1932

Abstract

The Anthropocene biosphere constitutes an unprecedented phase in the evolution of life on Earth with one species, humans, exerting extensive control. The increasing intensity of anthropogenic forces in the twenty-first century has widespread implications for attempts to govern both human-dominated ecosystems and the last remaining wild ecosystems. Here, we review how evolutionary biology can inform governance and policies in the Anthropocene, focusing on five governance challenges that span biodiversity, environmental management, food and other biomass production, and human health. The five challenges are: () evolutionary feedbacks, () maintaining resilience, () alleviating constraints, () coevolutionary disruption, and () biotechnology. Strategies for governing these dynamics will themselves have to be coevolutionary, as eco-evolutionary and social dynamics change in response to each other.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-110218-024621
2019-11-02
2024-10-03
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/50/1/annurev-ecolsys-110218-024621.html?itemId=/content/journals/10.1146/annurev-ecolsys-110218-024621&mimeType=html&fmt=ahah

Literature Cited

  1. Adhikari K, Chacón-Duque JC, Mendoza-Revilla J, Fuentes-Guajardo M, Ruiz-Linares A 2017. The genetic diversity of the Americas. Annu. Rev. Genom. Hum. Genet. 18:277–96
    [Google Scholar]
  2. Aitken SN, Bemmels JB. 2016. Time to get moving: assisted gene flow of forest trees. Evol. Appl. 9:1271–90
    [Google Scholar]
  3. Akbari BOS, Bellen HJ, Bier E, Simon L, Burt A et al. 2015. Safeguarding gene drive experiments in the laboratory. Science 349:6251927–29
    [Google Scholar]
  4. Alberti M, Correa C, Marzluff JM, Hendry AP, Palkovacs EP et al. 2017. Global urban signatures of phenotypic change in animal and plant populations. PNAS 144:8951–56
    [Google Scholar]
  5. Allen T, Murray KA, Zambrana-Torrelio C, Morse SS, Rondinini C et al. 2017. Global hotspots and correlates of emerging zoonotic diseases. Nat. Commun. 8:11–10
    [Google Scholar]
  6. Araújo MB, Ferri-Yáñez F, Bozinovic F, Marquet PA, Valladares F, Chown SL 2013. Heat freezes niche evolution. Ecol. Lett. 16:91206–19
    [Google Scholar]
  7. Ashley MV, Willson MF, Pergams ORW, O'Dowd DJ, Gende SM, Brown JS 2003. Evolutionarily enlightened management. Biol. Conserv. 111:2115–23
    [Google Scholar]
  8. Bar-On YM, Phillips R, Milo R, Falkowski PG 2018. The biomass distribution on Earth. PNAS 115:286506–11
    [Google Scholar]
  9. Barraclough TG. 2015. How do species interactions affect evolutionary dynamics across whole communities?. Annu. Rev. Ecol. Evol. Syst. 46:25–48
    [Google Scholar]
  10. Bell G. 2017. Evolutionary rescue. Annu. Rev. Ecol. Evol. Syst. 48:605–27
    [Google Scholar]
  11. Bennett JR, Maloney RF, Steeves TE, Brazill-Boast J, Possingham HP, Seddon PJ 2017. Spending limited resources on de-extinction could lead to net biodiversity loss. Nat. Ecol. Evol. 1:0053
    [Google Scholar]
  12. Bevan MW, Uauy C, Wulff BBH, Zhou J, Krasileva K, Clark MD 2017. Genomic innovation for crop improvement. Nature 543:346–54
    [Google Scholar]
  13. Bolnick DI, Barrett RDH, Oke KB, Rennison DJ, Stuart YE 2018. (Non)parallel evolution. Annu. Rev. Ecol. Evol. Syst. 49:303–30
    [Google Scholar]
  14. Bordenstein SR, Theis KR. 2015. Host biology in light of the microbiome: ten principles of holobionts and hologenomes. PLOS Biol 13:8e1002226
    [Google Scholar]
  15. Brooks C, Pearce N, Douwes J 2013. The hygiene hypothesis in allergy and asthma: an update. Curr. Opin. Allergy Clin. Immunol. 13:170–77
    [Google Scholar]
