1932

Abstract

As the Anthropocene proceeds, the matrix in which remaining habitats are embedded is an increasingly dominant component of altered landscapes. The matrix appears to have diverse and far-reaching effects, yet our understanding of the causes and consequences of these effects remains limited. We first synthesize the broad range of perspectives on the matrix, provide a generalized framing that captures these perspectives, and propose hypotheses for how and why the matrix matters for ecological and evolutionary processes. We then summarize evidence for these hypotheses from experiments in which the matrix was manipulated. Nearly all experiments revealed matrix effects, including changes in local spillover, individual movement and dispersal, and use of resources in the matrix. Finally, we discuss how the matrix has been, and should be, incorporated into conservation and management and suggest future issues to advance research on and applications of the matrix in ecology, evolution, and conservation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-102722-025653
2024-11-04
2025-02-10
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/55/1/annurev-ecolsys-102722-025653.html?itemId=/content/journals/10.1146/annurev-ecolsys-102722-025653&mimeType=html&fmt=ahah

Literature Cited

  1. Astrom J, Part T. 2013.. Negative and matrix-dependent effects of dispersal corridors in an experimental metacommunity. . Ecology 94::7282
    [Crossref] [Google Scholar]
  2. Balkenhol N, Cushman SA, Waits LP, Storfer A. 2016.. Landscape Genetics: Concepts, Methods, Applications. Hoboken, NJ:: John Wiley & Sons
    [Google Scholar]
  3. Bender DJ, Fahrig L. 2005.. Matrix structure obscures the relationship between interpatch movement and patch size and isolation. . Ecology 86::102333
    [Crossref] [Google Scholar]
  4. Betts MG, Wolf C, Pfeifer M, Banks-Leite C, Arroyo-Rodriguez V, et al. 2019.. Extinction filters mediate the global effects of habitat fragmentation on animals. . Science 366::123639
    [Crossref] [Google Scholar]
  5. Bitters ME, Meyers J, Resasco J, Sarre SD, Tuff KT, Davies KF. 2022.. Experimental habitat fragmentation disrupts host–parasite interaction over decades via life-cycle bottlenecks. . Ecology 103::e3758
    [Crossref] [Google Scholar]
  6. Blitzer EJ, Dormann CF, Holzschuh A, Klein AM, Rand TA, Tscharntke T. 2012.. Spillover of functionally important organisms between managed and natural habitats. . Agric. Ecosyst. Environ. 146::3443
    [Crossref] [Google Scholar]
  7. Brady MJ, McAlpine CA, Miller CJ, Possingham HP, Baxter GS. 2009.. Habitat attributes of landscape mosaics along a gradient of matrix development intensity: Matrix management matters. . Landscape Ecol. 24::87991
    [Crossref] [Google Scholar]
  8. Brennan L, Chow E, Lamb C. 2022.. Wildlife overpass structure size, distribution, effectiveness, and adherence to expert design recommendations. . PeerJ 10::e14371
    [Crossref] [Google Scholar]
  9. Brusquetti F, Pupin NC, Haddad CFB. 2023.. Model-based analyses suggest Pleistocene refugia over ancient divergence as main diversification driver for a Neotropical open-habitat treefrog. . Evol. Biol. 50::43246
    [Crossref] [Google Scholar]
  10. Chase JM, Blowes SA, Knight TM, Gerstner K, May F. 2020.. Ecosystem decay exacerbates biodiversity loss with habitat loss. . Nature 584::23843
    [Crossref] [Google Scholar]
  11. Cheptou PO, Carrue O, Rouifed S, Cantarel A. 2008.. Rapid evolution of seed dispersal in an urban environment in the weed Crepis sancta. . PNAS 105::379699
    [Crossref] [Google Scholar]
  12. Cheptou PO, Hargreaves AL, Bonte D, Jacquemyn H. 2017.. Adaptation to fragmentation: evolutionary dynamics driven by human influences. . Philos. Trans. R. Soc. B 372::20160037
