1932

Abstract

Early studies in coral reefs showed that simple measurements of ecosystem metabolism (primary production and ecosystem respiration) were useful for understanding complex reef dynamics at an ecosystem scale. These studies also helped establish the field of ecosystem ecology, but contemporary coral reef ecology has shifted away from these origins. In this manuscript, I describe the historical development of a theory of ecosystem metabolism that was foundational for the discipline of ecosystem ecology, and I update this theory to fully incorporate dynamics on coral reefs (and all ecosystems). I use this updated theory to () identify important controls on coral reef processes and () provide a rationale for patterns of coral reef carbon dynamics that allow me to generate hypotheses of coral reef ecosystem production. I then use existing data to broadly evaluate these hypotheses. My findings emphasize the importance of integrating measurements of ecosystem metabolism with current approaches to improve the development of theory and the efficacy of conservation and management of coral reefs.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-102722-124549
2024-11-04
2025-04-23
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/55/1/annurev-ecolsys-102722-124549.html?itemId=/content/journals/10.1146/annurev-ecolsys-102722-124549&mimeType=html&fmt=ahah

Literature Cited

  1. Adey WH, Steneck RS. 1985.. Highly productive eastern Caribbean reefs: synergistic effects of biological, chemical, physical and geological factors. . Symp. Ser. Undersea Res. 31::16387
    [Google Scholar]
  2. Allen DC, Larson J, Murphy CA, Garcia EA, Anderson KE, et al. 2024.. Global patterns of allochthony in stream–riparian meta-ecosystems. . Ecol. Lett. 27:(3):e14401
    [Crossref] [Google Scholar]
  3. Allgeier JE, Burkepile DE, Layman CA. 2017.. Animal pee in the sea: consumer-mediated nutrient dynamics in the world's changing oceans. . Glob. Change Biol. 23::216678
    [Crossref] [Google Scholar]
  4. Allgeier JE, Layman CA, Mumby PJ, Rosemond AD. 2014.. Consistent nutrient storage and supply mediated by diverse fish communities in coral reef ecosystems. . Glob. Change Biol. 20:(8):245972
    [Crossref] [Google Scholar]
  5. Allgeier JE, Valdivia A, Cox C, Layman CA. 2016.. Fishing down nutrients on coral reefs. . Nat. Commun. 7:(1):12461
    [Crossref] [Google Scholar]
  6. Allgeier JE, Weeks BC, Munsterman KS, Wale N, Wenger SJ, et al. 2021.. Phylogenetic conservatism drives nutrient dynamics of coral reef fishes. . Nat. Commun. 12:(1):5432
    [Crossref] [Google Scholar]
  7. Andrews J, Gentien P. 1982.. Upwelling as a source of nutrients for the Great Barrier Reef ecosystems: a solution to Darwin's question?. Mar. Ecol. Prog. Ser. 8::25769
    [Crossref] [Google Scholar]
  8. Atkinson MJ. 1987.. Rates of phosphate uptake by coral reef flat communities. . Limnol. Oceanogr. 32:(2):42635
    [Crossref] [Google Scholar]
  9. Atkinson MJ. 2011.. Biogeochemistry of nutrients. . In Coral Reefs: An Ecosystem in Transition, ed. Z Dubinsky, N Stambler , pp. 199206. Dordrecht, Ger:.: Springer
    [Google Scholar]
  10. Barbier EB, Koch EW, Silliman BR, Hacker SD, Wolanski E, et al. 2008.. Coastal ecosystem-based management with nonlinear ecological functions and values. . Science 319::32123
    [Crossref] [Google Scholar]
  11. Battin TJ, Lauerwald R, Bernhardt ES, Bertuzzo E, Gener LG, et al. 2023.. River ecosystem metabolism and carbon biogeochemistry in a changing world. . Nature 613:(7944):44959
    [Crossref] [Google Scholar]
  12. Bell JJ. 2008.. The functional roles of marine sponges. . Estuar. Coast. Shelf Sci. 79:(3):34153
    [Crossref] [Google Scholar]
  13. Bernhardt ES, Savoy P, Vlah MJ, Appling AP, Koenig LE, et al. 2022.. Light and flow regimes regulate the metabolism of rivers. . PNAS 119:(8):e2121976119
    [Crossref] [Google Scholar]
  14. Brocke HJ, Piltz B, Herz N, Abed RMM, Palinska KA, et al. 2018.. Nitrogen fixation and diversity of benthic cyanobacterial mats on coral reefs in Curaçao. . Coral Reefs 37:(3):86174
    [Crossref] [Google Scholar]
  15. Cardini U, Bednarz VN, van Hoytema N, Rovere A, Naumann MS, et al. 2016.. Budget of primary production and dinitrogen fixation in a highly seasonal Red Sea coral reef. . Ecosystems 19:(5):77185
    [Crossref] [Google Scholar]
  16. Carpenter SR, Cole JJ, Pace ML, Batt R, Brock WA, et al. 2011.. Early warnings of regime shifts: a whole-ecosystem experiment. . Science 332:(6033):107982
    [Crossref] [Google Scholar]
  17. Chapin FS, Matson PA, Vitousek P. 2011.. Principles of Terrestrial Ecosystem Ecology. New York:: Springer. , 2nd ed..