  16. Brooks JS, Waring TM, Borgerhoff Mulder M, Richerson PJ 2018. Applying cultural evolution to sustainability challenges: an introduction to the special issue. Sustain. Sci. 13:11–8
    [Google Scholar]
  17. Bull JJ, Wichman HA. 2001. Applied evolution. Annu. Rev. Ecol. Syst. 32:183–217
    [Google Scholar]
  18. Callaway E. 2018. UN treaty agrees to limit gene drives but rejects a moratorium. Nature Nov. 29. https://doi.org/10.1038/d41586-018-07600-w
    [Crossref] [Google Scholar]
  19. Carríere Y, Brown ZS, Downes SJ, Gujar G, Epstein G et al. 2019. Governing evolution: a socioecological comparison of resistance management for insecticidal transgenic Bt crops among four countries. Ambio https://doi.org/10.1007/s13280-019-01167-0
    [Crossref] [Google Scholar]
  20. Carroll SP, Jørgensen PS, Kinnison MT, Bergstrom CT, Denison RF et al. 2014. Applying evolutionary biology to address global challenges. Science 346:62071245993
    [Google Scholar]
  21. Castañeda-Álvarez NP, Khoury CK, Achicanoy HA, Bernau V, Dempewolf H et al. 2016. Global conservation priorities for crop wild relatives. Nat. Plants 2:416022
    [Google Scholar]
  22. Chiyo PI, Obanda V, Korir DK 2015. Illegal tusk harvest and the decline of tusk size in the African elephant. Ecol. Evol. 5:225216–29
    [Google Scholar]
  23. CIESIN (Cent. Int. Earth Sci. Inf. Netw.), Columbia Univ 2017. Gridded Population of the World, Version 4 (GPWv4): population density, revision 10 Rep., NASA Socioecon. Data Appl. Cent. (SEDAC) Palisades, NY: accessed Nov. 1, 2018. https://doi.org/10.7927/H4VH5KS4
    [Crossref] [Google Scholar]
  24. Colwell RK, Dunn RR, Harris NC 2012. Coextinction and persistence of dependent species in a changing world. Annu. Rev. Ecol. Evol. Syst. 43:183–203
    [Google Scholar]
  25. Cook CN, Sgrò CM. 2017. Aligning science and policy to achieve evolutionarily enlightened conservation. Conserv. Biol. 31:3501–12
    [Google Scholar]
  26. Cook CN, Sgrò CM. 2018. Understanding managers’ and scientists’ perspectives on opportunities to achieve more evolutionarily enlightened management in conservation. Evol. Appl. 11:81371–88
    [Google Scholar]
  27. Creanza N, Kolodny O, Feldman MW 2017. Cultural evolutionary theory: how culture evolves and why it matters. PNAS 114:307782–89
    [Google Scholar]
  28. Curtis PG, Slay CM, Harris NL, Tyukavina A, Hansen MC 2018. Classifying drivers of global forest loss. Science 361:64071108–11
    [Google Scholar]
  29. Darimont CT, Carlson SM, Kinnison MT, Paquet PC, Reimchen TE, Wilmers CC 2009. Human predators outpace other agents of trait change in the wild. PNAS 106:3952–54
    [Google Scholar]
  30. Davis M, Faurby S, Svenning J-C 2018. Mammal diversity will take millions of years to recover from the current biodiversity crisis. PNAS 115:4411262–67
    [Google Scholar]
  31. Denison RF. 2011. Past evolutionary tradeoffs represent opportunities for crop genetic improvement and increased human lifespan. Evol. Appl. 4:2216–24
    [Google Scholar]
  32. Denny JC, Bastarache L, Ritchie MD, Carroll RJ, Zink R et al. 2013. Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data. Nat. Biotechnol. 31:121102–11
    [Google Scholar]
  33. Denny JC, Bastarache L, Roden DM 2016. Phenome-wide association studies as a tool to advance precision medicine. Annu. Rev. Genom. Hum. Genet. 17:353–73
    [Google Scholar]
  34. Dentzman K, Gunderson R, Jussaume R 2016. Techno-optimism as a barrier to overcoming herbicide resistance: comparing farmer perceptions of the future potential of herbicides. J. Rural Stud. 48:22–32
    [Google Scholar]
  35. Díaz S, Purvis A, Cornelissen JHC, Mace GM, Donoghue MJ et al. 2013. Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecol. Evol. 3:92958–75
    [Google Scholar]
