1932

Abstract

The continuous process of decision-making in animals is crucial for their survival. For example, when deciding when, where, and with whom to forage, they need to consider their internal state, previous experience, and social information in addition to external factors such as food distribution and weather conditions. Studying animal decision-making in the wild is a complicated task due to the complexity of the process, which requires continuous monitoring of the examined individual and its environment. Here, we review the most advanced methods to examine decision-making from an individual point of view, namely tracking technologies to monitor the movement of an individual, the sensory information available to it, the presence and behavior of other animals around it, and its surrounding environment. We provide examples for studying decision-making during competition, examining the ontogeny of decision-making, and describing the importance of long-term monitoring and field manipulation for understanding decision processes throughout different life stages.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-102722-125640
2024-11-04
2024-12-09
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/55/1/annurev-ecolsys-102722-125640.html?itemId=/content/journals/10.1146/annurev-ecolsys-102722-125640&mimeType=html&fmt=ahah

Literature Cited

  1. Acácio M, Anglister N, Vaadia G, Harel R, Nathan R, et al. 2023.. A lifetime track of a Griffon vulture: the moving story of Rehovot (Y64). . Ecology 104::e3985
    [Crossref] [Google Scholar]
  2. Aplin LM, Farine DR, Morand-Ferron J, Cockburn A, Thornton A, Sheldon BC. 2015.. Experimentally induced innovations lead to persistent culture via conformity in wild birds. . Nature 518:(7540):53841
    [Crossref] [Google Scholar]
  3. Baddeley B, Graham P, Husbands P, Philippides A. 2012.. A model of ant route navigation driven by scene familiarity. . PLOS Comput. Biol. 8:(1):1002336
    [Crossref] [Google Scholar]
  4. Berthold P, Kaatz M, Querner U. 2004.. Long-term satellite tracking of white stork (Ciconia ciconia) migration: constancy versus variability. . J. Ornithol. 145:(4):35659
    [Crossref] [Google Scholar]
  5. Berthold P, van den Bossche W, Jakubiec Z, Kaatz C, Kaatz M, Querner U. 2002.. Long-term satellite tracking sheds light upon variable migration strategies of White Storks (Ciconia ciconia). . J. Ornithol. 143:(4):48993
    [Crossref] [Google Scholar]
  6. Budaev S, Jørgensen C, Mangel M, Eliassen S, Giske J. 2019.. Decision-making from the animal perspective: bridging ecology and subjective cognition. . Front. Ecol. Evol. 7::164
    [Crossref] [Google Scholar]
  7. Byholm P, Beal M, Isaksson N, Lötberg U, Åkesson S. 2022.. Paternal transmission of migration knowledge in a long-distance bird migrant. . Nat. Commun. 13:(1):1566
    [Crossref] [Google Scholar]
  8. Cant ET, Smith AD, Reynolds DR, Osborne JL. 2005.. Tracking butterfly flight paths across the landscape with harmonic radar. . Proc. R. Soc. B 272:(1565):78590
    [Crossref] [Google Scholar]
  9. Chernetsov N, Berthold P, Querner U. 2004.. Migratory orientation of first-year white storks (Ciconia ciconia): inherited information and social interactions. . J. Exp. Biol. 207:(6):93743
    [Crossref] [Google Scholar]
  10. Chudnovsky A, Goldshtein A, Shashua-Bar L, Yovel Y, Potchter O. 2023.. Bat bio-assisted sampling (BAS) for monitoring urban heat island. . Appl. Geogr. 155::102952
    [Crossref] [Google Scholar]