    [Crossref] [Google Scholar]
  13. Chetcuti J, Kunin WE, Bullock JM. 2021.. Matrix composition mediates effects of habitat fragmentation: a modelling study. . Landscape Ecol. 36::163146
    [Crossref] [Google Scholar]
  14. Cline BB, Hunter ML. 2014.. Different open-canopy vegetation types affect matrix permeability for a dispersing forest amphibian. . J. Appl. Ecol. 51::31929
    [Crossref] [Google Scholar]
  15. Cote J, Bestion E, Jacob S, Travis J, Legrand D, Baguette M. 2017.. Evolution of dispersal strategies and dispersal syndromes in fragmented landscapes. . Ecography 40::5673
    [Crossref] [Google Scholar]
  16. Crone EE, Brown LM, Hodgson JA, Lutscher F, Schultz CB. 2019.. Faster movement in nonhabitat matrix promotes range shifts in heterogeneous landscapes. . Ecology 100::e02701
    [Crossref] [Google Scholar]
  17. Cronin JT. 2007.. From population sources to sieves: The matrix alters host–parasitoid source–sink structure. . Ecology 88::296676
    [Crossref] [Google Scholar]
  18. Cushman SA, Gutzwiller KJ, Evans JS, McGarigal K. 2010.. The gradient paradigm: a conceptual and analytical framework for landscape ecology. . In Spatial Complexity, Informatics, and Wildlife Conservation, ed. SA Cushman, F Huettman , pp. 83108. Tokyo:: Springer
    [Google Scholar]
  19. Cushman SA, McKelvey KS, Hayden J, Schwartz MK. 2006.. Gene flow in complex landscapes: testing multiple hypotheses with causal modeling. . Am. Nat. 168::48699
    [Crossref] [Google Scholar]
  20. Cushman SA, Shirk A, Landguth EL. 2012.. Separating the effects of habitat area, fragmentation and matrix resistance on genetic differentiation in complex landscapes. . Landscape Ecol. 27::36980
    [Crossref] [Google Scholar]
  21. Daily GC, Ehrlich PR, Sanchez-Azofeifa GA. 2001.. Countryside biogeography: use of human-dominated habitats by the avifauna of southern Costa Rica. . Ecol. Appl. 11::113
    [Crossref] [Google Scholar]
  22. DiLeo MF, Wagner HH. 2016.. A landscape ecologist's agenda for landscape genetics. . Curr. Landscape Ecol. Rep. 1::11526
    [Crossref] [Google Scholar]
  23. Dodds WK, Ratajczak Z, Keen RM, Nippert JB, Grudzinski B, et al. 2023.. Trajectories and state changes of a grassland stream and riparian zone after a decade of woody vegetation removal. . Ecol. Appl. 33::e2830
    [Crossref] [Google Scholar]
  24. Doherty TS, Driscoll DA. 2018.. Coupling movement and landscape ecology for animal conservation in production landscapes. . Proc. R. Soc. B 285::20172272
    [Crossref] [Google Scholar]
  25. Donald PF, Evans AD. 2006.. Habitat connectivity and matrix restoration: the wider implications of agri-environment schemes. . J. Appl. Ecol. 43::20918
    [Crossref] [Google Scholar]
  26. Driscoll DA, Balouch S, Burns TJ, Garvey TF, Wevill T, et al. 2019.. A critique of ‘countryside biogeography’ as a guide to research in human-dominated landscapes. . J. Biogeogr. 46::285059
    [Crossref] [Google Scholar]
  27. Driscoll DA, Banks SC, Barton PS, Lindenmayer DB, Smith AL. 2013.. Conceptual domain of the matrix in fragmented landscapes. . Trends Ecol. Evol. 28::60513
    [Crossref] [Google Scholar]
  28. Dunning JB, Danielson BJ, Pulliam HR. 1992.. Ecological processes that affect populations in complex landscapes. . Oikos 65::16975
    [Crossref] [Google Scholar]
  29. Ellis EC. 2021.. Land use and ecological change: a 12,000-year history. . Annu. Rev. Environ. Resour. 46::133
    [Crossref] [Google Scholar]
  30. Ellison KS, Ribic CA, Sample DW, Fawcett MJ, Dadisman JD. 2013.. Impacts of tree rows on grassland birds and potential nest predators: a removal experiment. . PLOS ONE 8::e59151
    [Crossref] [Google Scholar]