  36. Donoghue MJ, Edwards EJ. 2014. Biome shifts and niche evolution in plants. Annu. Rev. Ecol. Evol. Syst. 45:547–72
    [Google Scholar]
  37. Drinkwater K, Kuikem T, Lightfoot S, McNamara J, Oye K 2014. Creating a research agenda for the ecological implications of synthetic biology Rep., Synthetic Biology Project, SYNBIO 7 Washington, DC:
    [Google Scholar]
  38. Ellis EC, Klein Goldewijk K, Siebert S, Lightman D, Ramankutty N 2010. Anthropogenic transformation of the biomes, 1700 to 2000. Glob. Ecol. Biogeogr. 19:589–606
    [Google Scholar]
  39. Ewald PW. 1994. Evolution of Infectious Disease Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  40. Ewald PW. 2011. Evolution of virulence, environmental change, and the threat posed by emerging and chronic diseases. Ecol. Res. 26:61017–26
    [Google Scholar]
  41. Faith DP, Magallón S, Hendry AP, Conti E, Yahara T, Donoghue MJ 2010. Evosystem services: an evolutionary perspective on the links between biodiversity and human well-being. Curr. Opin. Environ. Sustain. 2:1–266–74
    [Google Scholar]
  42. Ferreira C, Delibes-Mateos M. 2011. Wild rabbit management in the Iberian Peninsula: state of the art and future perspectives for Iberian lynx conservation. Wildl. Biol. Pract. 6:348–66
    [Google Scholar]
  43. Firth C, Lipkin WI. 2013. The genomics of emerging pathogens. Annu. Rev. Genom. Hum. Genet. 14:281–300
    [Google Scholar]
  44. Folke C, Biggs R, Norström AV, Reyers B, Rockström J 2016. Social-ecological resilience and biosphere-based sustainability science. Ecol. Soc. 21:341
    [Google Scholar]
  45. Folke C, Carpenter S, Walker B, Scheffer M, Elmqvist T et al. 2004. Regime shifts, resilience, and biodiversity in ecosystem management. Annu. Rev. Ecol. Evol. Syst. 35:557–81
    [Google Scholar]
  46. Folke C, Hahn T, Olsson P, Norberg J 2005. Adaptive governance of social-ecological systems. Annu. Rev. Environ. Resour. 30:441–73
    [Google Scholar]
  47. Forest F, Grenyer R, Rouget M, Davies TJ, Cowling RM et al. 2007. Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445:7129757–60
    [Google Scholar]
  48. Foster KR, Schluter J, Coyte KZ, Rakoff-Nahoum S 2017. The evolution of the host microbiome as an ecosystem on a leash. Nature 548:766543–51
    [Google Scholar]
  49. Frankham R, Ballou JD, Ralls K, Eldridge M, Dudash MR et al. 2017. Genetic Management of Fragmented Animal and Plant Populations Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  50. Garcia RA, Cabeza M, Rahbek C, Araújo MB 2014. Multiple dimensions of climate change and their implications for biodiversity. Science 344:61831247579
    [Google Scholar]
  51. Gatenby RA, Silva AS, Gillies RJ, Frieden BR 2009. Adaptive therapy. Cancer Res 69:114894–4903
    [Google Scholar]
  52. Gillings MR, Westoby M. 2014. DNA technology and evolution of the Central Dogma. Trends Ecol. Evol. 29:11–2
    [Google Scholar]
  53. Gluckman PD, Low FM, Buklijas T, Hanson MA, Beedle AS 2011. How evolutionary principles improve the understanding of human health and disease. Evol. Appl. 4:2249–63
    [Google Scholar]
  54. Goh K-P, Koh A, Wackerhage H 2014. Human evolution, type 2 diabetes mellitus and exercise. Molecular Exercise Physiology H Wackerhage 205–27 New York: Routledge
    [Google Scholar]
  55. Grunwald HA, Gantz VM, Poplawski G, Xu XS, Bier E, Cooper KL 2019. Super-Mendelian inheritance mediated by CRISPR–Cas9 in the female mouse germline. Nature 566:105–9
    [Google Scholar]
  56. Hallsworth M, Chadborn T, Sallis A, Sanders M, Berry D et al. 2016. Provision of social norm feedback to high prescribers of antibiotics in general practice: a pragmatic national randomised controlled trial. Lancet 387:100291743–52
    [Google Scholar]
