1932

Abstract

Despite two centuries of research, the mechanisms underlying the formation of species’ elevational range limits remain poorly understood. The climatic variability hypothesis highlights the role of climatic conditions in shaping species’ thermal tolerance and distribution ranges, while the species interactions–abiotic stress hypothesis underscores the relative importance of biotic factors and abiotic stress along environmental gradients. We emphasize Darwin's perspective on the ubiquity of interspecific competition across climatic gradients and the importance of understanding how climate modulates biotic interactions to shape species distributions. Niche theory provides a comprehensive framework, combined with empirical research, to explore how environmental gradients influence species traits, leading to context-dependent species interactions that constrain distributions. In particular, the application of the concept of environmentally weighted performance can further elucidate these complex ecological mechanisms. Future research should integrate multiple approaches, including field and laboratory manipulative experiments, theoretical modeling, and interdisciplinary collaboration, to improve our understanding of species distributions in mountain regions and to inform biodiversity conservation strategies in the face of rapid environmental change.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-102722-123834
2024-11-04
2025-02-17
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/55/1/annurev-ecolsys-102722-123834.html?itemId=/content/journals/10.1146/annurev-ecolsys-102722-123834&mimeType=html&fmt=ahah

Literature Cited

  1. Addo-Bediako A, Chown SL, Gaston KJ. 2000.. Thermal tolerance, climatic variability, and latitude. . Proc. R. Soc. B 267::73945
    [Crossref] [Google Scholar]
  2. Aguirre-Liguori JA, Tenaillon MI, Vázquez-Lobo A, Gaut BS, Jaramillo-Correa JP, et al. 2017.. Connecting genomic patterns of local adaptation and niche suitability in teosintes. . Mol. Ecol. 26:(16):422640
    [Crossref] [Google Scholar]
  3. Aikens ML, Roach DA. 2014.. Population dynamics in central and edge populations of a narrowly endemic plant. . Ecology 95:(7):185060
    [Crossref] [Google Scholar]
  4. Alexander JM, Diez JM, Hart SP, Levine JM. 2016.. When climate reshuffles competitors: a call for experimental macroecology. . Trends Ecol. Evol. 31::83141
    [Crossref] [Google Scholar]
  5. Alexander JM, Diez JM, Levine JM. 2015.. Novel competitors shape species’ responses to climate change. . Nature 525:(7570):51518
    [Crossref] [Google Scholar]
  6. Altshuler DL. 2006.. Flight performance and competitive displacement of hummingbirds across elevational gradients. . Am. Nat. 167:(2):21629
    [Crossref] [Google Scholar]
  7. Amarasekare P, Savage V. 2012.. A framework for elucidating the temperature dependence of fitness. . Am. Nat. 179::17891
    [Crossref] [Google Scholar]
  8. Amundrud SL, Srivastava DS. 2020.. Thermal tolerances and species interactions determine the elevational distributions of insects. . Glob. Ecol. Biogeogr. 29:(8):131527
    [Crossref] [Google Scholar]
  9. Anderson RP. 2017.. When and how should biotic interactions be considered in models of species niches and distributions?. J. Biogeogr. 44:(1):817
    [Crossref] [Google Scholar]
  10. Anderson RP, Martínez-Meyer E, Nakamura M, Araújo MB, Peterson AT, et al. 2011.. Ecological Niches and Geographic Distributions. Monogr. Popul. Biol. 49 . Princeton, NJ:: Princeton Univ. Press
    [Google Scholar]