  11. Cochran WW, Mouritsen H, Wikelski M. 2004.. Migrating songbirds recalibrate their magnetic compass daily from twilight cues. . Science 304:(5669):4058
    [Crossref] [Google Scholar]
  12. Cvikel N, Levin E, Hurme E, Borissov I, Boonman A, et al. 2015.. On-board recordings reveal no jamming avoidance in wild bats. . Proc. R. Soc. B 282:(1798):20142274
    [Crossref] [Google Scholar]
  13. Dukas R, Edelstein-Keshet L. 1998.. The spatial distribution of colonial food provisioners. . J. Theor. Biol. 190:(2):12134
    [Crossref] [Google Scholar]
  14. Egert-Berg K, Hurme ER, Greif S, Goldstein A, Harten L, et al. 2018.. Resource ephemerality drives social foraging in bats. . Curr. Biol. 28:(22):366773.e5
    [Crossref] [Google Scholar]
  15. Elliott KH, Le Vaillant M, Kato A, Speakman JR, Ropert-Coudert Y. 2013.. Accelerometry predicts daily energy expenditure in a bird with high activity levels. . Biol. Lett. 9:(1):20120919
    [Crossref] [Google Scholar]
  16. Fisher KE, Dixon PM, Han G, Adelman JS, Bradbury SP. 2021.. Locating large insects using automated VHF radio telemetry with a multi-antennae array. . Methods Ecol. Evol. 12:(3):494506
    [Crossref] [Google Scholar]
  17. Flack A, Fiedler W, Blas J, Pokrovsky I, Kaatz M, et al. 2016.. Costs of migratory decisions: a comparison across eight white stork populations. . Sci. Adv. 2:(1):e1500931
    [Crossref] [Google Scholar]
  18. Garber PA. 1988.. Foraging decisions during nectar feeding by tamarin monkeys (Saguinus mystax and Saguinus fuscicollis, Callitrichidae, Primates) in Amazonian Peru. . Biotropica 20:(2):1006
    [Crossref] [Google Scholar]
  19. Gilbert LE. 1975.. Ecological consequences of a coevolved mutualism between butterflies and plants. . In Coevolution of Animals and Plants, ed. LE Gilbert, PH Raven , pp. 21040. Austin:: Univ. Tex. Press
    [Google Scholar]
  20. Gill FB. 1988.. Trapline foraging by hermit hummingbirds: competition for an undefended, renewable resource. . Ecology 69:(6):193342
    [Crossref] [Google Scholar]
  21. Gold JI, Shadlen MN. 2007.. The neural basis of decision making. . Annu. Rev. Neurosci. 30::53574
    [Crossref] [Google Scholar]
  22. Goldshtein A, Akrish S, Giryes R, Yovel Y. 2022a.. An artificial neural network explains how bats might use vision for navigation. . Commun. Biol. 5:(1):1325
    [Crossref] [Google Scholar]
  23. Goldshtein A, Handel M, Eitan O, Bonstein A, Shaler T, et al. 2020.. Reinforcement learning enables resource partitioning in foraging bats. . Curr. Biol. 30:(20):4096102.e6
    [Crossref] [Google Scholar]
  24. Goldshtein A, Harten L, Yovel Y. 2022b.. Mother bats facilitate pup navigation learning. . Curr. Biol. 32:(2):35060.e4
    [Crossref] [Google Scholar]
  25. Graving JM, Chae D, Naik H, Li L, Koger B, et al. 2019.. DeepPoseKit, a software toolkit for fast and robust animal pose estimation using deep learning. . eLife 8::e47994
    [Crossref] [Google Scholar]
  26. Greif S, Yovel Y. 2019.. Using on-board sound recordings to infer behaviour of free-moving wild animals. . J. Exp. Biol. 222:(Suppl. 1):jeb184689
    [Crossref] [Google Scholar]
  27. Grönroos J, Green M, Alerstam T. 2012.. To fly or not to fly depending on winds: shorebird migration in different seasonal wind regimes. . Anim. Behav. 83:(6):144957
    [Crossref] [Google Scholar]
  28. Guilford T, Roberts S, Biro D, Rezek I. 2004.. Positional entropy during pigeon homing II: navigational interpretation of Bayesian latent state models. . J. Theor. Biol. 227:(1):2538