  31. Eycott AE, Stewart GB, Buyung-Ali LM, Bowler DE, Watts K, Pullin AS. 2012.. A meta-analysis on the impact of different matrix structures on species movement rates. . Landscape Ecol. 27::126378
    [Crossref] [Google Scholar]
  32. Fahrig L. 2007.. Non-optimal animal movement in human-altered landscapes. . Funct. Ecol. 21::100315
    [Crossref] [Google Scholar]
  33. Fahrig L, Baudry J, Brotons L, Burel FG, Crist TO, et al. 2011.. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. . Ecol. Lett. 14::10112
    [Crossref] [Google Scholar]
  34. Ferraz G, Nichols JD, Hines JE, Stouffer PC, Bierregaard RO Jr., Lovejoy TE. 2007.. A large-scale deforestation experiment: effects of patch area and isolation on Amazon birds. . Science 315:(5809):23841
    [Crossref] [Google Scholar]
  35. Fischer J, Abson DJ, Butsic V, Chappell MJ, Ekroos J, et al. 2014.. Land sparing versus land sharing: moving forward. . Conserv. Lett. 7::14957
    [Crossref] [Google Scholar]
  36. Fischer J, Lindenmayer DB. 2006.. Beyond fragmentation: the continuum model for fauna research and conservation in human-modified landscapes. . Oikos 112::47380
    [Crossref] [Google Scholar]
  37. Flather CH, Bevers M. 2002.. Patchy reaction-diffusion and population abundance: the relative importance of habitat amount and arrangement. . Am. Nat. 159::4056
    [Crossref] [Google Scholar]
  38. Fletcher RJ Jr., Acevedo MA, Robertson EP. 2014.. The matrix alters the role of path redundancy on patch colonization rates. . Ecology 95::144450
    [Crossref] [Google Scholar]
  39. Fletcher RJ Jr., Betts MG, Damschen EI, Hefley TJ, Hightower J, et al. 2023.. Addressing the problem of scale that emerges with habitat fragmentation. . Glob. Ecol. Biogeogr. 32::82841
    [Crossref] [Google Scholar]
  40. Fletcher RJ Jr., Sefair JA, Kortessis N, Jaffe R, Holt RD, et al. 2022.. Extending isolation by resistance to predict genetic connectivity. . Methods Ecol. Evol. 13::246377
    [Crossref] [Google Scholar]
  41. Fletcher RJ Jr., Sefair JA, Wang C, Poli C, Smith T, et al. 2019.. Towards a unified framework for connectivity that disentangles movement and mortality in space and time. . Ecol. Lett. 22::168089
    [Crossref] [Google Scholar]
  42. Frishkoff LO, Ke A, Martins IS, Olimpi EM, Karp DS. 2019.. Countryside biogeography: the controls of species distributions in human-dominated landscapes. . Curr. Landscape Ecol. Rep. 4::1530
    [Crossref] [Google Scholar]
  43. Gascon C, Lovejoy TE, Bierregaard RO, Malcolm JR, Stouffer PC, et al. 1999.. Matrix habitat and species richness in tropical forest remnants. . Biol. Conserv. 91::22329
    [Crossref] [Google Scholar]
  44. Gilbert SL, Sivy KJ, Pozzanghera CB, DuBour A, Overduijn K, et al. 2017.. Socioeconomic benefits of large carnivore recolonization through reduced wildlife-vehicle collisions. . Conserv. Lett. 10::43139
    [Crossref] [Google Scholar]
  45. Goodsell PJ, Connell SD. 2008.. Complexity in the relationship between matrix composition and inter-patch distance in fragmented habitats. . Mar. Biol. 154::11725
    [Crossref] [Google Scholar]
  46. Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, et al. 2015.. Habitat fragmentation and its lasting impact on Earth. . Sci. Adv. 1::e1500052
    [Crossref] [Google Scholar]
  47. Hagen M, Kissling WD, Rasmussen C, De Aguiar MAM, Brown LE, et al. 2012.. Biodiversity, species interactions and ecological networks in a fragmented world. . In Global Change in Multispecies Systems Part 1, ed. U Jacob, G Woodward , pp. 89210. Adv. Ecol. Res. 46 . London:: Academic
    [Google Scholar]
  48. Hall LS, Krausman PR, Morrison ML. 1997.. The habitat concept and a plea for standard terminology. . Wildl. Society Bull. 25::17382
    [Google Scholar]