    [Google Scholar]
  18. Claustre H, Johnson KS, Takeshita Y. 2020.. Observing the global ocean with Biogeochemical-Argo. . Annu. Rev. Mar. Sci. 12::2348
    [Crossref] [Google Scholar]
  19. Clements FE. 1936.. Nature and structure of the climax. . J. Ecol. 24:(1):25284
    [Crossref] [Google Scholar]
  20. Cleveland CC, Houlton BZ, Smith WK, Marklein AR, Reed SC, et al. 2013.. Patterns of new versus recycled primary production in the terrestrial biosphere. . PNAS 110:(31):1273337
    [Crossref] [Google Scholar]
  21. Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, et al. 2007.. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. . Ecosystems 10:(1):17285
    [Crossref] [Google Scholar]
  22. Connell JH. 1978.. Diversity in tropical rainforests and coral reefs: High diversity of trees and corals is maintained only in a nonequilibrium state. . Science 199::130210
    [Crossref] [Google Scholar]
  23. Conti-Jerpe IE, Thompson PD, Wong CWM, Oliveira NL, Duprey NN, et al. 2020.. Trophic strategy and bleaching resistance in reef-building corals. . Sci. Adv. 6:(15):eaaz5443
    [Crossref] [Google Scholar]
  24. Corman JR, Collins SL, Cook EM, Dong X, Gherardi LA, et al. 2019.. Foundations and frontiers of ecosystem science: legacy of a classic paper (Odum 1969). . Ecosystems 22:(5):116072
    [Crossref] [Google Scholar]
  25. Crossland C, Barnes D. 1983.. Dissolved nutrients and organic particulates in water flowing over coral reefs at Lizard Island. . Mar. Freshw. Res. 34:(6):83544
    [Crossref] [Google Scholar]
  26. Crossland C, Hatcher B, Smith S. 1991.. Role of coral reefs in global ocean production. . Coral Reefs 10::5564
    [Crossref] [Google Scholar]
