1932

Abstract

Arctic ecosystems have long been thought to be minimal sources of volatile organic compounds (VOCs) to the atmosphere because of their low plant biomass and cold temperatures. However, these ecosystems experience rapid climatic warming that alters vegetation composition. Tundra vegetation VOC emissions have stronger temperature dependency than current emission models estimate. Thus, warming, both directly and indirectly (via vegetation changes) likely increases the release and alters the blend of emitted plant volatiles, such as isoprene, monoterpenes, and sesquiterpenes, from Arctic ecosystems. Climate change also increases the pressure of both background herbivory and insect outbreaks. The resulting leaf damage induces the production of volatile defense compounds, and warming amplifies this response. Soils function as both sources and sinks of VOCs, and thawing permafrost is a hotspot for soil VOC emissions, contributing to ecosystem emissions if the VOCs bypass microbial uptake. Overall, Arctic VOC emissions are likely to increase in the future, with implications for ecological interactions and atmospheric composition.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-102722-125156
2024-11-04
2025-02-06
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/55/1/annurev-ecolsys-102722-125156.html?itemId=/content/journals/10.1146/annurev-ecolsys-102722-125156&mimeType=html&fmt=ahah

Literature Cited

  1. Aaltonen H, Pumpanen J, Hakola H, Vesala T, Rasmus S, Bäck J. 2012.. Snowpack concentrations and estimated fluxes of volatile organic compounds in a boreal forest. . Biogeosciences 9:(6):203344
    [Crossref] [Google Scholar]
  2. Albers CN, Kramshøj M, Rinnan R. 2018.. Rapid mineralization of biogenic volatile organic compounds in temperate and Arctic soils. . Biogeosciences 15:(11):3591601
    [Crossref] [Google Scholar]
  3. Ameye M, Allmann S, Verwaeren J, Smagghe G, Haesaert G, et al. 2018.. Green leaf volatile production by plants: a meta-analysis. . New Phytol. 220:(3):66683
    [Crossref] [Google Scholar]
  4. Ammunét T, Bylund H, Jepsen JU. 2015.. Northern geometrids and climate change: from abiotic factors to trophic interactions. . In Climate Change and Insect Pests, ed. C Björkman, P Niemelä , pp. 23547. Wallingford, UK:: CABI
    [Google Scholar]
  5. Angot H, McErlean K, Hu L, Millet DB, Hueber J, et al. 2020.. Biogenic volatile organic compound ambient mixing ratios and emission rates in the Alaskan Arctic tundra. . Biogeosciences 17:(23):621936
    [Crossref] [Google Scholar]
  6. Bäck J, Aaltonen H, Hellén H, Kajos MK, Patokoski J, et al. 2010.. Variable emissions of microbial volatile organic compounds (MVOCs) from root-associated fungi isolated from Scots pine. . Atmos. Environ. 44:(30):365159
    [Crossref] [Google Scholar]
  7. Baggesen N, Li T, Seco R, Holst T, Michelsen A, Rinnan R. 2021.. Phenological stage of tundra vegetation controls bidirectional exchange of BVOCs in a climate change experiment on a subarctic heath. . Glob. Change Biol. 27:(12):292844
    [Crossref] [Google Scholar]
  8. Baggesen NS, Davie-Martin CL, Seco R, Holst T, Rinnan R. 2022.. Bidirectional exchange of biogenic volatile organic compounds in subarctic heath mesocosms during autumn climate scenarios. . J. Geophys. Res. Biogeosci. 127:(6):e2021JG006688
    [Crossref] [Google Scholar]
  9. Barrio IC, Lindén E, Te Beest M, Olofsson J, Rocha A, et al. 2017.. Background invertebrate herbivory on dwarf birch (Betula glandulosa-nana complex) increases with temperature and precipitation across the tundra biome. . Polar Biol. 40:(11):226578
    [Crossref] [Google Scholar]