    [Crossref] [Google Scholar]
  29. Halpin LR, Ross JD, Ramos R, Mott R, Carlile N, et al. 2021.. Double-tagging scores of seabirds reveals that light-level geolocator accuracy is limited by species idiosyncrasies and equatorial solar profiles. . Methods Ecol. Evol. 12:(11):224355
    [Crossref] [Google Scholar]
  30. Halsey LG, Shepard ELC, Wilson RP. 2011.. Assessing the development and application of the accelerometry technique for estimating energy expenditure. . Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 158:(3):30514
    [Crossref] [Google Scholar]
  31. Harten L, Chen X, de Marcas L, Rachum A, Handel M, . 2024.. Time-mapping and future-oriented behavior in free-ranging wild fruit bats. . Curr. Biol. 34:(13):300510.e4
    [Crossref] [Google Scholar]
  32. Harten L, Gonceer N, Handel M, Dash O, Fokidis HB, Yovel Y. 2021.. Urban bat pups take after their mothers and are bolder and faster learners than rural pups. . BMC Biol. 19::190
    [Crossref] [Google Scholar]
  33. Harten L, Katz A, Goldshtein A, Handel M, Yovel Y. 2020.. The ontogeny of a mammalian cognitive map in the real world. . Science 369:(6500):19497
    [Crossref] [Google Scholar]
  34. Heathcote RJP, Whiteside MA, Beardsworth CE, Van Horik JO, Laker PR, et al. 2023.. Spatial memory predicts home range size and predation risk in pheasants. . Nat. Ecol. Evol. 7:(3):46171
    [Crossref] [Google Scholar]
  35. Hermans C, Koblitz JC, Bartholomeus H, Stilz P, Visser ME, Spoelstra K. 2023.. Combining acoustic tracking and LiDAR to study bat flight behaviour in three-dimensional space. . Mov. Ecol. 11:(1):25
    [Crossref] [Google Scholar]
  36. Hodgson JC, Mott R, Baylis SM, Pham TT, Wotherspoon S, et al. 2018.. Drones count wildlife more accurately and precisely than humans. . Methods Ecol. Evol. 9:(5):116067
    [Crossref] [Google Scholar]
  37. Holland RA, Thorup K, Vonhof MJ, Cochran WW, Wikelski M. 2006.. Bat orientation using Earth's magnetic field. . Nature 444:(7120):702
    [Crossref] [Google Scholar]
  38. Janson CH, Terborgh J, Emmons LH. 1981.. Non-flying mammals as pollinating agents in the Amazonian forest. . Biotropica 13:(2):16
    [Crossref] [Google Scholar]
  39. Kadmon R, Shmida A. 1992.. Departure rules used by bees foraging for nectar: a field test. . Evol. Ecol. 6:(2):14251
    [Crossref] [Google Scholar]
  40. Kane SA, Fulton AH, Rosenthal LJ. 2015.. When hawks attack: animal-borne video studies of goshawk pursuit and prey-evasion strategies. . J. Exp. Biol. 218:(2):21222
    [Crossref] [Google Scholar]
  41. Kays R, Crofoot MC, Jetz W, Wikelski M. 2015.. Terrestrial animal tracking as an eye on life and planet. . Science 348:(6240):aaa2478
    [Crossref] [Google Scholar]
  42. Koger B, Deshpande A, Kerby JT, Graving JM, Costelloe BR, Couzin ID. 2023.. Quantifying the movement, behaviour and environmental context of group-living animals using drones and computer vision. . J. Anim. Ecol. 92:(7):135771
    [Crossref] [Google Scholar]
  43. Krivoruchko K, Koblitz JC, Goldshtein A, Biljman K, Guillén-Servent A, Yovel Y. 2024.. A social foraging trade-off in echolocating bats reveals that they benefit from some conspecifics but are impaired when many are around. . PNAS 121:(30):e2321724121
    [Crossref] [Google Scholar]
  44. Langley LP, Bearhop S, Burton NHK, Banks AN, Frayling T, et al. 2021.. GPS tracking reveals landfill closures induce higher foraging effort and habitat switching in gulls. . Mov. Ecol. 9:(1):56