  11. Angert AL. 2009.. The niche, limits to species’ distributions, and spatiotemporal variation in demography across the elevation ranges of two monkeyflowers. . PNAS 106:(Suppl. 2):1969398
    [Crossref] [Google Scholar]
  12. Angert AL, Bontrager MG, Ågren J. 2020.. What do we really know about adaptation at range edges?. Annu. Rev. Ecol. Evol. Syst. 51::34161
    [Crossref] [Google Scholar]
  13. Angilletta MJ Jr., Niewiarowski PH, Navas CA. 2002.. The evolution of thermal physiology in ectotherms. . J. Therm. Biol. 27::24968
    [Crossref] [Google Scholar]
  14. Angilletta MJ Jr. 2001.. Variation in metabolic rate between populations of a geographically widespread lizard. . Physiol. Biochem. Zool. 74:(1):1121
    [Crossref] [Google Scholar]
  15. Angilletta MJ Jr. 2009.. Thermal Adaptation: A Theoretical and Empirical Synthesis. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  16. Antonelli A, Kissling WD, Flantua SGA, Bermúdez MA, Mulch A, et al. 2018.. Geological and climatic influences on mountain biodiversity. . Nat. Geosci. 11::71825
    [Crossref] [Google Scholar]
  17. Araújo MB, Guisan A. 2006.. Five (or so) challenges for species distribution modelling. . J. Biogeogr. 33:(10):167788
    [Crossref] [Google Scholar]
  18. Arribas P, Velasco J, Abellán P, Sánchez-Fernández D, Andújar C, et al. 2012.. Dispersal ability rather than ecological tolerance drives differences in range size between lentic and lotic water beetles (Coleoptera: Hydrophilidae). . J. Biogeogr. 39:(5):98494
    [Crossref] [Google Scholar]
  19. Bachmann JC, Jansen van Rensburg A, Cortazar-Chinarro M, Laurila A, Van Buskirk J. 2020.. Gene flow limits adaptation along steep environmental gradients. . Am. Nat. 195:(3):E6786
    [Crossref] [Google Scholar]
  20. Bertness MD, Callaway R. 1994.. Positive interactions in communities. . Trends Ecol. Evol. 9:(5):19193
    [Crossref] [Google Scholar]
  21. Blois JL, Zarnetske PL, Fitzpatrick MC, Finnegan S. 2013.. Climate change and the past, present, and future of biotic interactions. . Science 341:(6145):499504
    [Crossref] [Google Scholar]
  22. Bozinovic F. 2011.. Physiological correlates of geographic range in animals. . Annu. Rev. Ecol. Evol. Syst. 42::15579
    [Crossref] [Google Scholar]
  23. Brown JH, Stevens GC, Kaufman DM. 1996.. The geographic range: size, shape, boundaries, and internal structure. . Annu. Rev. Ecol. Syst. 27::597623
    [Crossref] [Google Scholar]
  24. Büchi L, Vuilleumier S. 2014.. Coexistence of specialist and generalist species is shaped by dispersal and environmental factors. . Am. Nat. 183:(5):61224
    [Crossref] [Google Scholar]
  25. Buckley LB. 2013.. Get real: putting models of climate change and species interactions in practice. . Ann. N. Y. Acad. Sci. 1297:(1):12638
    [Crossref] [Google Scholar]
  26. Buckley LB, Kingsolver JG. 2012.. Functional and phylogenetic approaches to forecasting species’ responses to climate change. . Annu. Rev. Ecol. Evol. Syst. 43::20526
    [Crossref] [Google Scholar]
  27. Bujan J, Roeder KA, de Beurs K, Weiser MD, Kaspari M. 2020.. Thermal diversity of North American ant communities: Cold tolerance but not heat tolerance tracks ecosystem temperature. . Glob. Ecol. Biogeogr. 29:(9):148694
    [Crossref] [Google Scholar]
  28. Cahill AE, Aiello-Lammens ME, Fisher-Reid MC, Hua X, Karanewsky CJ, et al. 2014.. Causes of warm-edge range limits: systematic review, proximate factors and implications for climate change. . J. Biogeogr. 41:(3):42942
    [Crossref] [Google Scholar]