  10. Berner LT, Massey R, Jantz P, Forbes BC, Macias-Fauria M, et al. 2020.. Summer warming explains widespread but not uniform greening in the Arctic tundra biome. . Nat. Commun. 11:(1):4621
    [Crossref] [Google Scholar]
  11. Borges RM. 2018.. The galling truth: limited knowledge of gall-associated volatiles in multitrophic interactions. . Front. Plant Sci. 9::1139
    [Crossref] [Google Scholar]
  12. Brachmann CG, Vowles T, Rinnan R, Björkman MP, Ekberg A, Björk RG. 2023.. Herbivore–shrub interactions influence ecosystem respiration and biogenic volatile organic compound composition in the subarctic. . Biogeosciences 20:(19):406986
    [Crossref] [Google Scholar]
  13. Chen Y, Romps DM, Seeley JT, Veraverbeke S, Riley WJ, et al. 2021.. Future increases in Arctic lightning and fire risk for permafrost carbon. . Nat. Clim. Change 11:(5):40410
    [Crossref] [Google Scholar]
  14. Dobricic S, Russo S, Pozzoli L, Wilson J, Vignati E. 2020.. Increasing occurrence of heat waves in the terrestrial Arctic. . Environ. Res. Lett. 15:(2):024022
    [Crossref] [Google Scholar]
  15. Doting EL, Davie-Martin CL, Johansen A, Benning LG, Tranter M, et al. 2022.. Greenland ice sheet surfaces colonized by microbial communities emit volatile organic compounds. . Front. Microbiol. 13::886293
    [Crossref] [Google Scholar]
  16. Ekberg A, Arneth A, Hakola H, Hayward S, Holst T. 2009.. Isoprene emission from wetland sedges. . Biogeosciences 6:(4):60113
    [Crossref] [Google Scholar]
  17. Ekberg A, Arneth A, Holst T. 2011.. Isoprene emission from Sphagnum species occupying different growth positions above the water table. . Boreal Environ. Res. 16:(1):4759
    [Google Scholar]
  18. Elmendorf SC, Henry GHR, Hollister RD, Björk RG, Boulanger-Lapointe N, et al. 2012.. Plot-scale evidence of tundra vegetation change and links to recent summer warming. . Nat. Clim. Change 2:(6):45357
    [Crossref] [Google Scholar]
  19. Faiola CL, Buchholz A, Kari E, Yli-Pirilä P, Holopainen JK, et al. 2018.. Terpene composition complexity controls secondary organic aerosol yields from Scots pine volatile emissions. . Sci. Rep. 8:(1):3053
    [Crossref] [Google Scholar]
  20. Faubert P, Tiiva P, Michelsen A, Rinnan Å, Ro-Poulsen H, Rinnan R. 2012.. The shift in plant species composition in a subarctic mountain birch forest floor due to climate change would modify the biogenic volatile organic compound emission profile. . Plant Soil 352:(1):199215
    [Crossref] [Google Scholar]
  21. Faubert P, Tiiva P, Rinnan Å, Michelsen A, Holopainen JK, Rinnan R. 2010a.. Doubled volatile organic compound emissions from subarctic tundra under simulated climate warming. . New Phytol. 187:(1):199208
    [Crossref] [Google Scholar]
  22. Faubert P, Tiiva P, Rinnan Å, Räty S, Holopainen JK, et al. 2010b.. Effect of vegetation removal and water table drawdown on the non-methane biogenic volatile organic compound emissions in boreal peatland microcosms. . Atmos. Environ. 44:(35):443239
    [Crossref] [Google Scholar]
  23. Galbally IE, Kirstine W. 2002.. The production of methanol by flowering plants and the global cycle of methanol. . J. Atmos. Chem. 43:(3):195229
    [Crossref] [Google Scholar]
  24. Garbeva P, Avalos M, Ulanova D, van Wezel GP, Dickschat JS. 2023.. Volatile sensation: the chemical ecology of the earthy odorant geosmin. . Environ. Microbiol. 25:(9):156574
    [Crossref] [Google Scholar]
  25. Ghimire RP, Silfver T, Myller K, Oksanen E, Holopainen JK, Mikola J. 2022.. BVOC emissions from a subarctic ecosystem, as controlled by insect herbivore pressure and temperature. . Ecosystems 25:(4):87291
    [Crossref] [Google Scholar]