  57. Heap I, Duke SO. 2018. Overview of glyphosate-resistant weeds worldwide. Pest Manag. Sci. 74:51040–49
    [Google Scholar]
  58. Heino M, Díaz Pauli B, Dieckmann U 2015. Fisheries-induced evolution. Annu. Rev. Ecol. Evol. Syst. 46:461–80
    [Google Scholar]
  59. Hendry AP. 2016. Introduction and conceptual framework. Eco-Evolutionary Dynamics1–23 Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  60. Hendry AP, Kinnison MT, Heino M, Day T, Smith TB et al. 2011. Evolutionary principles and their practical application. Evol. Appl. 4:2159–83
    [Google Scholar]
  61. Henning F, Meyer A. 2014. The evolutionary genomics of cichlid fishes: explosive speciation and adaptation in the postgenomic era. Annu. Rev. Genom. Hum. Genet. 15:417–41
    [Google Scholar]
  62. Hoffmann AA, Sgrò CM. 2011. Climate change and evolutionary adaptation. Nature 470:7335479–85
    [Google Scholar]
  63. IPCC (Intergov. Panel Clim. Change) 2018. Global warming of 1.5°C: summary for policymakers Rep., IPCC, Geneva. https://www.ipcc.ch/site/assets/uploads/sites/2/2019/05/SR15_SPM_version_report_LR.pdf
    [Google Scholar]
  64. Jasanoff S, Hurlbut BJ. 2018. A global observatory for gene editing. Nature 555:435–37
    [Google Scholar]
  65. Jones BA, Grace D, Kock R, Alonso S, Rushton J, Said MY 2013. Zoonosis emergence linked to agricultural intensification and environmental change. PNAS 110:218399–8404
    [Google Scholar]
  66. Jones KE, Patel NG, Levy MA, Storeygard A, Balk D et al. 2008. Global trends in emerging infectious diseases. Nature 451:7181990–93
    [Google Scholar]
  67. Klein Goldewijk K, Beusen A, van Drecht G, de Vos M 2011. The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Glob. Ecol. Biogeogr. 20:173–86
    [Google Scholar]
  68. Kroodsma DA, Mayorga J, Hochberg T, Miller NA, Boerder K et al. 2018. Tracking global footprint of fisheries. Science 359:6378904–8
    [Google Scholar]
  69. Kyrou K, Hammond AM, Galizi R, Kranjc N, Burt A et al. 2018. A CRISPR–Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nat. Biotechnol. 36:111062–66
    [Google Scholar]
  70. Lankau RA. 2011. Rapid evolutionary change and the coexistence of species. Annu. Rev. Ecol. Evol. Syst. 42:335–54
    [Google Scholar]
  71. Lankau R, Jørgensen PS, Harris DJ, Sih A 2011. Incorporating evolutionary principles into environmental management and policy. Evol. Appl. 4:2315–25
    [Google Scholar]
  72. Lau JA, Magnoli SM, Zirbel CR, Brudvig LA 2019. The limits to adaptation in restored ecosystems and how management can help overcome them. Ann. Mo. Bot. Gard 104:3441–54
    [Google Scholar]
  73. Lebarbenchon C, Brown SP, Poulin R, Gauthier-Clerc M, Thomas F 2008. Evolution of pathogens in a man-made world. Mol. Ecol. 17:1475–84
    [Google Scholar]
  74. Lipinski KA, Barber LJ, Davies MN, Ashenden M, Sottoriva A, Gerlinger M 2016. Cancer evolution and the limits of predictability in precision cancer medicine. Trends Cancer 2:149–63
    [Google Scholar]
  75. Lipsitch M. 2018. Why do exceptionally dangerous gain-of-function experiments in influenza?. Influenza Virus: Methods and Protocols Y Yamauchi 589–608 New York: Springer
    [Google Scholar]
  76. Living with Resistance project 2018. Antibiotic and pesticide susceptibility and the Anthropocene operating space. Nat. Sustain. 1:11632–41
    [Google Scholar]
  77. Monfreda C, Ramankutty N, Foley JA 2008. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles 22:11–19
    [Google Scholar]
  78. Morris DH, Gostic KM, Pompei S, Bedford T, Marta Ł et al. 2018. Predictive modeling of influenza shows the promise of applied evolutionary biology. Trends Microbiol 26:2102–18
    [Google Scholar]