  27. Darwin C. 1842.. The Structure and Distribution of Coral Reefs. London:: Smith, Elder and Co.
    [Google Scholar]
  28. Davis JM, Rosemond AD, Eggert SL, Cross WF, Wallace JB. 2010.. Long-term nutrient enrichment decouples predator and prey production. . PNAS 107::12126
    [Crossref] [Google Scholar]
  29. de Goeij JM, van Oevelen D, Vermeij MJA, Osinga R, Middelburg JJ, et al. 2013.. Surviving in a marine desert: The sponge loop retains resources within coral reefs. . Science 342:(6154):10810
    [Crossref] [Google Scholar]
  30. Deangelis DL. 1980.. Energy-flow, nutrient cycling, and ecosystem resilience. . Ecology 61::76471
    [Crossref] [Google Scholar]
  31. den Haan J, Visser PM, Ganase AE, Gooren EE, Stal LJ, et al. 2014.. Nitrogen fixation rates in algal turf communities of a degraded versus less degraded coral reef. . Coral Reefs 33:(4):100315
    [Crossref] [Google Scholar]
  32. Donovan MK, Friedlander AM, Lecky J, Jouffray J-B, Williams GJ, et al. 2018.. Combining fish and benthic communities into multiple regimes reveals complex reef dynamics. . Sci. Rep. 8:(1):16943
    [Crossref] [Google Scholar]
  33. Dubinsky Z, Stambler N, eds. 2011.. Coral Reefs: An Ecosystem in Transition. Dordrecht, Ger:.: Springer
    [Google Scholar]
  34. Eppley RW, Peterson BJ. 1979.. Particulate organic matter flux and planktonic new production in the deep ocean. . Nature 282::67780
    [Crossref] [Google Scholar]
  35. Fabricius KE, Metzner J. 2004.. Scleractinian walls of mouths: predation on coral larvae by corals. . Coral Reefs 23:(2):24548
    [Crossref] [Google Scholar]
  36. Fitt WK, McFarland FK, Warner ME, Chilcoat GC. 2000.. Seasonal patterns of tissue biomass and densities of symbiotic dinoflagellates in reef corals and relation to coral bleaching. . Limnol. Oceanogr. 45:(3):67785
    [Crossref] [Google Scholar]
  37. Furla P, Allemand D, Shick JM, Ferrier-Pagès C, Richier S, et al. 2005.. The symbiotic anthozoan: a physiological chimera between alga and animal. . Integr. Comp. Biol. 45:(4):595604
    [Crossref] [Google Scholar]
  38. Glaze TD, Erler DV, Siljanen HMP. 2022.. Microbially facilitated nitrogen cycling in tropical corals. . ISME J. 16:(1):6877
    [Crossref] [Google Scholar]
  39. Gleason HA. 1926.. The individualistic concept of the plant association. . Bull. Torrey Bot. Club. 53:(1):726
    [Crossref] [Google Scholar]
  40. Gove JM, McManus MA, Neuheimer AB, Polovina JJ, Drazen JC, et al. 2016.. Near-island biological hotspots in barren ocean basins. . Nat. Commun. 7:(1):10581
    [Crossref] [Google Scholar]
  41. Gove JM, Williams GJ, Lecky J, Brown E, Conklin E, et al. 2023.. Coral reefs benefit from reduced land-sea impacts under ocean warming. . Nature 621:(7979):53642
    [Crossref] [Google Scholar]
  42. Graham NAJ, Nash KL. 2013.. The importance of structural complexity in coral reef ecosystems. . Coral Reefs 32:(2):31526
    [Crossref] [Google Scholar]
  43. Grottoli AG, Rodrigues LJ, Palardy JE. 2006.. Heterotrophic plasticity and resilience in bleached corals. . Nature 440:(7088):118689
    [Crossref] [Google Scholar]
  44. Hamner WM, Jones MS, Carleton JH, Hauri IR, Williams DMcB. 1988.. Zooplankton, planktivorous fish, and water currents on a windward reef face: Great Barrier Reef, Australia. . Bull. Mar. Sci. 42:(3):45979
    [Google Scholar]
  45. Hanson PC, Weathers KC, Kratz TK. 2016.. Networked lake science: how the Global Lake Ecological Observatory Network (GLEON) works to understand, predict, and communicate lake ecosystem response to global change. . Inland Waters 6:(4):54354
    [Crossref] [Google Scholar]
  46. Hatcher BG. 1988.. Coral reef primary productivity: a beggar's banquet. . Trends Ecol. Evol. 3::10611
    [Crossref] [Google Scholar]
  47. Hatcher BG. 1990.. Coral reef primary productivity: a hierarchy of patterns and process. . Trends Ecol. Evol. 5::14955