  26. Ghirardo A, Lindstein F, Koch K, Buegger F, Schloter M, et al. 2020.. Origin of volatile organic compound emissions from subarctic tundra under global warming. . Glob. Change Biol. 26:(3):190825
    [Crossref] [Google Scholar]
  27. Graglia E, Julkunen-Tiitto R, Shaver GR, Schmidt IK, Jonasson S, Michelsen A. 2001.. Environmental control and intersite variations of phenolics in Betula nana in tundra ecosystems. . New Phytol. 151:(1):22736
    [Crossref] [Google Scholar]
  28. Guenther A, Karl T, Harley P, Wiedinmyer C, Palmer PI, Geron C. 2006.. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). . Atmos. Chem. Phys. 6:(11):3181210
    [Crossref] [Google Scholar]
  29. Guenther AB, Zimmerman PR, Harley PC, Monson RK, Fall R. 1993.. Isoprene and monoterpene emission rate variability: model evaluations and sensitivity analyses. . J. Geophys. Res. 98:(D7):1260917
    [Crossref] [Google Scholar]
  30. Haapanala S, Ekberg A, Hakola H, Tarvainen V, Rinne J, et al. 2009.. Mountain birch – potentially large source of sesquiterpenes into high latitude atmosphere. . Biogeosciences 6:(11):270918
    [Crossref] [Google Scholar]
  31. Heim RJ, Heim W, Bültmann H, Kamp J, Rieker D, et al. 2022.. Fire disturbance promotes biodiversity of plants, lichens and birds in the Siberian subarctic tundra. . Glob. Change Biol. 28:(3):104862
    [Crossref] [Google Scholar]
  32. Hellén H, Schallhart S, Praplan AP, Tykkä T, Aurela M, et al. 2020.. Sesquiterpenes dominate monoterpenes in northern wetland emissions. . Atmos. Chem. Phys. 20:(11):702134
    [Crossref] [Google Scholar]
  33. Hollister RD, Elphinstone C, Henry GHR, Bjorkman AD, Klanderud K, et al. 2023.. A review of open top chamber (OTC) performance across the ITEX network. . Arctic Sci. 9:(2):33144
    [Crossref] [Google Scholar]
  34. Holst T, Arneth A, Hayward S, Ekberg A, Mastepanov M, et al. 2010.. BVOC ecosystem flux measurements at a high latitude wetland site. . Atmos. Chem. Phys. 10:(4):161734
    [Crossref] [Google Scholar]
  35. Insam H, Seewald M. 2010.. Volatile organic compounds (VOCs) in soils. . Biol. Fertil. Soils 46:(3):199213
    [Crossref] [Google Scholar]
  36. Jepsen JU, Hagen SB, Ims RA, Yoccoz NG. 2008.. Climate change and outbreaks of the geometrids Operophtera brumata and Epirrita autumnata in subarctic birch forest: evidence of a recent outbreak range expansion. . J. Anim. Ecol. 77:(2):25764
    [Crossref] [Google Scholar]
  37. Jiao Y, Davie-Martin CL, Kramshøj M, Christiansen CT, Lee H, et al. 2023a.. Volatile organic compound release across a permafrost-affected peatland. . Geoderma 430::116355
    [Crossref] [Google Scholar]
  38. Jiao Y, Kramshøj M, Davie-Martin CL, Albers CN, Rinnan R. 2023b.. Soil uptake of VOCs exceeds production when VOCs are readily available. . Soil Biol. Biochem. 185::109153
    [Crossref] [Google Scholar]
  39. Joabsson A, Christensen TR, Wallen B. 1999.. Vascular plant controls on methane emissions from northern peatforming wetlands. . Trends Ecol. Evol. 14:(10):38588
    [Crossref] [Google Scholar]
  40. Karlsson PS, Weih M. 2003.. Long-term patterns of leaf, shoot and wood production after insect herbivory in the mountain birch. . Funct. Ecol. 17:(6):84150
    [Crossref] [Google Scholar]
  41. Koltz AM, Gough L, McLaren JR. 2022.. Herbivores in Arctic ecosystems: effects of climate change and implications for carbon and nutrient cycling. . Ann. N. Y. Acad. Sci. 1516:(1):2847
    [Crossref] [Google Scholar]
  42. Koski T-M, Laaksonen T, Mäntylä E, Ruuskanen S, Li T, et al. 2015.. Do insectivorous birds use volatile organic compounds from plants as olfactory foraging cues? Three experimental tests. . Ethology 121:(12):113144