  49. Hansen MC, Potapov PV, Pickens AH, Tyukavina A, Hernandez-Serna A, et al. 2022.. Global land use extent and dispersion within natural land cover using Landsat data. . Environ. Res. Lett. 17::034050
    [Crossref] [Google Scholar]
  50. Harmon-Threatt AN, Anderson NL. 2023.. Bee movement between natural fragments is rare despite differences in species, patch, and matrix variables. . Landscape Ecol. 38::251931
    [Crossref] [Google Scholar]
  51. Haynes KJ, Cronin JT. 2004.. Confounding of patch quality and matrix effects in herbivore movement studies. . Landscape Ecol. 19::11924
    [Crossref] [Google Scholar]
  52. Haynes KJ, Diekoetter T, Crist TO. 2007.. Resource complementation and the response of an insect herbivore to habitat area and fragmentation. . Oecologia 153::51120
    [Crossref] [Google Scholar]
  53. Hayward MW, Kerley GIH. 2009.. Fencing for conservation: restriction of evolutionary potential or a riposte to threatening processes?. Biol. Conserv. 142::113
    [Crossref] [Google Scholar]
  54. Heller NE, Zavaleta ES. 2009.. Biodiversity management in the face of climate change: a review of 22 years of recommendations. . Biol. Conserv. 142::1432
    [Crossref] [Google Scholar]
  55. Hodge I, Hauck J, Bonn A. 2015.. The alignment of agricultural and nature conservation policies in the European Union. . Conserv. Biol. 29::9961005
    [Crossref] [Google Scholar]
  56. Holt RD. 2009.. Bringing the Hutchinsonian niche into the 21st century: ecological and evolutionary perspectives. . PNAS 106::1965965
    [Crossref] [Google Scholar]
  57. Horton KG, Nilsson C, Van Doren BM, La Sorte FA, Dokter AM, Farnsworth A. 2019.. Bright lights in the big cities: migratory birds’ exposure to artificial light. . Front. Ecol. Environ. 17::20914
    [Crossref] [Google Scholar]
  58. Jacob S, Laurent E, Morel-Journel T, Schtickzelle N. 2020.. Fragmentation and the context-dependence of dispersal syndromes: matrix harshness modifies resident-disperser phenotypic differences in microcosms. . Oikos 129::15869
    [Crossref] [Google Scholar]
  59. Jakovac CC, Junqueira AB, Crouzeilles R, Peña-Claros M, Mesquita RCG, Bongers F. 2021.. The role of land-use history in driving successional pathways and its implications for the restoration of tropical forests. . Biol. Rev. 96::111434
    [Crossref] [Google Scholar]
  60. Jones GM, Brosi B, Evans JM, Gottlieb IGW, Loy XW, et al. 2022.. Conserving alpha and beta diversity in wood-production landscapes. . Conserv. Biol. 36::e13872
    [Crossref] [Google Scholar]
  61. Jules ES, Shahani P. 2003.. A broader ecological context to habitat fragmentation: why matrix habitat is more important than we thought. . J. Veg. Sci. 14::45964
    [Crossref] [Google Scholar]
  62. Kennedy CM, Marra PP. 2010.. Matrix mediates avian movements in tropical forested landscapes: inference from experimental translocations. . Biol. Conserv. 143::213645
    [Crossref] [Google Scholar]
  63. Kremen C, Merenlender AM. 2018.. Landscapes that work for biodiversity and people. . Science 362::eaau6020
    [Crossref] [Google Scholar]
  64. Kuefler D, Hudgens B, Haddad NM, Morris WF, Thurgate N. 2010.. The conflicting role of matrix habitats as conduits and barriers for dispersal. . Ecology 91::94450
    [Crossref] [Google Scholar]
  65. Kupfer JA, Malanson GP, Franklin SB. 2006.. Not seeing the ocean for the islands: the mediating influence of matrix-based processes on forest fragmentation effects. . Glob. Ecol. Biogeogr. 15::820
    [Crossref] [Google Scholar]
  66. Laurance WF, Lovejoy TE, Vasconcelos HL, Bruna EM, Didham RK, et al. 2002.. Ecosystem decay of Amazonian forest fragments: a 22-year investigation. . Conserv. Biol. 16::60518
    [Crossref] [Google Scholar]
  67. Legrand D, Cote J, Fronhofer EA, Holt RD, Ronce O, et al. 2017.. Eco-evolutionary dynamics in fragmented landscapes. . Ecography 40::925
