
  67. Guy TJ, Hutchinson MC, Baldock KCR, Kayser E, Baiser B, et al. 2021.. Large herbivores transform plant-pollinator networks in an African savanna. . Curr. Biol. 31::296471
    [Crossref] [Google Scholar]
  68. Harting F, Abrego N, Bush A, Chase JM, Guillera-Arroita G, et al. 2024.. Novel community data in ecology—properties and prospects. . Trends Ecol. Evol. 39::28093
    [Crossref] [Google Scholar]
  69. Harvey E, Gounand I, Ward CL, Altermatt F. 2017.. Bridging ecology and conservation: from ecological networks to ecosystem function. . J. Appl. Ecol. 54::37179
    [Crossref] [Google Scholar]
  70. Heleno RH, Olesen JM, Nogales M, Vargas P, Traveset A. 2013.. Seed dispersal networks in the Galapagos and the consequences of alien plant invasions. . Proc. R. Soc. B 280::20122112
    [Crossref] [Google Scholar]
  71. Hulbert SH. 1971.. The nonconcept of species diversity: a critique and alternative parameters. . Ecology 52::57786
    [Crossref] [Google Scholar]
  72. Hutchinson MC, Dobson AP, Pringle RM. 2022.. Dietary abundance distributions: dominance and diversity in vertebrate diets. . Ecol. Lett. 25::9921008
    [Crossref] [Google Scholar]
  73. Ings TC, Hawes JE. 2018.. The history of ecological networks. . In Ecological Networks in the Tropics, ed. W Dáttilo, V Rico-Gray , pp. 1528. Cham:: Springer
    [Google Scholar]
  74. James A, Pitchford JW, Plank MJ. 2012.. Disentangling nestedness from models of ecological complexity. . Nature 487::22730
    [Crossref] [Google Scholar]
  75. Joppa LN, Montoya JM, Solé R, Sanderson J, Pimm SL. 2010.. On nestedness in ecological networks. . Evol. Ecol. Res. 12::3546
    [Google Scholar]
  76. Jordano P. 1987.. Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. . Am. Nat. 129::65777
    [Crossref] [Google Scholar]
  77. Jordano P. 2016.. Sampling networks of ecological interactions. . Funct. Ecol. 30::188393
    [Crossref] [Google Scholar]
  78. Jost L. 2010.. The relation between evenness and diversity. . Diversity 2::20732
    [Crossref] [Google Scholar]
  79. Junker RR, Blüthgen N, Brehm T, Binkenstein J, Paulus J, et al. 2013.. Specialization on traits as basis for the niche-breadth of flower visitors and as structuring mechanism of ecological networks. . Funct. Ecol. 27::32941
    [Crossref] [Google Scholar]
  80. Kaiser-Bunbury CN, Mougal J, Whittington AE, Valentin T, Gabriel R, et al. 2017.. Ecosystem restoration strengthens pollination network resilience and function. . Nature 542::22327
    [Crossref] [Google Scholar]
  81. Kratochwil A, Beil M, Schwabe A. 2009.. Complex structure of pollinator-plant interaction-webs: random, nested, with gradients or modules?. Apidologie 40::63450
    [Crossref] [Google Scholar]
  82. Krishna A, Guimarães PR Jr., Jordano P, Bascompte J. 2008.. A neutral-niche theory of nestedness in mutualistic networks. . Oikos 117::160918
    [Crossref] [Google Scholar]
  83. Kuppler J, Grasegger T, Peters B, Popp S, Schlager M, Junker RR. 2017.. Volatility of network indices due to undersampling of intraspecific variation in plant–insect interactions. . Arthropod Plant Interact. 11::56166
    [Crossref] [Google Scholar]
  84. Lau MK, Borrett SR, Baiser B, Gotelli NJ, Ellison AM. 2017.. Ecological network metrics: opportunities for synthesis. . Ecosphere 8::e01900
    [Crossref] [Google Scholar]