    [Crossref] [Google Scholar]
  43. Kramshøj M, Albers CN, Holst T, Holzinger R, Elberling B, Rinnan R. 2018.. Biogenic volatile release from permafrost thaw is determined by the soil microbial sink. . Nat. Commun. 9:(1):3412
    [Crossref] [Google Scholar]
  44. Kramshøj M, Albers CN, Svendsen SH, Björkman MP, Lindwall F, et al. 2019.. Volatile emissions from thawing permafrost soils are influenced by meltwater drainage conditions. . Glob. Change Biol. 25:(5):170416
    [Crossref] [Google Scholar]
  45. Kramshøj M, Vedel-Petersen I, Schollert M, Rinnan Å, Nymand J, et al. 2016.. Large increases in Arctic biogenic volatile emissions are a direct effect of warming. . Nat. Geosci. 9:(5):34952
    [Crossref] [Google Scholar]
  46. Laothawornkitkul J, Taylor JE, Paul ND, Hewitt CN. 2009.. Biogenic volatile organic compounds in the Earth system. . New Phytol. 183:(1):2751
    [Crossref] [Google Scholar]
  47. Li H, Väliranta M, Mäki M, Kohl L, Sannel ABK, et al. 2020.. Overlooked organic vapor emissions from thawing Arctic permafrost. . Environ. Res. Lett. 15:(10):104097
    [Crossref] [Google Scholar]
  48. Li T, Baggesen N, Seco R, Rinnan R. 2023.. Seasonal and diel patterns of biogenic volatile organic compound fluxes in a subarctic tundra. . Atmos. Environ. 292::119430
    [Crossref] [Google Scholar]
  49. Li T, Holst T, Michelsen A, Rinnan R. 2019.. Amplification of plant volatile defence against insect herbivory in a warming Arctic tundra. . Nat. Plants 5:(6):56874
    [Crossref] [Google Scholar]
  50. Lindwall F, Faubert P, Rinnan R. 2015.. Diel variation of biogenic volatile organic compound emissions- a field study in the sub, low and high arctic on the effect of temperature and light. . PLOS ONE 10:(4):e0123610
    [Crossref] [Google Scholar]
  51. Lindwall F, Schollert M, Michelsen A, Blok D, Rinnan R. 2016a.. Fourfold higher tundra volatile emissions due to arctic summer warming. . J. Geophys. Res. Biogeosci. 121:(3):895902
    [Crossref] [Google Scholar]
  52. Lindwall F, Svendsen SS, Nielsen CS, Michelsen A, Rinnan R. 2016b.. Warming increases isoprene emissions from an arctic fen. . Sci. Total Environ. 553::297304
    [Crossref] [Google Scholar]
  53. Lo Giudice A, Fani R. 2016.. Antimicrobial potential of cold-adapted bacteria and fungi from polar regions. . In Biotechnology of Extremophiles: Advances and Challenges, ed. PH Rampelotto , pp. 83115. Cham, Switz.:: Springer
    [Google Scholar]
  54. Mack MC, Walker XJ, Johnstone JF, Alexander HD, Melvin AM, et al. 2021.. Carbon loss from boreal forest wildfires offset by increased dominance of deciduous trees. . Science 372:(6539):28083
    [Crossref] [Google Scholar]
  55. MacLean SF, Jensen TS. 1985.. Food plant selection by insect herbivores in Alaskan arctic tundra: the role of plant life form. . Oikos 44:(1):21121
    [Crossref] [Google Scholar]
  56. Mäki M, Heinonsalo J, Hellén H, Bäck J. 2017.. Contribution of understorey vegetation and soil processes to boreal forest isoprenoid exchange. . Biogeosciences 14:(5):105573
    [Crossref] [Google Scholar]
  57. Männistö E, Ylänne H, Losoi M, Keinänen M, Yli-Pirilä P, et al. 2023.. Emissions of biogenic volatile organic compounds from adjacent boreal fen and bog as impacted by vegetation composition. . Sci. Total Environ. 858::159809
    [Crossref] [Google Scholar]
  58. Mäntylä E, Alessio GA, Blande JD, Heijari J, Holopainen JK, et al. 2008.. From plants to birds: higher avian predation rates in trees responding to insect herbivory. . PLOS ONE 3:(7):e2832
    [Crossref] [Google Scholar]
  59. McGenity TJ, Crombie AT, Murrell JC. 2018.. Microbial cycling of isoprene, the most abundantly produced biological volatile organic compound on Earth. . ISME J. 12:(4):93141