    [Crossref] [Google Scholar]
  45. Levin E, Barnea A, Yovel Y, Yom-Tov Y. 2006.. Have introduced fish initiated piscivory among the long-fingered bat?. Mamm. Biol. 71:(3):13943
    [Crossref] [Google Scholar]
  46. Lewanzik D, Sundaramurthy AK, Goerlitz HR. 2019.. Insectivorous bats integrate social information about species identity, conspecific activity and prey abundance to estimate cost–benefit ratio of interactions. . J. Anim. Ecol. 88:(10):146273
    [Crossref] [Google Scholar]
  47. Liechti F, Witvliet W, Weber R, Bächler E. 2013.. First evidence of a 200-day non-stop flight in a bird. . Nat. Commun. 4:(1):2554
    [Crossref] [Google Scholar]
  48. Liégeois M, Tixier P, Beaudoin-Ollivier L. 2016.. Use of radio telemetry for studying flight movements of Paysandisia archon (Lepidoptera: Castniidae). . J. Insect Behav. 29:(2):199213
    [Crossref] [Google Scholar]
  49. Lihoreau M, Raine NE, Reynolds AM, Stelzer RJ, Lim KS, et al. 2012.. Radar tracking and motion-sensitive cameras on flowers reveal the development of pollinator multi-destination routes over large spatial scales. . PLOS Biol. 10:(9):1001392
    [Crossref] [Google Scholar]
  50. Lok T, van der Geest M, Bom RA, de Goeij P, Piersma T, Bouten W. 2023.. Prey ingestion rates revealed by back-mounted accelerometers in Eurasian spoonbills. . Anim. Biotelem. 11:(1):5
    [Crossref] [Google Scholar]
  51. Luo J, Greif S, Ye H, Bumrungsri S, Eitan O, Yovel Y. 2021.. Flight rapidly modulates body temperature in freely behaving bats. . Anim. Biotelem. 9:(1):45
    [Crossref] [Google Scholar]
  52. Lyons MB, Brandis KJ, Murray NJ, Wilshire JH, McCann JA, et al. 2019.. Monitoring large and complex wildlife aggregations with drones. . Methods Ecol. Evol. 10:(7):102435
    [Crossref] [Google Scholar]
  53. Makin DF, Kotler BP. 2019.. Does intraspecific competition among Allenby's gerbils lead to an Ideal Free Distribution across foraging patches?. Behav. Process. 167::103922
    [Crossref] [Google Scholar]
  54. Menz MHM, Scacco M, Bürki-Spycher H-M, Williams HJ, Reynolds DR, et al. 2022.. Individual tracking reveals long-distance flight-path control in a nocturnally migrating moth. . Science 377:(6607):76468
    [Crossref] [Google Scholar]
  55. Menzel R, Greggers U, Smith A, Berger S, Brandt R, et al. 2005.. Honey bees navigate according to a map-like spatial memory. . PNAS 102:(8):304045
    [Crossref] [Google Scholar]
  56. Menzel R, Tison L, Fischer-Nakai J, Cheeseman J, Balbuena MS, et al. 2019.. Guidance of navigating honeybees by learned elongated ground structures. . Front. Behav. Neurosci. 12::322
    [Crossref] [Google Scholar]
  57. Mo M, Bonatakis K. 2021.. Approaching wildlife with drones: using scientific literature to identify factors to consider for minimising disturbance. . Aust. Zool. 42:(1):129
    [Crossref] [Google Scholar]
  58. Morelle K, Barasona JA, Bosch J, Heine G, Daim A, et al. 2023.. Accelerometer-based detection of African swine fever infection in wild boar. . Proc. R. Soc. B 290:(2005):20231396
    [Crossref] [Google Scholar]
  59. Müller J, Nawrot M, Menzel R, Landgraf T. 2018.. A neural network model for familiarity and context learning during honeybee foraging flights. . Biol. Cybern. 112:(1–2):11326
    [Crossref] [Google Scholar]
  60. Nachev V, Stich KP, Winter C, Bond A, Kamil A, Winter Y. 2017.. Cognition-mediated evolution of low-quality floral nectars. . Science 355:(6320):7578
    [Crossref] [Google Scholar]