  79. Motta EVS, Raymann K, Moran NA 2018. Glyphosate perturbs the gut microbiota of honey bees. PNAS 115:4110305–10
    [Google Scholar]
  80. Noble C, Olejarz J, Esvelt KM, Church GM, Nowak MA 2017. Evolutionary dynamics of CRISPR gene drives. Sci. Adv. 3:4e1601964
    [Google Scholar]
  81. Palkovacs EP, Moritsch MM, Contolini GM, Pelletier F 2018. Ecology of harvest-driven trait changes and implications for ecosystem management. Front. Ecol. Environ. 16:120–28
    [Google Scholar]
  82. Palumbi SR. 2001. Humans as the world's greatest evolutionary force. Science 293:55361786–90
    [Google Scholar]
  83. Parnell S, van den Bosch F, Gottwald T, Gilligan CA 2017. Surveillance to inform control of emerging plant diseases: an epidemiological perspective. Annu. Rev. Phytopathol. 55:591–610
    [Google Scholar]
  84. Pearse DE. 2016. Saving the spandrels? Adaptive genomic variation in conservation and fisheries management. J. Fish Biol. 89:62697–716
    [Google Scholar]
  85. Piaggio AJ, Segelbacher G, Seddon PJ, Alphey L, Bennett EL et al. 2017. Is it time for synthetic biodiversity conservation. Trends Ecol. Evol. 32:297–107
    [Google Scholar]
  86. Polasky S, Carpenter SR, Folke C, Keeler B 2011. Decision-making under great uncertainty: environmental management in an era of global change. Trends Ecol. Evol. 26:8398–404
    [Google Scholar]
  87. Raimundo RLG, Guimarães PR, Evans DM 2018. Adaptive networks for restoration ecology. Trends Ecol. Evol. 33:9664–75
    [Google Scholar]
  88. Rev. Antimicrob. Resist 2016. Tackling drug-resistant infections globally: final report and recommendations Rep., May 19, Rev Antimicrob. Resist London: https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf
    [Google Scholar]
  89. Reznick DN, Ghalambor CK. 2001. The population ecology of contemporary adaptations: what empirical studies reveal about the conditions that promote adaptive evolution. Genetica 112:183–98
    [Google Scholar]
  90. Ridley CE, Alexander LC. 2016. Applying gene flow science to environmental policy needs: a boundary work perspective. Evol. Appl. 9:7924–36
    [Google Scholar]
  91. Robert A, Thévenin C, Princé K, Sarrazin F, Clavel J 2017. De-extinction and evolution. Funct. Ecol. 31:51021–31
    [Google Scholar]
  92. Robertson BA, Rehage JS, Sih A 2013. Ecological novelty and the emergence of evolutionary traps. Trends Ecol. Evol. 28:9552–60
    [Google Scholar]
  93. Robinson TP, William Wint GR, Conchedda G, Van Boeckel TP, Ercoli V et al. 2014. Mapping the global distribution of livestock. PLOS ONE 9:5e96084
    [Google Scholar]
  94. Rouco C, Moreno S, Santoro S 2016. A case of low success of blind vaccination campaigns against myxomatosis and rabbit haemorrhagic disease on survival of adult European wild rabbits. Prev. Vet. Med. 133:108–13
    [Google Scholar]
  95. Santamaría L, Méndez PF. 2012. Evolution in biodiversity policy—current gaps and future needs. Evol. Appl. 5:2202–18
    [Google Scholar]
  96. Ségurel L, Bon C. 2017. On the evolution of lactase persistence in humans. Annu. Rev. Genom. Hum. Genet. 18:297–319
    [Google Scholar]
  97. Selbach C, Seddon PJ, Poulin R 2018. Parasites lost: neglecting a crucial element in de-extinction. Trends Parasitol 34:19–11
    [Google Scholar]
  98. Sgrò CM, Lowe AJ, Hoffmann AA 2011. Building evolutionary resilience for conserving biodiversity under climate change. Evol. Appl. 4:2326–37
    [Google Scholar]
  99. Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A 2017. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168:4707–23
    [Google Scholar]
  100. Shaw RG. 2019. From the past to the future: considering the value and limits of evolutionary prediction. Am. Nat. 193:11–10
    [Google Scholar]