    [Crossref] [Google Scholar]
  60. McKinney KA, Lee BH, Vasta A, Pho TV, Munger JW. 2011.. Emissions of isoprenoids and oxygenated biogenic volatile organic compounds from a New England mixed forest. . Atmos. Chem. Phys. 11:(10):480731
    [Crossref] [Google Scholar]
  61. Metcalfe DB, Hermans TDG, Ahlstrand J, Becker M, Berggren M, et al. 2018.. Patchy field sampling biases understanding of climate change impacts across the Arctic. . Nat. Ecol. Evol. 2:(9):144348
    [Crossref] [Google Scholar]
  62. Mofikoya AO, Miura K, Ghimire RP, Blande JD, Kivimäenpää M, et al. 2018.. Understorey Rhododendron tomentosum and leaf trichome density affect mountain birch VOC emissions in the subarctic. . Sci. Rep. 8:(1):13261
    [Crossref] [Google Scholar]
  63. Myers-Smith IH, Forbes BC, Wilmking M, Hallinger M, Lantz T, et al. 2011.. Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. . Environ. Res. Lett. 6:(4):045509
    [Crossref] [Google Scholar]
  64. Niinemets Ü, Kuhn U, Harley PC, Staudt M, Arneth A, et al. 2011.. Estimations of isoprenoid emission capacity from enclosure studies: measurements, data processing, quality and standardized measurement protocols. . Biogeosciences 8:(8):220946
    [Crossref] [Google Scholar]
  65. Niinemets Ü, Loreto F, Reichstein M. 2004.. Physiological and physicochemical controls on foliar volatile organic compound emissions. . Trends Plant Sci. 9:(4):18086
    [Crossref] [Google Scholar]
  66. Noe SM, Niinemets Ü. 2020.. Impact of gall-forming insects on global BVOC emissions and climate: a perspective. . Front. Forests Glob. Change 3::9
    [Crossref] [Google Scholar]
  67. Olofsson J, Post E. 2018.. Effects of large herbivores on tundra vegetation in a changing climate, and implications for rewilding. . Philos. Trans. R. Soc. B 373:(1761):20170437
    [Crossref] [Google Scholar]
  68. Paasonen P, Asmi A, Petäjä T, Kajos MK, Äijälä M, et al. 2013.. Warming-induced increase in aerosol number concentration likely to moderate climate change. . Nat. Geosci. 6:(6):43842
    [Crossref] [Google Scholar]
  69. Patankar R, Quinton WL, Baltzer JL. 2013a.. Permafrost-driven differences in habitat quality determine plant response to gall-inducing mite herbivory. . J. Ecol. 101:(4):104252
    [Crossref] [Google Scholar]
  70. Patankar R, Starr G, Mortazavi B, Oberbauer SF, Rosenblum A. 2013b.. The effects of mite galling on the ecophysiology of two arctic willows. . Arct. Antarct. Alp. Res. 45:(1):99106
    [Crossref] [Google Scholar]
  71. Pernov JB, Bossi R, Lebourgeois T, Nøjgaard JK, Holzinger R, et al. 2021.. Atmospheric VOC measurements at a High Arctic site: characteristics and source apportionment. . Atmos. Chem. Phys. 21:(4):2895916
    [Crossref] [Google Scholar]
  72. Phoenix GK, Bjerke JW. 2016.. Arctic browning: extreme events and trends reversing arctic greening. . Glob. Change Biol. 22:(9):296062
    [Crossref] [Google Scholar]
  73. Potosnak MJ, Baker BM, LeStourgeon L, Disher SM, Griffin KL, et al. 2013.. Isoprene emissions from a tundra ecosystem. . Biogeosciences 10:(2):87189
    [Crossref] [Google Scholar]
  74. Rantanen M, Karpechko AY, Lipponen A, Nordling K, Hyvärinen O, et al. 2022.. The Arctic has warmed nearly four times faster than the globe since 1979. . Commun. Earth Environ. 3:(1):168
    [Crossref] [Google Scholar]
  75. Rheubottom SI, Barrio IC, Kozlov MV, Alatalo JM, Andersson T, et al. 2019.. Hiding in the background: community-level patterns in invertebrate herbivory across the tundra biome. . Polar Biol. 42:(10):188197
    [Crossref] [Google Scholar]
