1932

Abstract

Unraveling the origins of Malesia's once vast, hyperdiverse rainforests is a perennial challenge. Major contributions to rainforest assembly came from floristic elements carried on the Indian Plate and montane elementsfrom the Australian Plate (Sahul). The Sahul component is now understood to include substantial two-way exchanges with Sunda inclusive of lowland taxa. Evidence for the relative contributions of the great Asiatic floristic interchanges (GAFIs) with India and Sahul, respectively, to the flora of Malesia comes from contemporary lineage distributions, the fossil record, time-calibrated phylogenies, functional traits, and the spatial structure of genetic diversity. Functional-trait and biome conservatism are noted features of montane austral lineages from Sahul (e.g., diverse Podocarpaceae), whereas the abundance and diversity of lowland lineages, including (Myrtaceae) and the Asian dipterocarps (Dipterocarpoideae), reflect a less well understood combination of dispersal, ecology, and adaptive radiations. Thus, Malesian rainforest assembly has been shaped by sharply contrasting evolutionary origins and biogeographic histories.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-110218-024737
2019-11-02
2024-09-14
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/50/1/annurev-ecolsys-110218-024737.html?itemId=/content/journals/10.1146/annurev-ecolsys-110218-024737&mimeType=html&fmt=ahah

Literature Cited

  1. Aiba S-I. 2002. Species composition and species–area relationships of trees in nine permanent plots in altitudinal sequences on different geological substrates of Mount Kinabalu. Sabah Parks Nat. J. 5:7–69
    [Google Scholar]
  2. Aiba S-I, Kitayama K. 1999. Structure, composition and species diversity in an altitude-substrate matrix of rain forest tree communities on Mount Kinabalu, Borneo. Plant Ecol 140:139–57
    [Google Scholar]
  3. Antonelli A, Kissling WD, Flantua SG, Bermúdez MA, Mulch A et al. 2018. Geological and climatic influences on mountain biodiversity. Nat. Geosci. 11:718–25
    [Google Scholar]
  4. Ashton PS. 1982. Dipterocarpaceae. Flora Malesiana, Ser. I: Spermatophyta, Flowering Plants 9Part 2237–552 Leiden, Neth.: Rijksherbarium
    [Google Scholar]
  5. Ashton PS. 1988. Dipterocarp biology as a window to the understanding of tropical forest structure. Annu. Rev. Ecol. Syst. 19:347–70
    [Google Scholar]
  6. Ashton PS. 2014. On the Forests of Tropical Asia: Lest the Memory Fade London: R. Bot. Gard. Kew
    [Google Scholar]
  7. Ashton PS, Gunatilleke CVS. 1987. New light on the plant geography of Ceylon. I. Historical plant geography. J. Biogeogr. 14:249–85
    [Google Scholar]
  8. Bai B, Wang Y-Q, Meng J 2018. The divergence and dispersal of early perissodactyls as evidenced by early Eocene equids from Asia. Commun. Biol. 1:115
    [Google Scholar]
  9. Barrón E, Averyanova A, Kvaček Z, Momohara A, Pigg KB et al. 2017. The fossil history of Quercus. Oaks Physiological Ecology. Exploring the Functional Diversity of Genus Quercus L. E Gil-Pelegrín, JJ Peguero-Pina, D Sancho-Knapik 39–105 Cham, Switz.: Springer
    [Google Scholar]
  10. Behrensmeyer AK, Kidwell SM, Gastaldo RA 2000. Taphonomy and paleobiology. Paleobiology 26:103–47
    [Google Scholar]
  11. Biffin E, Lucas EJ, Craven LA, Ribeiro da Costa I, Harrington MG, Crisp MD 2010. Evolution of exceptional species richness among lineages of fleshy-fruited Myrtaceae. Ann. Bot. 106:79–93
    [Google Scholar]
  12. Böhme M, Aiglstorfer M, Antoine P-O, Appel E, Havlik P et al. 2013. Na Duong (northern Vietnam)—an exceptional window into Eocene ecosystems from Southeast Asia. Zitteliana 53:121–67
    [Google Scholar]