  29. Callaway RM, Brooker RW, Choler P, Kikvidze Z, Lortie CJ, et al. 2002.. Positive interactions among alpine plants increase with stress. . Nature 417:(6891):84448
    [Crossref] [Google Scholar]
  30. Calosi P, Bilton DT, Spicer JI, Votier SC, Atfield A. 2010.. What determines a species’ geographical range? Thermal biology and latitudinal range size relationships in European diving beetles (Coleoptera: Dytiscidae). . J. Anim. Ecol. 79:(1):194204
    [Crossref] [Google Scholar]
  31. Case TJ, Gilpin ME. 1974.. Interference competition and niche theory. . PNAS 71:(8):307377
    [Crossref] [Google Scholar]
  32. Chamberlain SA, Bronstein JL, Rudgers JA. 2014.. How context dependent are species interactions?. Ecol. Lett. 17:(7):88190
    [Crossref] [Google Scholar]
  33. Chan SF, Rubenstein DR, Chen IC, Fan YM, Tsai HY, et al. 2023.. Higher temperature variability in deforested mountain regions impacts the competitive advantage of nocturnal species. . Proc. R. Soc. B 290:(1999):20230529
    [Crossref] [Google Scholar]
  34. Chan SF, Shih WK, Chang AY, Shen SF, Chen IC. 2019.. Contrasting forms of competition set elevational range limits of species. . Ecol. Lett. 22::166879
    [Crossref] [Google Scholar]
  35. Chan WP, Chen IC, Colwell RK, Liu WC, Huang CY, Shen SF. 2016.. Seasonal and daily climate variation have opposite effects on species elevational range size. . Science 351:(6280):143739
    [Crossref] [Google Scholar]
  36. Chase JM. 2011.. Ecological niche theory. . In The Theory of Ecology, ed. SM Scheiner, MR Willig , pp. 93107. Chicago:: Univ. Chicago Press
    [Google Scholar]
  37. Chase JM, Leibold MA. 2003.. Ecological Niches: Linking Classical and Contemporary Approaches. Chicago:: Univ. Chicago Press
    [Google Scholar]
  38. Chesson P. 2000.. Mechanisms of maintenance of species diversity. . Annu. Rev. Ecol. Syst. 31::34366
    [Crossref] [Google Scholar]
  39. Christin S, Hervet É, Lecomte N. 2019.. Applications for deep learning in ecology. . Methods Ecol. Evol. 10:(10):163244
    [Crossref] [Google Scholar]
  40. Clusella-Trullas S, Blackburn TM, Chown SL. 2011.. Climatic predictors of temperature performance curve parameters in ectotherms imply complex responses to climate change. . Am. Nat. 177:(6):73851
    [Crossref] [Google Scholar]
  41. Colwell RK, Fuentes ER. 1975.. Experimental studies of the niche. . Annu. Rev. Ecol. Syst. 6::281310
    [Crossref] [Google Scholar]
  42. Colwell RK, Rangel TF. 2009.. Hutchinson's duality: the once and future niche. . PNAS 106:(Suppl. 2):1965158
    [Crossref] [Google Scholar]
  43. Compton TJ, Rijkenberg MJA, Drent J, Piersma T. 2007.. Thermal tolerance ranges and climate variability: a comparison between bivalves from differing climates. . J. Exp. Mar. Biol. Ecol. 352:(1):20011
    [Crossref] [Google Scholar]
  44. Darwin C. 1859.. On the Origin of Species. London:: John Murray
    [Google Scholar]
  45. Dillon ME, Woods HA, Wang G, Fey SB, Vasseur DA, et al. 2016.. Life in the frequency domain: the biological impacts of changes in climate variability at multiple time scales. . Integr. Comp. Biol. 56:(1):1430
    [Crossref] [Google Scholar]
  46. Dyderski MK, Paź S, Frelich LE, Jagodziński AM. 2018.. How much does climate change threaten European forest tree species distributions?. Glob. Change Biol. 24:(3):115063
    [Crossref] [Google Scholar]
  47. Early R, Keith SA. 2019.. Geographically variable biotic interactions and implications for species ranges. . Glob. Ecol. Biogeogr. 28:(1):4253
    [Crossref] [Google Scholar]
  48. Evans MEK, Merow C, Record S, McMahon SM, Enquist BJ. 2016.. Towards process-based range modeling of many species. . Trends Ecol. Evol. 31:(11):86071