  76. Rieksta J, Li T, Davie-Martin CL, Aeppli LCB, Høye TT, Rinnan R. 2023a.. Volatile responses of dwarf birch to mimicked insect herbivory and experimental warming at two elevations in Greenlandic tundra. . Plant-Environ. Interact. 4:(1):2335
    [Crossref] [Google Scholar]
  77. Rieksta J, Li T, Davie-Martin CL, Simin T, Brogaard Aeppli LC, et al. 2023b.. Seasonal and elevational variability in dwarf birch VOC emissions in Greenlandic tundra. . J. Geophys. Res. Biogeosci. 128:(11):e2023JG007475
    [Crossref] [Google Scholar]
  78. Rieksta J, Li T, Junker RR, Jepsen JU, Ryde I, Rinnan R. 2020.. Insect herbivory strongly modifies mountain birch volatile emissions. . Front. Plant Sci. 11::558979
    [Crossref] [Google Scholar]
  79. Rieksta J, Li T, Michelsen A, Rinnan R. 2021.. Synergistic effects of insect herbivory and changing climate on plant volatile emissions in the subarctic tundra. . Glob. Change Biol. 27:(20):503042
    [Crossref] [Google Scholar]
  80. Rinnan R, Albers CN. 2020.. Soil uptake of volatile organic compounds: ubiquitous and underestimated?. J. Geophys. Res. Biogeosci. 125:(6):e2020JG005773
    [Crossref] [Google Scholar]
  81. Rinnan R, Iversen LL, Tang J, Vedel-Petersen I, Schollert M, Schurgers G. 2020.. Separating direct and indirect effects of rising temperatures on biogenic volatile emissions in the Arctic. . PNAS 117:(51):3247683
    [Crossref] [Google Scholar]
  82. Rinnan R, Steinke M, McGenity T, Loreto F. 2014.. Plant volatiles in extreme terrestrial and marine environments. . Plant Cell Environ. 37:(8):177689
    [Crossref] [Google Scholar]
  83. Rosenstiel TN, Potosnak MJ, Griffin KL, Fall R, Monson RK. 2003.. Increased CO2 uncouples growth from isoprene emission in an agriforest ecosystem. . Nature 421:(6920):25659
    [Crossref] [Google Scholar]
  84. Rowen E, Kaplan I. 2016.. Eco-evolutionary factors drive induced plant volatiles: a meta-analysis. . New Phytol. 210:(1):28494
    [Crossref] [Google Scholar]
  85. Ryde I, Davie-Martin CL, Li T, Naursgaard MP, Rinnan R. 2022.. Volatile organic compound emissions from subarctic mosses and lichens. . Atmos. Environ. 290::119357
    [Crossref] [Google Scholar]
  86. Ryde I, Li T, Rieksta J, dos Santos BM, Neilson EHJ, et al. 2021.. Seasonal and elevational variability in the induction of specialized compounds from mountain birch (Betula pubescens var. pumila) by winter moth larvae (Operophtera brumata). . Tree Physiol. 41:(6):101933
    [Crossref] [Google Scholar]
  87. Sarkar C, Turnipseed A, Shertz S, Karl T, Potosnak M, et al. 2020.. A portable, low-cost relaxed eddy accumulation (REA) system for quantifying ecosystem-level fluxes of volatile organics. . Atmos. Environ. 242::117764
    [Crossref] [Google Scholar]
  88. Scherrer D, Körner C. 2010.. Infra-red thermometry of alpine landscapes challenges climatic warming projections. . Glob. Change Biol. 16:(9):260213
    [Crossref] [Google Scholar]
  89. Schollert M, Burchard S, Faubert P, Michelsen A, Rinnan R. 2014.. Biogenic volatile organic compound emissions in four vegetation types in high arctic Greenland. . Polar Biol. 37:(2):23749
    [Crossref] [Google Scholar]
  90. Schollert M, Kivimäenpää M, Valolahti HM, Rinnan R. 2015.. Climate change alters leaf anatomy, but has no effects on volatile emissions from arctic plants. . Plant Cell Environ. 38:(10):204860
    [Crossref] [Google Scholar]
  91. Schuman MC, Heinzel N, Gaquerel E, Svatos A, Baldwin IT. 2009.. Polymorphism in jasmonate signaling partially accounts for the variety of volatiles produced by Nicotiana attenuata plants in a native population. . New Phytol. 183:(4):113448
    [Crossref] [Google Scholar]