    [Crossref] [Google Scholar]
  48. Hatcher BG. 1997.. Coral reef ecosystems: How much greater is the whole than the sum of the parts?. Coral Reefs 16:(1):S7791
    [Crossref] [Google Scholar]
  49. Hixon MA, Carr MH. 1997.. Synergistic predation, density dependence, and population regulation in marine fish. . Science 277:(5328):94649
    [Crossref] [Google Scholar]
  50. Hoegh-Guldberg O, Skirving W, Dove SG, Spady BL, Norrie A, et al. 2023.. Coral reefs in peril in a record-breaking year. . Science 382:(6676):123840
    [Crossref] [Google Scholar]
  51. Holbrook SJ, Brooks AJ, Schmitt RJ, Stewart HL. 2008.. Effects of sheltering fish on growth of their host corals. . Mar. Biol. 155:(5):52130
    [Crossref] [Google Scholar]
  52. Houlbreque F, Ferrier-Pages C. 2009.. Heterotrophy in tropical scleractinian corals. . Biol. Rev. 84:(1):117
    [Crossref] [Google Scholar]
  53. Hubbell SP. 1997.. A unified theory of biogeography and relative species abundance and its application to tropical rain forests and coral reefs. . Coral Reefs 16:(1):S921
    [Crossref] [Google Scholar]
  54. Jenny H. 1961.. Derivation of state factor equations of soils and ecosystems. . Soil Sci. Soc. Am. J. 25::38588
    [Crossref] [Google Scholar]
  55. Johannes RE, Alberts J, D'Elia C, Kinzie RA, Pomeroy LR, et al. 1972.. The metabolism of some coral reef communities: a team study of nutrient and energy flux at Eniwetok. . Bioscience 22::54153
    [Crossref] [Google Scholar]
  56. Kadygrov N, Broquet G, Chevallier F, Rivier L, Gerbig C, Ciais P. 2015.. On the potential of the ICOS atmospheric CO2 measurement network for estimating the biogenic CO2 budget of Europe. . Atmospheric Chem. Phys. 15:(22):1276587
    [Crossref] [Google Scholar]
  57. Kinsey D. 1985.. Metabolism, calcification and carbon production. I. System level studies. . In Proceedings of the 5th International Coral Reef Symposium, Vol. 4, ed. C Gabrie, M Harmelin-Vivien , pp. 50552. Moorea, Fr. Polyn.:: Antenne Museum-EPHE
    [Google Scholar]
  58. Larkum A, Kennedy I, Muller W. 1988.. Nitrogen fixation on a coral reef. . Mar. Biol. 98::14355
    [Crossref] [Google Scholar]
  59. Layman CA, Allgeier JE. 2020.. An ecosystem ecology perspective on artificial reef production. . J. Appl. Ecol. 57:(11):213948
    [Crossref] [Google Scholar]
  60. Leichter JJ, Stewart HL, Miller SL. 2003.. Episodic nutrient transport to Florida coral reefs. . Limnol. Oceanogr. 48:(4):1394407
    [Crossref] [Google Scholar]
  61. Lesser MP. 2006.. Benthic–pelagic coupling on coral reefs: feeding and growth of Caribbean sponges. . J. Exp. Mar. Biol. Ecol. 328:(2):27788
    [Crossref] [Google Scholar]
  62. Lindeman RL. 1942.. The trophic-dynamic aspect of ecology. . Ecology 23::399417
    [Crossref] [Google Scholar]
  63. Littler MM, Littler DS, Titlyanov EA. 1991.. Comparisons of N- and P-limited productivity between high granitic islands versus low carbonate atolls in the Seychelles Archipelago: a test of the relative-dominance paradigm. . Coral Reefs 10:(4):199209
    [Crossref] [Google Scholar]
  64. Liu J, Mooney H, Hull V, Davis SJ, Gaskell J, et al. 2015.. Systems integration for global sustainability. . Science 347:(6225):1258832
    [Crossref] [Google Scholar]
  65. Marshall S. 1932.. Notes on oxygen production in coral planulae. . In Scientific Reports: Great Barrier Reef Expedition 1928–29, Vol. 1, pp. 25358. Dorking, UK:: Adlard & Son
    [Google Scholar]
  66. Mayer FW, Wild C. 2010.. Coral mucus release and following particle trapping contribute to rapid nutrient recycling in a Northern Red Sea fringing reef. . Mar. Freshw. Res. 61:(9):100614
    [Crossref] [Google Scholar]
  67. Mellin C, Peterson EE, Puotinen M, Schaffelke B. 2020.. Representation and complementarity of the long-term coral monitoring on the Great Barrier Reef. . Ecol. Appl. 30:(6):e02122