    [Crossref] [Google Scholar]
  68. Leite MD, Boesing AL, Metzger JP, Prado PI. 2022.. Matrix quality determines the strength of habitat loss filtering on bird communities at the landscape scale. . J. Appl. Ecol. 59::2790802
    [Crossref] [Google Scholar]
  69. Lindenmayer DB, Franklin JF. 2002.. Conserving Biodiversity: A Comprehensive Multiscaled Approach. Washington, DC:: Island
    [Google Scholar]
  70. Lindenmayer DB, Wood JT, Cunningham RB, Crane M, Macgregor C, et al. 2009.. Experimental evidence of the effects of a changed matrix on conserving biodiversity within patches of native forest in an industrial plantation landscape. . Landscape Ecol. 24::1091103
    [Crossref] [Google Scholar]
  71. Littlefield CE, McRae BH, Michalak JL, Lawler JJ, Carroll C. 2017.. Connecting today's climates to future climate analogs to facilitate movement of species under climate change. . Conserv. Biol. 31::1397408
    [Crossref] [Google Scholar]
  72. Loreau M, Daufresne T, Gonzalez A, Gravel D, Guichard F, et al. 2013.. Unifying sources and sinks in ecology and Earth sciences. . Biol. Rev. 88::36579
    [Crossref] [Google Scholar]
  73. Lovejoy TE, Rankin JM, Bierregaard RO, Brown KS, Emmons LH, Van der Voort ME. 1984.. Ecosystem decay of Amazon forest remnants. . In Extinctions, ed. MH Nitecki , pp. 295325. Chicago:: Univ. Chicago Press
    [Google Scholar]
  74. Mackenzie CA, Ahabyona P. 2012.. Elephants in the garden: financial and social costs of crop raiding. . Ecol. Econ. 75::7282
    [Crossref] [Google Scholar]
  75. Manel S, Schwartz MK, Luikart G, Taberlet P. 2003.. Landscape genetics: combining landscape ecology and population genetics. . Trends Ecol. Evol. 18::18997
    [Crossref] [Google Scholar]
  76. Marcus J, Ha W, Barber RF, Novembre J. 2021.. Fast and flexible estimation of effective migration surfaces. . eLife 10::e61927
    [Crossref] [Google Scholar]
  77. Marques AT, Batalha H, Rodrigues S, Costa H, Pereira MJR, et al. 2014.. Understanding bird collisions at wind farms: an updated review on the causes and possible mitigation strategies. . Biol. Conserv. 179::4052
    [Crossref] [Google Scholar]
  78. Martin AE, Fahrig L. 2015.. Matrix quality and disturbance frequency drive evolution of species behavior at habitat boundaries. . Ecol. Evol. 5::S792800
    [Crossref] [Google Scholar]
  79. Matthews TJ. 2021.. On the biogeography of habitat islands: the importance of matrix effects, noncore species, and source-sink dynamics. . Q. Rev. Biol. 96::73104
    [Crossref] [Google Scholar]
  80. Mattila ALK, Duplouy A, Kirjokangas M, Lehtonen R, Rastas P, Hanski I. 2012.. High genetic load in an old isolated butterfly population. . PNAS 109::E2496505
    [Crossref] [Google Scholar]
  81. McRae BH. 2006.. Isolation by resistance. . Evolution 60::155161
    [Google Scholar]
  82. Mesquita RCG. 2000.. Management of advanced regeneration in secondary forests of the Brazilian Amazon. . Forest Ecol. Manag. 130::13140
    [Crossref] [Google Scholar]
  83. Mesquita RCG, Delamônica P, Laurance WF. 1999.. Effect of surrounding vegetation on edge-related tree mortality in Amazonian forest fragments. . Biol. Conserv. 91::12934
    [Crossref] [Google Scholar]
  84. Miles LS, Rivkin LR, Johnson MTJ, Munshi-South J, Verrelli BC. 2019.. Gene flow and genetic drift in urban environments. . Mol. Ecol. 28::413851
    [Crossref] [Google Scholar]
  85. Mills LS, Allendorf FW. 1996.. The one-migrant-per-generation rule in conservation and management. . Conserv. Biol. 10::150918
    [Crossref] [Google Scholar]
  86. Murphy HT, Lovett-Doust J. 2004.. Context and connectivity in plant metapopulations and landscape mosaics: Does the matrix matter?. Oikos 105::314
    [Crossref] [Google Scholar]