  85. Lázaro A, Tscheulin T, Devalez J, Nakas G, Stefanaki A, et al. 2016.. Moderation is best: effects of grazing intensity on plant–flower visitor networks in Mediterranean communities. . Ecol. Appl. 26::796807
    [Crossref] [Google Scholar]
  86. Leonhardt SD, Schmitt T, Blüthgen N. 2011.. Tree resin composition, collection behavior and selective filters shape chemical profiles of tropical bees (Apidae: Meliponini). . PLOS ONE 6::e23445
    [Crossref] [Google Scholar]
  87. Lewinsohn TM, Prado PI, Jordano P, Bascompte J, Olesen JM. 2006.. Structure in plant–animal interaction assemblages. . Oikos 113::17484
    [Crossref] [Google Scholar]
  88. Librán-Embid F, Grass I, Emer C, Ganuza C, Tscharntke T. 2021.. A plant–pollinator metanetwork along a habitat fragmentation gradient. . Ecol. Lett. 24::270012
    [Crossref] [Google Scholar]
  89. MacLeod M, Genung MA, Ascher JS, Winfree R. 2016.. Measuring partner choice in plant–pollinator networks: using null models to separate rewiring and fidelity from chance. . Ecology 97::292531
    [Crossref] [Google Scholar]
  90. Marjakangas EL, Muñoz G, Turney S, Albrecht J, Neuschulz EL, et al. 2022.. Trait-based inference of ecological network assembly: a conceptual framework and methodological toolbox. . Ecol. Monogr. 92::e1502
    [Crossref] [Google Scholar]
  91. Martinez ND. 1993.. Effects of resolution on food web structure. . Oikos 66::40312
    [Crossref] [Google Scholar]
  92. Martinez ND, Hawkins BA, Dawah HA, Feifarek BP. 1999.. Effects of sampling effort on characterization of food-web structure. . Ecology 80::104455
    [Crossref] [Google Scholar]
  93. May R. 1973.. Stability and Complexity in Model Ecosystems. Princeton, NJ:: Princeton Univ. Press
    [Google Scholar]
  94. McCann K, Hastings A, Huxel GR. 1998.. Weak trophic interactions and the balance of nature. . Nature 395::79498
    [Crossref] [Google Scholar]
  95. Memmott J, Craze PG, Waser NM, Price MV. 2007.. Global warming and the disruption of plant–pollinator interactions. . Ecol. Lett. 10::71017
    [Crossref] [Google Scholar]
  96. Mitchell RJ, Flanagan RJ, Brown BJ, Waser NM, Karron JD. 2009.. New frontiers in competition for pollination. . Ann. Bot. 103::140313
    [Crossref] [Google Scholar]
  97. Molina C, Stone L. 2020.. Difficulties in benchmarking ecological null models: an assessment of current methods. . Ecology 101::e02945
    [Crossref] [Google Scholar]
  98. Morales JM, Vázquez DP. 2008.. The effect of space in plant–animal mutualistic networks: insights from a simulation study. . Oikos 117::136270
    [Crossref] [Google Scholar]
  99. Morris RJ, Gripenberg S, Lewis OT, Roslin T. 2014.. Antagonistic interaction networks are structured independently of latitude and host guild. . Ecol. Lett. 17::34049
    [Crossref] [Google Scholar]
  100. Muñoz MC, Schaefer HM, Böhning-Gaese K, Schleuning M. 2017.. Importance of animal and plant traits for fruit removal and seedling recruitment in a tropical forest. . Oikos 126::82332
    [Crossref] [Google Scholar]
  101. Olesen JM, Bascompte J, Dupont YL, Elberling H, Rasmussen C, Jordano P. 2011.. Missing and forbidden links in mutualistic networks. . Proc. R. Soc. B 278::72532
    [Crossref] [Google Scholar]
  102. Olesen JM, Eskildsen LI, Venkatasamy S. 2002.. Invasion of pollination networks on oceanic islands: importance of invader complexes and endemic super generalists. . Divers. Distrib. 8::18192
    [Crossref] [Google Scholar]