    [Crossref] [Google Scholar]
  49. Fraisl D, Hager G, Bedessem B, Gold M, Hsing P-Y, et al. 2022.. Citizen science in environmental and ecological sciences. . Nat. Rev. Methods Primers 2:(1):64
    [Crossref] [Google Scholar]
  50. Freeman BG, Strimas-Mackey M, Miller ET. 2022.. Interspecific competition limits bird species’ ranges in tropical mountains. . Science 377:(6604):41620
    [Crossref] [Google Scholar]
  51. Gadgil M. 1971.. Dispersal: population consequences and evolution. . Ecology 52:(2):25361
    [Crossref] [Google Scholar]
  52. Gaston KJ. 2009.. Geographic range limits: achieving synthesis. . Proc. R. Soc. B 276::1395406
    [Crossref] [Google Scholar]
  53. Gaston KJ, Chown SL. 1999.. Why Rapoport's rule does not generalise. . Oikos 84:(2):30912
    [Crossref] [Google Scholar]
  54. Gaston KJ, Chown SL, Calosi P, Bernardo J, Bilton DT, et al. 2009.. Macrophysiology: a conceptual reunification. . Am. Nat. 174:(5):595612
    [Crossref] [Google Scholar]
  55. Ghalambor CK. 2006.. Are mountain passes higher in the tropics? Janzen's hypothesis revisited. . Integr. Comp. Biol. 46:(1):517
    [Crossref] [Google Scholar]
  56. Gilchrist GW. 1995.. Specialists and generalists in changing environments. I. Fitness landscapes of thermal sensitivity. . Am. Nat. 146:(2):25270
    [Crossref] [Google Scholar]
  57. Godsoe W, Jankowski J, Holt RD, Gravel D. 2017.. Integrating biogeography with contemporary niche theory. . Trends Ecol. Evol. 32:(7):48899
    [Crossref] [Google Scholar]
  58. Gómez JM, González-Megías A, Lorite J, Abdelaziz M, Perfectti F. 2015.. The silent extinction: climate change and the potential hybridization-mediated extinction of endemic high-mountain plants. . Biodivers. Conserv. 24:(8):184357
    [Crossref] [Google Scholar]
  59. Graham CH, Carnaval AC, Cadena CD, Zamudio KR, Roberts TE, et al. 2014.. The origin and maintenance of montane diversity: integrating evolutionary and ecological processes. . Ecography 37:(8):71119
    [Crossref] [Google Scholar]
  60. Grinnell J. 1917.. The niche-relationships of the California Thrasher. . Auk 34:(4):42733
    [Crossref] [Google Scholar]
  61. Haldane JBS. 1956.. The relation between density regulation and natural selection. . Proc. R. Soc. B 145:(920):3068
    [Google Scholar]
  62. Hargreaves AL, Eckert CG. 2019.. Local adaptation primes cold-edge populations for range expansion but not warming-induced range shifts. . Ecol. Lett. 22:(1):7888
    [Crossref] [Google Scholar]
  63. Hargreaves AL, Samis KE, Eckert CG. 2014.. Are species’ range limits simply niche limits writ large? A review of transplant experiments beyond the range. . Am. Nat. 183:(2):15773
    [Crossref] [Google Scholar]
  64. Hillebrand H. 2004.. On the generality of the latitudinal diversity gradient. . Am. Nat. 163:(2):192211
    [Crossref] [Google Scholar]
  65. Holt RD. 2009.. Bringing the Hutchinsonian niche into the 21st century: ecological and evolutionary perspectives. . PNAS 106:(Suppl. 2):1965965
    [Crossref] [Google Scholar]
  66. Huey RB, Berrigan D. 2001.. Temperature, demography, and ectotherm fitness. . Am. Nat. 158::20410
    [Crossref] [Google Scholar]
  67. Huey RB, Kingsolver JG. 1989.. Evolution of thermal sensitivity of ectotherm performance. . Trends Ecol. Evol. 4::13135
    [Crossref] [Google Scholar]
  68. Huey RB, Stevenson RD. 1979.. Integrating thermal physiology and ecology of ectotherms: discussion of approaches. . Am. Zool. 19::35766
    [Crossref] [Google Scholar]