  87. Nagylaki T. 2015.. Dying on the way: the influence of migrational mortality on neutral models of spatial variation. . Theor. Popul. Biol. 99::6775
    [Crossref] [Google Scholar]
  88. Nakano Y, Senzaki M, Ishiyama N, Yamanaka S, Miura K, Nakamura F. 2018.. Noise pollution alters matrix permeability for dispersing anurans: differential effects among land covers. . Glob. Ecol. Conserv. 16::e00484
    [Google Scholar]
  89. Nowakowski AJ, Watling JI, Whitfield SM, Todd BD, Kurz DJ, Donnelly MA. 2017.. Tropical amphibians in shifting thermal landscapes under land-use and climate change. . Conserv. Biol. 31::96105
    [Crossref] [Google Scholar]
  90. Nowicki P, Vrabec V, Binzenhöfer B, Feil J, Zaksek B, et al. 2014.. Butterfly dispersal in inhospitable matrix: rare, risky, but long-distance. . Landscape Ecol. 29::40112
    [Crossref] [Google Scholar]
  91. Pereira HM, Daily GC, Roughgarden J. 2004.. A framework for assessing the relative vulnerability of species to land-use change. . Ecol. Appl. 14::73042
    [Crossref] [Google Scholar]
  92. Perfecto I, Vandermeer J. 2010.. The agroecological matrix as alternative to the land-sparing/agriculture intensification model. . PNAS 107::578691
    [Crossref] [Google Scholar]
  93. Potapov P, Hansen MC, Pickens A, Hernandez-Serna A, Tyukavina A, et al. 2022.. The global 2000–2020 land cover and land use change dataset derived from the Landsat archive: first results. . Front. Remote Sensing 3::856903
    [Crossref] [Google Scholar]
  94. Prevedello JA, Vieira MV. 2010.. Does the type of matrix matter? A quantitative review of the evidence. . Biodivers. Conserv. 19::120523
    [Crossref] [Google Scholar]
  95. Prugh LR, Hodges KE, Sinclair ARE, Brashares JS. 2008.. Effect of habitat area and isolation on fragmented animal populations. . PNAS 105::2077075
    [Crossref] [Google Scholar]
  96. Pywell RF, Heard MS, Bradbury RB, Hinsley S, Nowakowski M, et al. 2012.. Wildlife-friendly farming benefits rare birds, bees and plants. . Biol. Lett. 8::77275
    [Crossref] [Google Scholar]
  97. Ramirez-Delgado JP, Di Marco M, Watson JEM, Johnson CJ, Rondinini C, et al. 2022.. Matrix condition mediates the effects of habitat fragmentation on species extinction risk. . Nat. Commun. 13::595
    [Crossref] [Google Scholar]
  98. Rand TA, Tylianakis JM, Tscharntke T. 2006.. Spillover edge effects: the dispersal of agriculturally subsidized insect natural enemies into adjacent natural habitats. . Ecol. Lett. 9::60314
    [Crossref] [Google Scholar]
  99. Ricketts TH. 2001.. The matrix matters: effective isolation in fragmented landscapes. . Am. Nat. 158::8799
    [Crossref] [Google Scholar]
  100. Ries L, Fletcher RJ, Battin J, Sisk TD. 2004.. Ecological responses to habitat edges: mechanisms, models, and variability explained. . Annu. Rev. Ecol. Evol. Syst. 35::491522
    [Crossref] [Google Scholar]
  101. Ries L, Murphy SM, Wimp GM, Fletcher RJ Jr. 2017.. Closing persistent gaps in knowledge about edge ecology. . Curr. Landscape Ecol. Rep. 2::3041
    [Crossref] [Google Scholar]
  102. Robinson SK, Thompson FR, Donovan TM, Whitehead DR, Faaborg J. 1995.. Regional forest fragmentation and the nesting success of migratory birds. . Science 267::198790
    [Crossref] [Google Scholar]
  103. Russell RE, Swihart RK, Craig BA. 2007.. The effects of matrix structure on movement decisions of meadow voles (Microtus pennsylvanicus). . J. Mammal. 88::57379
    [Crossref] [Google Scholar]
  104. Rybicki J, Abrego N, Ovaskainen O. 2020.. Habitat fragmentation and species diversity in competitive communities. . Ecol. Lett. 23::50617
    [Crossref] [Google Scholar]
  105. Schlaepfer MA, Runge MC, Sherman PW. 2002.. Ecological and evolutionary traps. . Trends Ecol. Evol. 17::47480
    [Crossref] [Google Scholar]