  103. Olito C, Fox JW. 2015.. Species traits and abundances predict metrics of plant–pollinator network structure, but not pairwise interactions. . Oikos 124::42836
    [Crossref] [Google Scholar]
  104. Osorio S, Arnan X, Bassols E, Vicens N, Bosch J. 2015.. Local and landscape effects in a host–parasitoid interaction network along a forest–cropland gradient. . Ecol. Appl. 25::186979
    [Crossref] [Google Scholar]
  105. Paine RT. 1988.. Food webs: road maps of interactions or grist for theoretical development. . Ecology 69::164854
    [Crossref] [Google Scholar]
  106. Patefield WM. 1981.. Algorithm AS 159. An efficient method of generating random R × C tables with given row and column totals. . J. R. Stat. Soc. C Appl. Stat. 30::9197
    [Google Scholar]
  107. Pellissier L, Albouy C, Bascompte J, Farwig N, Graham C, et al. 2018.. Comparing species interaction networks along environmental gradients. . Biol. Rev. 93::785800
    [Crossref] [Google Scholar]
  108. Peralta G. 2016.. Merging evolutionary history into species interaction networks. . Funct. Ecol. 30::191725
    [Crossref] [Google Scholar]
  109. Peralta G, CaraDonna PJ, Rakosy D, Fründ J, Pascual Tudanca MP, et al. 2024.. Predicting plant–pollinator interactions: concepts, methods, and challenges. . Trends Ecol. Evol. 39::494505
    [Crossref] [Google Scholar]
  110. Peralta G, Vázquez DP, Chacoff NP, Lomáscolo SB, Perry GLW, Tylianakis JM. 2020.. Trait matching and phenological overlap increase the spatio-temporal stability and functionality of plant–pollinator interactions. . Ecol. Lett. 23::110716
    [Crossref] [Google Scholar]
  111. Petanidou T, Kallimanis AS, Tzanopoulos J, Sgardelis SP, Pantis JD. 2008.. Long-term observation of a pollination network: fluctuation in species and interactions, relative invariance of network structure and implications for estimates of specialization. . Ecol. Lett. 11::56475
    [Crossref] [Google Scholar]
  112. Petsopoulos D, Lunt DH, Bell JR, Kitson JJN, Collins L, et al. 2021.. Using network ecology to understand and mitigate long-term insect declines. . Ecol. Entomol. 46::69398
    [Crossref] [Google Scholar]
  113. Pilosof S, Porter MA, Pascual M, Kéfi S. 2017.. The multilayer nature of ecological networks. . Nat. Ecol. Evol. 1::0101
    [Crossref] [Google Scholar]
  114. Pinheiro RBP, Felix GMF, Dormann CF, Mello MAR. 2019.. A new model explaining the origin of different topologies in interaction networks. . Ecology 100::e02796
    [Crossref] [Google Scholar]
  115. Pinheiro RBP, Felix GMF, Lewinsohn TM. 2022.. Hierarchical compound topology uncovers complex structure of species interaction networks. . J. Anim. Ecol. 91::224860
    [Crossref] [Google Scholar]
  116. Pocock MJO, Evans DM, Memmott J. 2012.. The robustness and restoration of a network of ecological networks. . Science 335::97377
    [Crossref] [Google Scholar]
  117. Poisot T, Bergeron G, Cazelles K, Dallas T, Gravel D, et al. 2021.. Global knowledge gaps in species interaction networks data. . J. Biogeogr. 48::155263
    [Crossref] [Google Scholar]
  118. Poisot T, Guéveneux-Julien C, Fortin MJ, Gravel D, Legendre P. 2017.. Hosts, parasites and their interactions respond to different climatic variables. . Glob. Ecol. Biogeogr. 26::94251
    [Crossref] [Google Scholar]
  119. Polis GA. 1991.. Complex trophic interactions in deserts: an empirical critique of food-web theory. . Am. Nat. 138::12355
    [Crossref] [Google Scholar]