  69. Hutchinson GE. 1957.. Concluding remarks. . Cold Spring Harb. Symp. Quant. Biol. 22::41527
    [Crossref] [Google Scholar]
  70. Huxley PJ, Murray KA, Pawar S, Cator LJ. 2022.. Competition and resource depletion shape the thermal response of population fitness in Aedes aegypti. . Commun. Biol. 5:(1):66
    [Crossref] [Google Scholar]
  71. Janzen DH. 1967.. Why mountain passes are higher in the tropics. . Am. Nat. 101:(919):23349
    [Crossref] [Google Scholar]
  72. Kaspari M, Clay NA, Lucas J, Yanoviak SP, Kay A. 2015.. Thermal adaptation generates a diversity of thermal limits in a rainforest ant community. . Glob. Change Biol. 21:(3):1092102
    [Crossref] [Google Scholar]
  73. Kearney M. 2006.. Habitat, environment and niche: What are we modelling?. Oikos 115:(1):18691
    [Crossref] [Google Scholar]
  74. Kefford BJ, Ghalambor CK, Dewenter B, Poff NL, Hughes J, et al. 2022.. Acute, diel, and annual temperature variability and the thermal biology of ectotherms. . Glob. Change Biol. 28::687288
    [Crossref] [Google Scholar]
  75. Kellermann V, Overgaard J, Hoffmann AA, Fljøgaard C, Svenning JC, Loeschcke V. 2012.. Upper thermal limits of Drosophila are linked to species distributions and strongly constrained phylogenetically. . PNAS 109:(40):1622833
    [Crossref] [Google Scholar]
  76. Kelling S, Johnston A, Bonn A, Fink D, Ruiz-Gutierrez V, et al. 2019.. Using semistructured surveys to improve citizen science data for monitoring biodiversity. . Bioscience 69:(3):17079
    [Crossref] [Google Scholar]
  77. Khaliq I, Böhning-Gaese K, Prinzinger R, Pfenninger M, Hof C. 2017.. The influence of thermal tolerances on geographical ranges of endotherms. . Glob. Ecol. Biogeogr. 26:(6):65068
    [Crossref] [Google Scholar]
  78. Kirkpatrick M, Barton NH. 1997.. Evolution of a species’ range. . Am. Nat. 150:(1):123
    [Crossref] [Google Scholar]
  79. Kneitel JM, Chase JM. 2004.. Trade-offs in community ecology: Linking spatial scales and species coexistence. . Ecol. Lett. 7:(1):6980
    [Crossref] [Google Scholar]
  80. Körner C, Jetz W, Paulsen J, Payne D, Rudmann-Maurer K, Spehn EM. 2017.. A global inventory of mountains for bio-geographical applications. . Alp. Bot. 127:(1):115
    [Crossref] [Google Scholar]
  81. Kraft NJB, Godoy O, Levine JM. 2015.. Plant functional traits and the multidimensional nature of species coexistence. . PNAS 112:(3):797802
    [Crossref] [Google Scholar]
  82. Lany NK, Zarnetske PL, Gouhier TC, Menge BA. 2017.. Incorporating context dependency of species interactions in species distribution models. . Integr. Comp. Biol. 57:(1):15967
    [Crossref] [Google Scholar]
  83. Lee-Yaw JA, Kharouba HM, Bontrager M, Mahony C, Csergo AM, et al. 2016.. A synthesis of transplant experiments and ecological niche models suggests that range limits are often niche limits. . Ecol. Lett. 19:(6):71022
    [Crossref] [Google Scholar]
  84. Liu M, Chan S-F, Rubenstein DR, Sun S-J, Chen B-F, Shen S-F. 2020.. Ecological transitions in grouping benefits explain the paradox of environmental quality and sociality. . Am. Nat. 195:(5):81832
    [Crossref] [Google Scholar]
  85. Louthan AM, Doak DF, Angert AL. 2015.. Where and when do species interactions set range limits?. Trends Ecol. Evol. 30:(12):78092
    [Crossref] [Google Scholar]
  86. Lynn JS, Kazenel MR, Kivlin SN, Rudgers JA. 2019.. Context-dependent biotic interactions control plant abundance across altitudinal environmental gradients. . Ecography 42:(9):160012
    [Crossref] [Google Scholar]
  87. Lynn JS, Miller TEX, Rudgers JA. 2021.. Mammalian herbivores restrict the altitudinal range limits of alpine plants. . Ecol. Lett. 24:(9):193042