    [Crossref] [Google Scholar]
  68. Meyer JL, Schultz ET, Helfman GS. 1983.. Fish schools: an asset to corals. . Science 220::104749
    [Crossref] [Google Scholar]
  69. Morais RA, Bellwood DR. 2019.. Pelagic subsidies underpin fish productivity on a degraded coral reef. . Curr. Biol. 29:(9):152127.e6
    [Crossref] [Google Scholar]
  70. Morais RA, Siqueira AC, Smallhorn-West PF, Bellwood DR. 2021.. Spatial subsidies drive sweet spots of tropical marine biomass production. . PLOS Biol. 19:(11):e3001435
    [Crossref] [Google Scholar]
  71. Mulholland PJ, Fellows CS, Tank JL, Grimm NB, Webster JR, et al. 2001.. Inter-biome comparison of factors controlling stream metabolism. . Freshw. Biol. 46:(11):150317
    [Crossref] [Google Scholar]
  72. Mumby PJ, Steneck RS. 2018.. Paradigm lost: dynamic nutrients and missing detritus on coral reefs. . BioScience 68:(7):48795
    [Crossref] [Google Scholar]
  73. Naumann MS, Richter C, el-Zibdah M, Wild C. 2009.. Coral mucus as an efficient trap for picoplanktonic cyanobacteria: implications for pelagic–benthic coupling in the reef ecosystem. . Mar. Ecol. Prog. Ser. 385::6576
    [Crossref] [Google Scholar]
  74. Newman MJH, Paredes GA, Sala E, Jackson JBC. 2006.. Structure of Caribbean coral reef communities across a large gradient of fish biomass. . Ecol. Lett. 9::121627
    [Crossref] [Google Scholar]
  75. Odum EP. 1969.. The strategy of ecosystem development. . Science 164::26270
    [Crossref] [Google Scholar]
  76. Odum HT, Odum EP. 1955.. Trophic structure and productivity of a windward coral reef community on Eniwetok Atoll. . Ecol. Monogr. 25:(3):291320
    [Crossref] [Google Scholar]
  77. Platz MC, Arias ME, Byrne RH. 2022.. Reef metabolism monitoring methods and potential applications for coral restoration. . Env. Manag. 69::61225
    [Crossref] [Google Scholar]
  78. Palmer M, Ruhi A. 2019.. Linkages between flow regime, biota, and ecosystem processes: implications for river restoration. . Science 365:(6459):eaaw2087
    [Crossref] [Google Scholar]
  79. Patten BC, Odum EP. 1981.. The cybernetic nature of ecosystems. . Am. Nat. 118:(6):88695
    [Crossref] [Google Scholar]
  80. Pawlik JR, Loh T-L, McMurray SE. 2018.. A review of bottom-up versus top-down control of sponges on Caribbean fore-reefs: what's old, what's new, and future directions. . PeerJ 6::e4343
    [Crossref] [Google Scholar]
  81. Paxton AB, Shertzer KW, Bacheler NM, Kellison GT, Riley KL, Taylor JC. 2020.. Meta-analysis reveals artificial reefs can be effective tools for fish community enhancement but are not one-size-fits-all. Front. . Mar. Sci. 7::282
    [Google Scholar]
  82. Peirano A, Morri C, Bianchi CN, Rodolfo-Metalpa R. 2001.. Biomass, carbonate standing stock and production of the Mediterranean coral Cladocora caespitosa (L.). . Facies 44:(1):7580
    [Crossref] [Google Scholar]
  83. Pilson MEQ, Betzer SB. 1973.. Phosphorus flux across a coral reef. . Ecology 54:(3):58188
    [Crossref] [Google Scholar]
  84. Pinnegar JK, Polunin NVC. 2006.. Planktivorous damselfish support significant nitrogen and phosphorus fluxes to Mediterranean reefs. . Mar. Biol. 148:(5):108999
    [Crossref] [Google Scholar]
  85. Pomeroy LR. 1970.. The strategy of mineral cycling. . Annu. Rev. Ecol. Syst. 1::17190
    [Crossref] [Google Scholar]
  86. Prager CM, Classen AT, Sundqvist MK, Barrios-Garcia MN, Cameron EK, et al. 2022.. Integrating natural gradients, experiments, and statistical modeling in a distributed network experiment: an example from the WaRM NETWORK. . Ecol. Evol. 12:(10):e9396
    [Crossref] [Google Scholar]
  87. Prigogine I, Allen PM. 2014.. The challenge of complexity. . In Self-Organization and Dissipative Structures: Applications in the Physical and Social Sciences, ed. WC Schieve, PM Allen , pp. 139. Austin:: Univ. Texas Press