  120. Postic E, Le Ralec A, Buchard C, Granado C, Outreman Y. 2020.. Variations in community assemblages and trophic networks of aphids and parasitoids in protected crops. . Ecosphere 11::e03126
    [Crossref] [Google Scholar]
  121. Poulin R, Guégan J-F. 2000.. Nestedness, anti-nestedness, and the relationship between prevalence and intensity in ectoparasite assemblages of marine fish: a spatial model of species coexistence. . Int. J. Parasitol. 30::114752
    [Crossref] [Google Scholar]
  122. Pringle RM, Hutchinson MC. 2020.. Resolving food-web structure. . Annu. Rev. Ecol. Evol. Syst. 51::5580
    [Crossref] [Google Scholar]
  123. Quimbayo JP, Cantor M, Dias MS, Grutter AS, Gingins S, et al. 2018.. The global structure of marine cleaning mutualistic networks. . Glob. Ecol. Biogeogr. 27::123850
    [Crossref] [Google Scholar]
  124. Ramirez IE, Causton CE, Gutierrez GA, Mosquera DA, Piedrahita P, Heimpel GE. 2022.. Specificity within bird–parasite–parasitoid food webs: a novel approach for evaluating potential biological control agents of the avian vampire fly. . J. Appl. Ecol. 59::218998
    [Crossref] [Google Scholar]
  125. Renaud E, Baudry E, Bessa-Gomes C. 2020.. Influence of taxonomic resolution on mutualistic network properties. . Ecol. Evol. 10::324859
    [Crossref] [Google Scholar]
  126. Rivera-Hutinel A, Bustamante RO, Marín VH, Medel R. 2012.. Effects of sampling completeness on the structure of plant–pollinator networks. . Ecology 93::1593603
    [Crossref] [Google Scholar]
  127. Robinson ML, Strauss SY. 2020.. Generalists are more specialized in low-resource habitats, increasing stability of ecological network structure. . PNAS 117::204348
    [Crossref] [Google Scholar]
  128. Rohr RP, Saavedra S, Bascompte J. 2014.. On the structural stability of mutualistic systems. . Science 345::1253497
    [Crossref] [Google Scholar]
  129. Rosumek FB, Blüthgen N, Brückner A, Menzel F, Gebauer G, Heethoff M. 2018.. Unveiling community patterns and trophic niches of tropical and temperate ants using an integrative framework of field data, stable isotopes and fatty acids. . PeerJ 6::e5467
    [Crossref] [Google Scholar]
  130. Schleuning M, Fründ J, García D. 2015.. Predicting ecosystem functions from biodiversity and mutualistic networks: an extension of trait-based concepts to plant–animal interactions. . Ecography 38::38092
    [Crossref] [Google Scholar]
  131. Schleuning M, Fründ J, Klein A-M, Abrahamczyk S, Alarcón R, et al. 2012.. Specialization of mutualistic interaction networks decreases toward tropical latitudes. . Curr. Biol. 22::192531
    [Crossref] [Google Scholar]
  132. Schleuning M, Fründ J, Schweiger O, Welk E, Albrecht J, et al. 2016.. Ecological networks are more sensitive to plant than to animal extinction under climate change. . Nat. Commun. 7::13965
    [Crossref] [Google Scholar]
  133. Schwarz B, Dormann CF, Vázquez DP, Fründ J. 2021.. Within-day dynamics of plant–pollinator networks are dominated by early flower closure: an experimental test of network plasticity. . Oecologia 196::78194
    [Crossref] [Google Scholar]
  134. Schwarz B, Vázquez DP, CaraDonna PJ, Knight TM, Benadi G, et al. 2020.. Temporal scale-dependence of plant–pollinator networks. . Oikos 129::1289302
    [Crossref] [Google Scholar]
  135. Simmons BI, Sutherland WJ, Dicks LV, Albrecht J, Farwig N, et al. 2018.. Moving from frugivory to seed dispersal: incorporating the functional outcomes of interactions in plant–frugivore networks. . J. Anim. Ecol. 87::9951007