  61. Nathan R, Monk CT, Arlinghaus R, Adam T, Alós J, et al. 2022.. Big-data approaches lead to an increased understanding of the ecology of animal movement. . Science 375:(6582):eabg1780
    [Crossref] [Google Scholar]
  62. Nathan R, Spiegel O, Fortmann-Roe S, Harel R, Wikelski M, Getz WM. 2012.. Using tri-axial acceleration data to identify behavioral modes of free-ranging animals: general concepts and tools illustrated for griffon vultures. . J. Exp. Biol. 215:(6):98696
    [Crossref] [Google Scholar]
  63. O'Mara MT, Amorim F, Scacco M, McCracken GF, Safi K, et al. 2021.. Bats use topography and nocturnal updrafts to fly high and fast. . Curr. Biol. 31:(6):131116.e4
    [Crossref] [Google Scholar]
  64. O'Neal ME, Landis DA, Rothwell E, Kempel L, Reinhard D. 2004.. Tracking insects with harmonic radar: a case study. . Am. Entomol. 50:(4):21218
    [Crossref] [Google Scholar]
  65. Orchan Y, Ovaskainen O, Bouten W, Nathan R. 2016.. Novel insights into the map stage of true navigation in nonmigratory wild birds (stone curlews, Burhinus oedicnemus). . Am. Nat. 187:(6):E15265
    [Crossref] [Google Scholar]
  66. Phillips RA, Silk JRD, Croxall JP, Afanasyev V, Briggs DR. 2004.. Accuracy of geolocation estimates for flying seabirds. . Mar. Ecol. Prog. Ser. 266::26572
    [Crossref] [Google Scholar]
  67. Pollonara E, Luschi P, Guilford T, Wikelski M, Bonadonna F, Gagliardo A. 2015.. Olfaction and topography, but not magnetic cues, control navigation in a pelagic seabird: displacements with shearwaters in the Mediterranean Sea. . Sci. Rep. 5:(1):16486
    [Crossref] [Google Scholar]
  68. Prat Y, Yovel Y. 2020.. Decision making in foraging bats. . Curr. Opin. Neurobiol. 60::16975
    [Crossref] [Google Scholar]
  69. Ripperger SP, Carter GG. 2021.. Social foraging in vampire bats is predicted by long-term cooperative relationships. . PLOS Biol. 19:(9):e3001366
    [Crossref] [Google Scholar]
  70. Ripperger SP, Günther L, Wieser H, Duda N, Hierold M, et al. 2019.. Proximity sensors on common noctule bats reveal evidence that mothers guide juveniles to roosts but not food. . Biol. Lett. 15::20180884
    [Crossref] [Google Scholar]
  71. Robinson SVJ, Hoover SE, Pernal SF, Cartar RV. 2022.. Optimal distributions of central-place foragers: honey bee foraging in a mass flowering crop. . Behav. Ecol. 33:(2):38697
    [Crossref] [Google Scholar]
  72. Roeleke M, Schlägel UE, Gallagher C, Pufelski J, Blohm T, et al. 2022.. Insectivorous bats form mobile sensory networks to optimize prey localization: the case of the common noctule bat. . PNAS 119:(33):e2203663119
    [Crossref] [Google Scholar]
  73. Rutz C, Bluff LA, Weir AAS, Kacelnik A. 2007.. Video cameras on wild birds. . Science 318:(5851):765
    [Crossref] [Google Scholar]
  74. Safi K, Kranstauber B, Weinzierl R, Griffin L, Rees EC, et al. 2013.. Flying with the wind: scale dependency of speed and direction measurements in modelling wind support in avian flight. . Mov. Ecol. 1:(1):4
    [Crossref] [Google Scholar]
  75. Sapir N, Horvitz N, Dechmann DKN, Fahr J, Wikelski M. 2014.. Commuting fruit bats beneficially modulate their flight in relation to wind. . Proc. R. Soc. B 281:(1782):20140018
    [Crossref] [Google Scholar]
  76. Sapir N, Horvitz N, Wikelski M, Avissar R, Mahrer Y, Nathan R. 2011.. Migration by soaring or flapping: Numerical atmospheric simulations reveal that turbulence kinetic energy dictates bee-eater flight mode. . Proc. R. Soc. B 278:(1723):338086
    [Crossref] [Google Scholar]