  101. Sih A, Ferrari MCO, Harris DJ 2011. Evolution and behavioural responses to human-induced rapid environmental change. Evol. Appl. 4:2367–87
    [Google Scholar]
  102. Singh V, Braddick D, Dhar PK 2017. Exploring the potential of genome editing CRISPR-Cas9 technology. Gene 599:1–18
    [Google Scholar]
  103. Smith TB, Kinnison MT, Strauss SY, Fuller TL, Carroll SP 2014. Prescriptive evolution to conserve and manage biodiversity. Annu. Rev. Ecol. Evol. Syst. 45:1–22
    [Google Scholar]
  104. Sniezko RA, Koch J. 2017. Breeding trees resistant to insects and diseases: putting theory into application. Biol. Invasions 19:111–24
    [Google Scholar]
  105. Steeves TE, Johnson JA, Hale ML 2017. Maximising evolutionary potential in functional proxies for extinct species: a conservation genetic perspective on de-extinction. Funct. Ecol. 31:51032–40
    [Google Scholar]
  106. Strande NT, Berg JS. 2016. Defining the clinical value of a genomic diagnosis in the era of next-generation sequencing. Annu. Rev. Genom. Hum. Genet. 17:303–32
    [Google Scholar]
  107. Stroud JT, Losos JB. 2016. Ecological opportunity and adaptive radiation. Annu. Rev. Ecol. Evol. Syst. 47:507–32
    [Google Scholar]
  108. Thomas CD. 2015. Rapid acceleration of plant speciation during the Anthropocene. Trends Ecol. Evol. 30:8448–55
    [Google Scholar]
  109. Toju H, Yamamichi M, Guimarães PR, Olesen JM, Mougi A et al. 2017. Species-rich networks and eco-evolutionary synthesis at the metacommunity level. Nat. Ecol. Evol. 1:21–11
    [Google Scholar]
  110. Unckless RL, Clark AG, Messer PW 2017. Evolution of resistance against CRISPR/Cas9 gene drive. Genetics 205:2827–41
    [Google Scholar]
  111. Valiente-Banuet A, Aizen MA, Alcántara JM, Arroyo J, Cocucci A et al. 2015. Beyond species loss: The extinction of ecological interactions in a changing world. Funct. Ecol. 29:3299–307
    [Google Scholar]
  112. Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA et al. 2015. Global trends in antimicrobial use in food animals. PNAS 112:185649–54
    [Google Scholar]
  113. van Oppen MJH, Oliver JK, Putnam HM, Gates RD 2015. Building coral reef resilience through assisted evolution. PNAS 112:82307–13
    [Google Scholar]
  114. von Hertzen L, Beutler B, Bienenstock J, Blaser M, Cani PD et al. 2015. Helsinki alert of biodiversity and health. Ann. Med. 47:3218–25
    [Google Scholar]
  115. Vredenburg VT, Knapp RA, Tunstall TS, Briggs CJ 2010. Dynamics of an emerging disease drive large-scale amphibian population extinctions. PNAS 107:219689–94
    [Google Scholar]
  116. Wells JCK, Nesse RM, Sear R, Johnstone RA, Stearns SC 2017. Evolutionary public health: introducing the concept. Lancet 390:10093500–9
    [Google Scholar]
  117. Williams M, Zalasiewicz J, Haff P, Schwägerl C, Barnosky AD, Ellis EC 2015. The Anthropocene biosphere. Anthropocene Rev 2:3196–219
    [Google Scholar]
  118. Winter M, Devictor V, Schweiger O 2013. Phylogenetic diversity and nature conservation: Where are we?. Trends Ecol. Evol. 28:4199–204
    [Google Scholar]
  119. Woods RJ, Read AF. 2015. Clinical management of resistance evolution in a bacterial infection: a case study. Evol. Med. Public Health 2015:1281–88
    [Google Scholar]
  120. Wright O, Stan G-B, Ellis T 2013. Building-in biosafety for synthetic biology. Microbiology 159:71221–35
    [Google Scholar]
  121. Xiong X, Chen M, Lim WA, Zhao D, Qi LS 2016. CRISPR/Cas9 for human genome engineering and disease research. Annu. Rev. Genom. Hum. Genet. 17:131–54
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-110218-024621
Loading
/content/journals/10.1146/annurev-ecolsys-110218-024621
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error