    [Crossref] [Google Scholar]
  136. Simmons BI, Vizentin-Bugoni J, Maruyama PK, Cotton PA, Marín-Gómez OH, et al. 2019.. Abundance drives broad patterns of generalisation in plant–hummingbird pollination networks. . Oikos 128::128795
    [Crossref] [Google Scholar]
  137. Smith-Ramírez C, Ramos-Jiliberto R, Valdovinos FS, Martínez P, Castillo JA, Armesto JJ. 2014.. Decadal trends in the pollinator assemblage of Eucryphia cordifolia in Chilean rainforests. . Oecologia 176::15769
    [Crossref] [Google Scholar]
  138. Song C, Rohr RP, Saavedra S. 2017.. Why are some plant–pollinator networks more nested than others?. J. Anim. Ecol. 86::141724
    [Crossref] [Google Scholar]
  139. Spiesman BJ, Gratton C. 2016.. Flexible foraging shapes the topology of plant–pollinator interaction networks. . Ecology 97::143141
    [Crossref] [Google Scholar]
  140. Srivastava DS, Lawton JH. 1998.. Why more productive sites have more species: an experimental test of theory using tree-hole communities. . Am. Nat. 152::51029
    [Crossref] [Google Scholar]
  141. Staab M, Bruelheide H, Durka W, Michalski S, Purschke O, et al. 2016.. Tree phylogenetic diversity promotes host–parasitoid interactions. . Proc. R. Soc. B 283::20160275
    [Crossref] [Google Scholar]
  142. Staniczenko PPA, Kopp JC, Allesina S. 2013.. The ghost of nestedness in ecological networks. . Nat. Commun. 4::1391
    [Crossref] [Google Scholar]
  143. Stanton ML, Palmer TM, Young TP. 2002.. Competition–colonization trade-offs in a guild of African acacia-ants. . Ecol. Monogr. 72::34763
    [Google Scholar]
  144. Thébault E, Fontaine C. 2010.. Stability of ecological communities and the architecture of mutualistic and trophic networks. . Science 329::85356
    [Crossref] [Google Scholar]
  145. Theodorou P, Albig K, Radzeviciute R, Settele J, Schweiger O, et al. 2017.. The structure of flower visitor networks in relation to pollination across an agricultural to urban gradient. . Funct. Ecol. 31::83847
    [Crossref] [Google Scholar]
  146. Timóteo S, Albrecht J, Rumeu B, Norte AC, Traveset A, et al. 2023.. Tripartite networks show that keystone species can multitask. . Funct. Ecol. 37::27486
    [Crossref] [Google Scholar]
  147. Timóteo S, Ramos JA, Vaughan IP, Memmott J. 2016.. High resilience of seed dispersal webs highlighted by the experimental removal of the dominant disperser. . Curr. Biol. 26::91015
    [Crossref] [Google Scholar]
  148. Toju H, Sato H, Yamamoto S, Tanabe AS. 2018.. Structural diversity across arbuscular mycorrhizal, ectomycorrhizal, and endophytic plant–fungus networks. . BMC Plant Biol. 18::292
    [Crossref] [Google Scholar]
  149. Trøjelsgaard K, Báez M, Espadaler X, Nogales M, Oromí P, et al. 2013.. Island biogeography of mutualistic interaction networks. . J. Biogeogr. 40::202031
    [Crossref] [Google Scholar]
  150. Tylianakis JM, Morris RJ. 2017.. Ecological networks across environmental gradients. . Annu. Rev. Ecol. Evol. Syst. 48::2548
    [Crossref] [Google Scholar]
  151. Ulrich W, Almeida-Neto M, Gotelli NJ. 2009.. A consumer's guide to nestedness analysis. . Oikos 118::317
    [Crossref] [Google Scholar]
  152. Valdovinos FS, Brosi BJ, Briggs HM, Moisset de Espanés P, Ramos-Jiliberto R, Martinez ND. 2016.. Niche partitioning due to adaptive foraging reverses effects of nestedness and connectance on pollination network stability. . Ecol. Lett. 19::127786