  77. Sjöberg S, Malmiga G, Nord A, Andersson A, Bäckman J, et al. 2021.. Extreme altitudes during diurnal flights in a nocturnal songbird migrant. . Science 372:(6542):64648
    [Crossref] [Google Scholar]
  78. Sørensen PM, Wisniewska DM, Jensen FH, Johnson M, Teilmann J, Madsen PT. 2018.. Click communication in wild harbour porpoises (Phocoena phocoena). . Sci. Rep. 8:(1):9702
    [Crossref] [Google Scholar]
  79. Stidsholt L, Hubancheva A, Greif S, Goerlitz HR, Johnson M, et al. 2023.. Echolocating bats prefer a high risk-high gain foraging strategy to increase prey profitability. . eLife 12::e84190
    [Crossref] [Google Scholar]
  80. Stiles FG. 1971.. Time, energy, and territoriality of the Anna Hummingbird (Calypte anna). . Science 173:(3999):81821
    [Crossref] [Google Scholar]
  81. Strandburg-Peshkin A, Farine DR, Couzin ID, Crofoot MC. 2015.. Shared decision-making drives collective movement in wild baboons. . Science 348:(6241):135861
    [Crossref] [Google Scholar]
  82. Strandburg-Peshkin A, Farine DR, Crofoot MC, Couzin ID. 2017.. Habitat and social factors shape individual decisions and emergent group structure during baboon collective movement. . eLife 6::e19505
    [Crossref] [Google Scholar]
  83. Toledo S, Shohami D, Schiffner I, Lourie E, Orchan Y, et al. 2020.. Cognitive map-based navigation in wild bats revealed by a new high-throughput tracking system. . Science 369:(6500):18893
    [Crossref] [Google Scholar]
  84. Tuia D, Kellenberger B, Beery S, Costelloe BR, Zuffi S, et al. 2022.. Perspectives in machine learning for wildlife conservation. . Nat. Commun. 13:(1):792
    [Crossref] [Google Scholar]
  85. van de Kerk M, Larsen RT, Olson DD, Hersey KR, McMillan BR. 2021.. Variation in movement patterns of mule deer: Have we oversimplified migration?. Mov. Ecol. 9:(1):44
    [Crossref] [Google Scholar]
  86. Watanabe YY, Takahashi A. 2013.. Linking animal-borne video to accelerometers reveals prey capture variability. . PNAS 110:(6):2199204
    [Crossref] [Google Scholar]
  87. Weimerskirch H, Cherel Y, Delord K, Jaeger A, Patrick SC, Riotte-Lambert L. 2014.. Lifetime foraging patterns of the wandering albatross: life on the move!. J. Exp. Mar. Biol. Ecol. 450::6878
    [Crossref] [Google Scholar]
  88. Wild TA, van Schalkwyk L, Viljoen P, Heine G, Richter N, et al. 2023.. A multi-species evaluation of digital wildlife monitoring using the Sigfox IoT network. . Anim. Biotelem. 11:(1):13
    [Crossref] [Google Scholar]
  89. Wilson RP, Börger L, Holton MD, Scantlebury DM, Gómez-Laich A, et al. 2020.. Estimates for energy expenditure in free-living animals using acceleration proxies: a reappraisal. . J. Anim. Ecol. 89:(1):16172
    [Crossref] [Google Scholar]
  90. Woodgate JL, Makinson JC, Lim KS, Reynolds AM, Chittka L. 2016.. Life-long radar tracking of bumblebees. . PLOS ONE 11:(8):e0160333
    [Crossref] [Google Scholar]
  91. Wu Z, Zhang C, Gu X, Duporge I, Hughey LF, et al. 2023.. Deep learning enables satellite-based monitoring of large populations of terrestrial mammals across heterogeneous landscape. . Nat. Commun. 14:(1):3072
    [Crossref] [Google Scholar]
  92. Yoda K. 2019.. Advances in bio-logging techniques and their application to study navigation in wild seabirds. . Adv. Robot. 33:(3–4):10817
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-102722-125640
Loading
/content/journals/10.1146/annurev-ecolsys-102722-125640
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error