  106. Sisk TD, Haddad NM, Ehrlich PR. 1997.. Bird assemblages in patchy woodlands: modeling the effects of edge and matrix habitats. . Ecol. Appl. 7::117080
    [Crossref] [Google Scholar]
  107. Stouffer PC, Bierregaard RO, Strong C, Lovejoy TE. 2006.. Long-term landscape change and bird abundance in Amazonian rainforest fragments. . Conserv. Biol. 20::121223
    [Crossref] [Google Scholar]
  108. Sweaney N, Lindenmayer DB, Driscoll DA. 2022.. Movement across woodland edges suggests plantations and farmland are barriers to dispersal. . Landscape Ecol. 37::17589
    [Crossref] [Google Scholar]
  109. Tabarelli M, Gascon C. 2005.. Lessons from fragmentation research: improving management and policy guidelines for biodiversity conservation. . Conserv. Biol. 19::73439
    [Crossref] [Google Scholar]
  110. Tourani M, Sollmann R, Kays R, Ahumada J, Fegraus E, Karp DS. 2023.. Maximum temperatures determine the habitat affiliations of North American mammals. . PNAS 120::e2304411120
    [Crossref] [Google Scholar]
  111. Turner MG, Gardner RH. 2015.. Landscape Ecology in Theory and Practice. New York:: Springer. , 2nd ed..
    [Google Scholar]
  112. Vandergast AG, Bohonak AJ, Weissman DB, Fisher RN. 2007.. Understanding the genetic effects of recent habitat fragmentation in the context of evolutionary history: phylogeography and landscape genetics of a southern California endemic Jerusalem cricket (Orthoptera: Stenopelmatidae: Stenopelmatus). . Mol. Ecol. 16::97792
    [Crossref] [Google Scholar]
  113. Vandermeer J, Carvajal R. 2001.. Metapopulation dynamics and the quality of the matrix. . Am. Nat. 158::21120
    [Crossref] [Google Scholar]
  114. Vasudev D, Fletcher RJ Jr. 2016.. Mate choice interacts with movement limitations to influence effective dispersal. . Ecol. Model. 327::6573
    [Crossref] [Google Scholar]
  115. Vasudev D, Fletcher RJ Jr., Goswami VR, Krishnadas M. 2015.. From dispersal constraints to landscape connectivity: lessons from species distribution modeling. . Ecography 38::96778
    [Crossref] [Google Scholar]
  116. Watling JI, Nowakowski AJ, Donnelly MA, Orrock JL. 2011.. Meta-analysis reveals the importance of matrix composition for animals in fragmented habitat. . Glob. Ecol. Biogeogr. 20::20917
    [Crossref] [Google Scholar]
  117. Wiegand T, Revilla E, Moloney KA. 2005.. Effects of habitat loss and fragmentation on population dynamics. . Conserv. Biol. 19::10821
    [Crossref] [Google Scholar]
  118. Winandy L, Cote J, Di Gesu L, Pellerin F, Trochet A, Legrand D. 2019.. Local predation risk and matrix permeability interact to shape movement strategy. . Oikos 128::140212
    [Crossref] [Google Scholar]
  119. Yamaura Y, Fletcher RJ, Lade SJ, Higa M, Lindenmayer D. 2022.. From nature reserve to mosaic management: Improving matrix survival, not permeability, benefits regional populations under habitat loss and fragmentation. . J. Appl. Ecol. 59::147283
    [Crossref] [Google Scholar]
  120. Zajitschek SRK, Zajitschek F, Clobert J. 2012.. The importance of habitat resistance for movement decisions in the common lizard, Lacerta vivipara. . BMC Ecol. 12::13
    [Crossref] [Google Scholar]
  121. Zeller KA, Lewsion R, Fletcher RJ, Tulbure MG, Jennings MK. 2020.. Understanding the importance of dynamic landscape connectivity. . Land 9::303
    [Crossref] [Google Scholar]
  122. Zeller KA, McGarigal K, Whiteley AR. 2012.. Estimating landscape resistance to movement: a review. . Landscape Ecol. 27::77797
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-102722-025653
Loading
/content/journals/10.1146/annurev-ecolsys-102722-025653
Loading

Data & Media loading...

Supplemental Materials

Supplemental Materials

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error