  92. Scott CE, Arnold SR, Monks SA, Asmi A, Paasonen P, Spracklen DV. 2018.. Substantial large-scale feedbacks between natural aerosols and climate. . Nat. Geosci. 11:(1):4448
    [Crossref] [Google Scholar]
  93. Seco R, Holst T, Davie-Martin CL, Simin T, Guenther A, et al. 2022.. Strong isoprene emission response to temperature in tundra vegetation. . PNAS 119:(38):e2118014119
    [Crossref] [Google Scholar]
  94. Seco R, Holst T, Matzen MS, Westergaard-Nielsen A, Li T, et al. 2020.. Volatile organic compound fluxes in a subarctic peatland and lake. . Atmos. Chem. Phys. 20:(21):13399416
    [Crossref] [Google Scholar]
  95. Selimovic V, Ketcherside D, Chaliyakunnel S, Wielgasz C, Permar W, et al. 2022.. Atmospheric biogenic volatile organic compounds in the Alaskan Arctic tundra: constraints from measurements at Toolik Field Station. . Atmos. Chem. Phys. 22:(21):1403758
    [Crossref] [Google Scholar]
  96. Simin T, Tang J, Holst T, Rinnan R. 2021.. Volatile organic compound emission in tundra shrubs – dependence on species characteristics and the near-surface environment. . Environ. Exp. Bot. 184::104387
    [Crossref] [Google Scholar]
  97. Sims L, Wright C, Crombie AT, Dawson R, Lockwood C, et al. 2023.. Whole-cell studies of substrate and inhibitor specificity of isoprene monooxygenase and related enzymes. . Environ. Microbiol. Rep. 15:(6):80919
    [Crossref] [Google Scholar]
  98. Sindelarova K, Granier C, Bouarar I, Guenther A, Tilmes S, et al. 2014.. Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years. . Atmos. Chem. Phys. 14:(17):931741
    [Crossref] [Google Scholar]
  99. Speed JDM, Chimal-Ballesteros JA, Martin MD, Barrio IC, Vuorinen KEM, Soininen EM. 2021.. Will borealization of Arctic tundra herbivore communities be driven by climate warming or vegetation change?. Glob. Change Biol. 27:(24):656877
    [Crossref] [Google Scholar]
  100. Svendsen SH, Lindwall F, Michelsen A, Rinnan R. 2016.. Biogenic volatile organic compound emissions along a high arctic soil moisture gradient. . Sci. Total Environ. 573::13138
    [Crossref] [Google Scholar]
  101. Svendsen SH, Priemé A, Voriskova J, Kramshøj M, Schostag M, et al. 2018.. Emissions of biogenic volatile organic compounds from arctic shrub litter are coupled with changes in the bacterial community composition. . Soil Biol. Biochem. 120::8090
    [Crossref] [Google Scholar]
  102. Swanson L, Li T, Rinnan R. 2021.. Contrasting responses of major and minor volatile compounds to warming and gall-infestation in the Arctic willow Salix myrsinites. . Sci. Total Environ. 793::148516
    [Crossref] [Google Scholar]
  103. Tang J, Schurgers G, Rinnan R. 2019.. Process understanding of soil BVOC fluxes in natural ecosystems: a review. . Rev. Geophys. 57:(3):96686
    [Crossref] [Google Scholar]
  104. Tang J, Schurgers G, Valolahti H, Faubert P, Tiiva P, et al. 2016.. Challenges in modelling isoprene and monoterpene emission dynamics of Arctic plants: a case study from a subarctic tundra heath. . Biogeosciences 13:(24):665167
    [Crossref] [Google Scholar]
  105. Tang J, Valolahti H, Kivimäenpää M, Michelsen A, Rinnan R. 2018.. Acclimation of biogenic volatile organic compound emission from subarctic heath under long-term moderate warming. . J. Geophys. Res. Biogeosci. 123:(1):95105
    [Crossref] [Google Scholar]
  106. Tang J, Zhou P, Miller PA, Schurgers G, Gustafson A, et al. 2023.. High-latitude vegetation changes will determine future plant volatile impacts on atmospheric organic aerosols. . npj Clim. Atmos. Sci. 6:(1):147
    [Crossref] [Google Scholar]
  107. Tape K, Sturm M, Racine C. 2006.. The evidence for shrub expansion in Northern Alaska and the pan-Arctic. . Glob. Change Biol. 12:(4):686702