    [Crossref] [Google Scholar]
  88. Lyu S, Alexander JM. 2022.. Competition contributes to both warm and cool range edges. . Nat. Commun. 13:(1):2502
    [Crossref] [Google Scholar]
  89. Lyu S, Alexander JM. 2023.. Compensatory responses of vital rates attenuate impacts of competition on population growth and promote coexistence. . Ecol. Lett. 26:(3):43747
    [Crossref] [Google Scholar]
  90. Mandeville CP, Finstad AG, Kålås JA, Stokke BG, Øien IJ, Nilsen EB. 2024.. Interspecific competition impacts the occupancy and range limits of two ptarmigan species along the elevation gradient in Norway. . Wildl. Biol. https://doi.org/10.1002/wlb3.01197
    [Google Scholar]
  91. Maron JL, Baer KC, Angert AL. 2014.. Disentangling the drivers of context-dependent plant–animal interactions. . J. Ecol. 102:(6):148596
    [Crossref] [Google Scholar]
  92. Maurer BA. 1984.. Interference and exploitation in bird communities. . Wilson Ornithol. Soc. 96:(3):38095
    [Google Scholar]
  93. Mauro AA, Shah AA, Martin PR, Ghalambor CK. 2022.. An integrative perspective on the mechanistic basis of context-dependent species interactions. . Integr. Comp. Biol. 62:(2):16478
    [Crossref] [Google Scholar]
  94. Mayor JR, Sanders NJ, Classen AT, Bardgett RD, Clément JC, et al. 2017.. Elevation alters ecosystem properties across temperate treelines globally. . Nature 542:(7639):9195
    [Crossref] [Google Scholar]
  95. McCain CM. 2009.. Vertebrate range sizes indicate that mountains may be “higher” in the tropics. . Ecol. Lett. 12:(6):55060
    [Crossref] [Google Scholar]
  96. Merckx VSFT, Hendriks KP, Beentjes KK, Mennes CB, Becking LE, et al. 2015.. Evolution of endemism on a young tropical mountain. . Nature 524:(7565):34750
    [Crossref] [Google Scholar]
  97. Meszéna G, Gyllenberg M, Pásztor L, Metz JAJ. 2006.. Competitive exclusion and limiting similarity: a unified theory. . Theor. Popul. Biol. 69:(1):6887
    [Crossref] [Google Scholar]
  98. Morueta-Holme N, Engemann K, Sandoval-Acuña P, Jonas JD, Segnitz RM, Svenning JC. 2015.. Strong upslope shifts in Chimborazo's vegetation over two centuries since Humboldt. . PNAS 112:(41):1274145
    [Crossref] [Google Scholar]
  99. Nascimento G, Câmara T, Arnan X. 2022.. Critical thermal limits in ants and their implications under climate change. . Biol. Rev. 97:(4):1287305
    [Crossref] [Google Scholar]
  100. Ockendon N, Baker DJ, Carr JA, White EC, Almond REA, et al. 2014.. Mechanisms underpinning climatic impacts on natural populations: altered species interactions are more important than direct effects. . Glob. Change Biol. 20:(7):222129
    [Crossref] [Google Scholar]
  101. Paine RT. 2010.. Macroecology: Does it ignore or can it encourage further ecological syntheses based on spatially local experimental manipulations?. Am. Nat. 176::38593
    [Crossref] [Google Scholar]
  102. Paquette A, Hargreaves AL. 2021.. Biotic interactions are more often important at species’ warm versus cool range edges. . Ecol. Lett. 24:(11):242738
    [Crossref] [Google Scholar]
  103. Payne D, Spehn EM, Snethlage M, Fischer M. 2017.. Opportunities for research on mountain biodiversity under global change. . Curr. Opin. Environ. Sustain. 29::4047
    [Crossref] [Google Scholar]
  104. Perrigo A, Hoorn C, Antonelli A. 2020.. Why mountains matter for biodiversity. . J. Biogeogr. 47:(2):31525
    [Crossref] [Google Scholar]
  105. Pintanel P, Tejedo M, Merino-Viteri A, Almeida-Reinoso F, Salinas-Ivanenko S, et al. 2022.. Elevational and local climate variability predicts thermal breadth of mountain tropical tadpoles. . Ecography 2022:(5):e05906