    [Google Scholar]
  88. Radice VZ, Hoegh-Guldberg O, Fry B, Fox MD, Dove SG. 2019.. Upwelling as the major source of nitrogen for shallow and deep reef-building corals across an oceanic atoll system. . Funct. Ecol. 33:(6):112034
    [Crossref] [Google Scholar]
  89. Reid SB, Hirota J, Young RE, Hallacher LE. 1991.. Mesopelagic-boundary community in Hawaii: micronekton at the interface between neritic and oceanic ecosystems. . Mar. Biol. 109:(3):42740
    [Crossref] [Google Scholar]
  90. Ribes M, Coma R, Atkinson MJ, Kinzie RA III. 2005.. Sponges and ascidians control removal of particulate organic nitrogen from coral reef water. . Limnol. Oceanogr. 50:(5):148089
    [Crossref] [Google Scholar]
  91. Roberts CM, McClean CJ, Veron JEN, Hawkins JP, Allen GR, et al. 2002.. Marine biodiversity hotspots and conservation priorities for tropical reefs. . Science 295:(5558):128084
    [Crossref] [Google Scholar]
  92. Rogers A, Blanchard J, Mumby P. 2017.. Fisheries productivity under progressive coral reef degradation. . J. Appl. Ecol. 55::104149
    [Crossref] [Google Scholar]
  93. Sargent MC, Austin TS. 1949.. Organic productivity of an atoll. . Eos Trans. Am. Geophys. Union 30:(2):24549
    [Crossref] [Google Scholar]
  94. Shakya AW, Allgeier JE. 2023.. Water column contributions to coral reef productivity: overcoming challenges of context dependence. . Biol. Rev. 98:(5):181228
    [Crossref] [Google Scholar]
  95. Shantz AA, Ladd MC, Schrack E, Burkepile DE. 2015.. Fish-derived nutrient hotspots shape coral reef benthic communities. . Ecol. Appl. 25::214252
    [Crossref] [Google Scholar]
  96. Skinner C, Mill AC, Fox MD, Newman SP, Zhu Y, et al. 2021.. Offshore pelagic subsidies dominate carbon inputs to coral reef predators. . Sci. Adv. 7:(8):eabf3792
    [Crossref] [Google Scholar]
  97. Vitousek PM. 2004.. Nutrient Cycling and Limitation: Hawai'i as a Model System. Princeton, NJ:: Princeton Univ. Press
    [Google Scholar]
  98. Vitousek PM, Reiners WA. 1975.. Ecosystem succession and nutrient retention: a hypothesis. . Bioscience 25::37681
    [Crossref] [Google Scholar]
  99. Volkov I, Banavar JR, Hubbell SP, Maritan A. 2007.. Patterns of relative species abundance in rainforests and coral reefs. . Nature 450:(7166):4549
    [Crossref] [Google Scholar]
  100. Walker TW, Syers JK. 1976.. The fate of phosphorus during pedogenesis. . Geoderma 15:(1):119
    [Crossref] [Google Scholar]
  101. Wallace JB, Eggert SL, Meyer JL, Webster JR. 1997.. Multiple trophic levels of a forest stream linked to terrestrial litter inputs. . Science 277:(5322):1024
    [Crossref] [Google Scholar]
  102. Whittacker R. 1962.. Classification of natural communities. . Bot. Rev. 28::1239
    [Crossref] [Google Scholar]
  103. Wiens JA. 1989.. Spatial Scaling in Ecology. . Funct. Ecol. 3:(4):38597
    [Crossref] [Google Scholar]
  104. Wilkinson CR. 1987.. Interocean differences in size and nutrition of coral reef sponge populations. . Science 236:(4809):165457
    [Crossref] [Google Scholar]
  105. Wyatt A, Lowe R, Humphries S, Waite A. 2010.. Particulate nutrient fluxes over a fringing coral reef: relevant scales of phytoplankton production and mechanisms of supply. . Mar. Ecol. Prog. Ser. 405::11330
    [Crossref] [Google Scholar]
  106. Zak DR. 2014.. Ecosystem succession and nutrient retention: Vitousek and Reiners’ hypothesis. . Bull. Ecol. Soc. Am. 95:(3):23437
    [Crossref] [Google Scholar]
  107. Zhou L, Tan Y, Huang L. 2023.. Coral reef ecological pump for gathering and retaining nutrients and exporting carbon: a review and perspectives. . Acta Oceanol. Sin. 42:(6):115
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-102722-124549
Loading
/content/journals/10.1146/annurev-ecolsys-102722-124549
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error