    [Crossref] [Google Scholar]
  108. Tiiva P, Faubert P, Michelsen A, Holopainen T, Holopainen JK, Rinnan R. 2008.. Climatic warming increases isoprene emission from a subarctic heath. . New Phytol. 180:(4):85363
    [Crossref] [Google Scholar]
  109. Tiiva P, Faubert P, Räty S, Holopainen JK, Holopainen T, Rinnan R. 2009.. Contribution of vegetation and water table on isoprene emission from boreal peatland microcosms. . Atmos. Environ. 43:(34):546975
    [Crossref] [Google Scholar]
  110. Torp M, Olofsson J, Witzell J, Baxter R. 2010.. Snow-induced changes in dwarf birch chemistry increase moth larval growth rate and level of herbivory. . Polar Biol. 33:(5):693702
    [Crossref] [Google Scholar]
  111. Valolahti H, Kivimäenpää M, Faubert P, Michelsen A, Rinnan R. 2015.. Climate change-induced vegetation change as a driver of increased subarctic biogenic volatile organic compound emissions. . Glob. Change Biol. 21:(9):347888
    [Crossref] [Google Scholar]
  112. Vedel-Petersen I, Schollert M, Nymand J, Rinnan R. 2015.. Volatile organic compound emission profiles of four common arctic plants. . Atmos. Environ. 120::11726
    [Crossref] [Google Scholar]
  113. Vettikkat L, Miettinen P, Buchholz A, Rantala P, Yu H, et al. 2023.. High emission rates and strong temperature response make boreal wetlands a large source of isoprene and terpenes. . Atmos. Chem. Phys. 23:(4):268398
    [Crossref] [Google Scholar]
  114. Vowles T, Björk RG. 2019.. Implications of evergreen shrub expansion in the Arctic. . J. Ecol. 107:(2):65055
    [Crossref] [Google Scholar]
  115. Walsh JE, Ballinger TJ, Euskirchen ES, Hanna E, Mård J, et al. 2020.. Extreme weather and climate events in northern areas: a review. . Earth-Sci. Rev. 209::103324
    [Crossref] [Google Scholar]
  116. Wang H, Welch AM, Nagalingam S, Leong C, Czimczik CI, . 2024.. High temperature sensitivity of Arctic isoprene emissions explained by sedges. . Nat. Commun. 15::6144
    [Crossref] [Google Scholar]
  117. Wang T, Kalalian C, Fillion D, Perrier S, Chen J, et al. 2023.. Sunlight induces the production of atmospheric volatile organic compounds (VOCs) from thermokarst ponds. . Environ. Sci. Technol. 57:(45):1736373
    [Crossref] [Google Scholar]
  118. Wester-Larsen L, Kramshøj M, Albers CN, Rinnan R. 2020.. Biogenic volatile organic compounds in Arctic soil: a field study of concentrations and variability with vegetation cover. . J. Geophys. Res. Biogeosci. 125:(7):e2019JG005551
    [Crossref] [Google Scholar]
  119. Xu J, Morris PJ, Liu J, Holden J. 2018.. PEATMAP: refining estimates of global peatland distribution based on a meta-analysis. . CATENA 160::13440
    [Crossref] [Google Scholar]
  120. Yli-Juuti T, Mielonen T, Heikkinen L, Arola A, Ehn M, et al. 2021.. Significance of the organic aerosol driven climate feedback in the boreal area. . Nat. Commun. 12:(1):5637
    [Crossref] [Google Scholar]
  121. Yli-Pirilä P, Copolovici L, Kannaste A, Noe S, Blande JD, et al. 2016.. Herbivory by an outbreaking moth increases emissions of biogenic volatiles and leads to enhanced secondary organic aerosol formation capacity. . Environ. Sci. Technol. 50:(21):1150110
    [Crossref] [Google Scholar]
  122. Zhang-Turpeinen H, Kivimäenpää M, Aaltonen H, Berninger F, Köster E, et al. 2020.. Wildfire effects on BVOC emissions from boreal forest floor on permafrost soil in Siberia. . Sci. Total Environ. 711::134851
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-102722-125156
Loading
/content/journals/10.1146/annurev-ecolsys-102722-125156
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error