    [Crossref] [Google Scholar]
  153. Vanbergen AJ, Woodcock BA, Gray A, Grant F, Telford A, et al. 2014.. Grazing alters insect visitation networks and plant mating systems. . Funct. Ecol. 28::17889
    [Crossref] [Google Scholar]
  154. Vanbergen AJ, Woodcock BA, Heard MS, Chapman DS. 2017.. Network size, structure and mutualism dependence affect the propensity for plant–pollinator extinction cascades. . Funct. Ecol. 31::128593
    [Crossref] [Google Scholar]
  155. Vázquez D, Peralta G, Cagnolo L, Santos M. 2022.. Ecological interaction networks. What we know, what we don't, and why it matters. . Ecol. Austral 32::67097
    [Crossref] [Google Scholar]
  156. Vázquez DP. 2005.. Degree distribution in plant–animal mutualistic networks: forbidden links or random interactions?. Oikos 108::42126
    [Crossref] [Google Scholar]
  157. Vázquez DP, Aizen MA. 2003.. Null model analyses of specialization in plant–pollinator networks. . Ecology 84::2493501
    [Crossref] [Google Scholar]
  158. Vázquez DP, Chacoff NP, Cagnolo L. 2009.. Evaluating multiple determinants of the structure of plant–animal mutualistic networks. . Ecology 90::203946
    [Crossref] [Google Scholar]
  159. Vázquez DP, Melián CJ, Williams NM, Blüthgen N, Krasnov BR, Poulin R. 2007.. Species abundance and asymmetric interaction strength in ecological networks. . Oikos 116::112027
    [Crossref] [Google Scholar]
  160. Vázquez DP, Morris WF, Jordano P. 2005.. Interaction frequency as a surrogate for the total effect of animal mutualists on plants. . Ecol. Lett. 8::108894
    [Crossref] [Google Scholar]
  161. Vizentin-Bugoni J, Maruyama PK, Debastiani VJ, Duarte LD, Dalsgaard B, Sazima M. 2016.. Influences of sampling effort on detected patterns and structuring processes of a Neotropical plant–hummingbird network. . J. Anim. Ecol. 85::26272
    [Crossref] [Google Scholar]
  162. Wehner K, Norton RA, Blüthgen N, Heethoff M. 2016.. Specialization of oribatid mites to forest microhabitats—the enigmatic role of litter. . Ecosphere 7::e01336
    [Crossref] [Google Scholar]
  163. Wells K, Feldhaar H, O'Hara RB. 2014.. Population fluctuations affect inference in ecological networks of multi-species interactions. . Oikos 123::58998
    [Crossref] [Google Scholar]
  164. Windsor FM, van den Hoogen J, Crowther TW, Evans DM. 2023.. Using ecological networks to answer questions in global biogeography and ecology. . J. Biogeogr. 50::5769
    [Crossref] [Google Scholar]
  165. Winfree R, Williams NM, Dushoff J, Kremen C. 2014.. Species abundance, not diet breadth, drives the persistence of the most linked pollinators as plant-pollinator networks disassemble. . Am. Nat. 183::60011
    [Crossref] [Google Scholar]
  166. Wirta HK, Hebert PDN, Kaartinen R, Prosser SW, Várkonyi G, Roslin T. 2014.. Complementary molecular information changes our perception of food web structure. . PNAS 111::188590
    [Crossref] [Google Scholar]
  167. Zhao YH, Lázaro A, Ren ZX, Zhou W, Li HD, et al. 2019.. The topological differences between visitation and pollen transport networks: a comparison in species rich communities of the Himalaya–Hengduan Mountains. . Oikos 128::55162
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-102722-021904
Loading
/content/journals/10.1146/annurev-ecolsys-102722-021904
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error