    [Crossref] [Google Scholar]
  106. Poethke HJ, Hovestadt T. 2002.. Evolution of density- and patch-size-dependent dispersal rates. . Proc. R. Soc. B 269:(1491):63745
    [Crossref] [Google Scholar]
  107. Polato NR, Gill BA, Shah AA, Gray MM, Casner KL, et al. 2018.. Narrow thermal tolerance and low dispersal drive higher speciation in tropical mountains. . PNAS 115:(49):1247176
    [Crossref] [Google Scholar]
  108. Pulliam HR. 2000.. On the relationship between niche and distribution. . Ecol. Lett. 3:(4):34961
    [Crossref] [Google Scholar]
  109. Rahbek C, Borregaard MK, Colwell RK, Dalsgaard B, Holt BG, et al. 2019.. Humboldt's enigma: What causes global patterns of mountain biodiversity?. Science 365:(6458):110813
    [Crossref] [Google Scholar]
  110. Rangel TF, Edwards NR, Holden PB, Diniz-Filho JAF, Gosling WD, et al. 2018.. Modeling the ecology and evolution of biodiversity: biogeographical cradles, museums, and graves. . Science 361:(6399):eaar5452
    [Crossref] [Google Scholar]
  111. Roeder KA, Roeder DV, Bujan J. 2021.. Ant thermal tolerance: a review of methods, hypotheses, and sources of variation. . Ann. Entomol. Soc. Am. 114::45969
    [Crossref] [Google Scholar]
  112. Roland J, Keyghobadi N, Fownes S. 2000.. Alpine Parnassius butterfly dispersal: effects of landscape and population size. . Ecology 81:(6):164253
    [Crossref] [Google Scholar]
  113. Roslin T, Hardwick B, Novotny V, Petry WK, Andrew NR, et al. 2017.. Higher predation risk for insect prey at low latitudes and elevations. . Science 356:(6339):74244
    [Crossref] [Google Scholar]
  114. Rueda-Uribe C, Herrera-Alsina L, Lancaster LT, Capellini I, Layton KKS, Travis JMJ. 2024.. Citizen science data reveal altitudinal movement and seasonal ecosystem use by hummingbirds in the Andes Mountains. . Ecography 2024:(3):e06735
    [Crossref] [Google Scholar]
  115. Schemske DW, Mittelbach GG. 2017.. “ Latitudinal gradients in species diversity”: reflections on Pianka's 1966 article and a look forward. . Am. Nat. 189:(6):599603
    [Crossref] [Google Scholar]
  116. Sexton JP, Hufford MB, Bateman AC, Lowry DB, Meimberg H, et al. 2016.. Climate structures genetic variation across a species’ elevation range: a test of range limits hypotheses. . Mol. Ecol. 25:(4):91128
    [Crossref] [Google Scholar]
  117. Sexton JP, McIntyre PJ, Angert AL, Rice KJ. 2009.. Evolution and ecology of species range limits. . Annu. Rev. Ecol. Evol. Syst. 40::41536
    [Crossref] [Google Scholar]
  118. Sexton JP, Strauss SY, Rice KJ. 2011.. Gene flow increases fitness at the warm edge of a species’ range. . PNAS 108:(28):117049
    [Crossref] [Google Scholar]
  119. Shah AA, Gill BA, Encalada AC, Flecker AS, Funk WC, et al. 2017.. Climate variability predicts thermal limits of aquatic insects across elevation and latitude. . Funct. Ecol. 31:(11):211827
    [Crossref] [Google Scholar]
  120. Sheldon KS, Huey RB, Kaspari M, Sanders NJ. 2018.. Fifty years of mountain passes: a perspective on Dan Janzen's classic article. . Am. Nat. 191:(5):55365
    [Crossref] [Google Scholar]
  121. Sheldon KS, Tewksbury JJ. 2014.. The impact of seasonality in temperature on thermal tolerance and elevational range size. . Ecology 95:(8):213443
    [Crossref] [Google Scholar]
  122. Sinclair B, Marshall K, Sewell M, Levesque D, Willett C, et al. 2016.. Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures?. Ecol. Lett. 19:(11):137285
    [Crossref] [Google Scholar]
  123. Silvertown J. 2004.. Plant coexistence and the niche. . Trends Ecol. Evol. 19:(11):60511
    [Crossref] [Google Scholar]
  124. Soberón J. 2007.. Grinnellian and Eltonian niches and geographic distributions of species. . Ecol. Lett. 10:(12):111523
    [Crossref] [Google Scholar]
  125. Soberón J, Arroyo-Peña B. 2017.. Are fundamental niches larger than the realized? Testing a 50-year-old prediction by Hutchinson. . PLOS ONE 12:(4):e0175138
    [Crossref] [Google Scholar]
  126. Song C, Von Ahn S, Rohr RP, Saavedra S. 2020.. Towards a probabilistic understanding about the context-dependency of species interactions. . Trends Ecol. Evol. 35:(5):38496
    [Crossref] [Google Scholar]
  127. Srinivasan U, Elsen PR, Tingley MW, Wilcove DS. 2018.. Temperature and competition interact to structure Himalayan bird communities. . Proc. R. Soc. B 285:(1874):20172593
    [Crossref] [Google Scholar]
  128. Stevens GC. 1989.. The latitudinal gradient in geographical range: how so many species coexist in the tropics. . Am. Nat. 133:(2):24056
    [Crossref] [Google Scholar]
  129. Stevens GC. 1992.. The elevational gradient in altitudinal range: an extension of Rapoport's latitudinal rule to altitude. . Am. Nat. 140:(6):893911
    [Crossref] [Google Scholar]
  130. Sun S-J, Rubenstein DR, Chen B-F, Chan S-F, Liu J-N, et al. 2014.. Climate-mediated cooperation promotes niche expansion in burying beetles. . eLife 3::e02440
    [Crossref] [Google Scholar]
  131. Sunday JM, Bates AE, Dulvy NK. 2011.. Global analysis of thermal tolerance and latitude in ectotherms. . Proc. R. Soc. B 278:(1713):182330
    [Crossref] [Google Scholar]
  132. Sunday JM, Bates AE, Kearney MR, Colwell RK, Dulvy NK, Longino JT, et al. 2014.. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. . PNAS 111::561015
    [Crossref] [Google Scholar]
  133. Taniguchi Y, Nakano S. 2000.. Condition-specific competition: implications for the altitudinal distribution of stream fishes. . Ecology 81:(7):202739
    [Crossref] [Google Scholar]
  134. Tsai HY, Rubenstein DR, Chen BF, Liu M, Chan SF, et al. 2020a.. Antagonistic effects of intraspecific cooperation and interspecific competition on thermal performance. . eLife 9::e57022
    [Crossref] [Google Scholar]
  135. Tsai HY, Rubenstein DR, Fan YM, Yuan TN, Chen BF, et al. 2020b.. Locally-adapted reproductive photoperiodism determines population vulnerability to climate change in burying beetles. . Nat. Commun. 11:(1):1398
    [Crossref] [Google Scholar]
  136. Tsai P, Ko C, Chia SY, Lu Y, Tuanmu M. 2021.. New insights into the patterns and drivers of avian altitudinal migration from a growing crowdsourcing data source. . Ecography 44:(1):7586
    [Crossref] [Google Scholar]
  137. von Humboldt A, Bonpland A. 1805.. Essai sur la géographie des plantes. Paris:: Chez Levrault, Schoell & Co.
    [Google Scholar]
  138. Wiens JJ. 2011.. The niche, biogeography and species interactions. . Philos. Trans. R. Soc. B 366:(1576):233650
    [Crossref] [Google Scholar]
  139. Xing D, Zhang J, He F. 2023.. Comment on “Interspecific competition limits bird species’ ranges in tropical mountains. .” Science 379:(6630):eade2109
    [Crossref] [Google Scholar]
  140. Yamada T, Koizumi I, Urabe H, Nakamura F. 2020.. Temperature-dependent swimming performance differs by species: implications for condition-specific competition between stream salmonids. . Zool. Sci. 37:(5):42933
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-102722-123834
Loading
/content/journals/10.1146/annurev-ecolsys-102722-123834
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error