  13. Breitfeld HT, Galin T, Hall R, Sevastjanova I, Forster M, Lister G 2015. Proto–South China Sea and South China Sea early history: a view from Sarawak. Proceedings of the AAPG Asia Pacific Geoscience Technology Workshop (GTW) Tectonic Evolution and Sedimentation of South China Sea Region60–63 http://www.searchanddiscovery.com/abstracts/pdf/2015/90236apr/abstracts/ndx_breitfeld.pdf
    [Google Scholar]
  14. Brodribb TJ. 2011. A functional analysis of podocarp ecology. Ecology of the Podocarpaceae in Tropical Forests 95 BL Turner, LA Cernusak 165–73 Washington, DC: Smithson. Inst.
    [Google Scholar]
  15. Brodribb TJ, Feild TS. 2010. Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification. Ecol. Lett. 13:175–83
    [Google Scholar]
  16. Brodribb TJ, Hill RS. 1998. The photosynthetic drought physiology of a diverse group of Southern Hemisphere conifer species is correlated with minimum seasonal rainfall. Funct. Ecol. 12:465–71
    [Google Scholar]
  17. Brodribb TJ, Pittermann J, Coomes DA 2012. Elegance versus speed: examining the competition between conifer and angiosperm trees. Int. J. Plant Sci. 173:673–94
    [Google Scholar]
  18. Carpenter RJ, Truswell EM, Harris WK 2010. Lauraceae fossils from a volcanic Palaeocene oceanic island, Ninetyeast Ridge, Indian Ocean: ancient long-distance dispersal?. J. Biogeogr. 37:1202–13
    [Google Scholar]
  19. Chanderbali AS, van der Werff H, Renner SS 2001. Phylogeny and historical biogeography of Lauraceae: evidence from the chloroplast and nuclear genomes. Ann. Mo. Bot. Gard. 88:104–34
    [Google Scholar]
  20. Chase MW, Christenhusz MJM, Fay MF, Byng JW, Judd WS et al. 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 181:1–20
    [Google Scholar]
  21. Christophel DC. 1994. The early Tertiary macrofloras of continental Australia. See Hill 1994 262–75
  22. Clements B, Hall R. 2011. A record of continental collision and regional sediment flux for the Cretaceous and Palaeogene core of SE Asia: implications for early Cenozoic palaeogeography. J. Geol. Soc. 168:1187–200
    [Google Scholar]
  23. Clyde WC, Khan IH, Gingerich PD 2003. Stratigraphic response and mammalian dispersal during initial India–Asia collision: evidence from the Ghazij Formation, Balochistan, Pakistan. Geology 31:1097–100In relation to the into-India or out-of-India scenarios for mammalian interchange with Asia, documents a series of well-dated endemic precollision to cosmopolitan, Holarctic postcollision faunas from Balochistan, Pakistan, that support the into-India interpretation.
    [Google Scholar]
  24. Cottam MA, Hall R, Sperber C, Kohn BP, Forster MA, Batt GE 2013. Neogene rock uplift and erosion in northern Borneo: evidence from the Kinabalu granite, Mount Kinabalu. J. Geol. Soc. 170:805–16
    [Google Scholar]
  25. Coward AJ, Mays C, Patti AF, Stilwell JD, O'Dell LA, Viegas P 2018. Taphonomy and chemotaxonomy of Eocene amber from southeastern Australia. Org. Geochem. 118:103–15
    [Google Scholar]
  26. Craven LA, Danet F, Veldkamp JF, Goetsch LA, Hall BD 2011. Vireya rhododendrons: their monophyly and classification (Ericaceae, Rhododendron section Schistanthe). Blumea 56:153–58
    [Google Scholar]
  27. Crayn DM, Costion C, Harrington MG 2015. The Sahul–Sunda floristic exchange: dated molecular phylogenies document Cenozoic intercontinental dispersal dynamics. J. Biogeogr. 42:11–24
    [Google Scholar]
  28. Crisp MD, Arroyo MTK, Cook LG, Gandolfo MA, Jordan GJ et al. 2009. Phylogenetic biome conservatism on a global scale. Nature 458:754–56
    [Google Scholar]
  29. Darwin C, Wallace AR. 1858. On the tendency of species to form varieties; and on the perpetuation of varieties and species by natural means of selection. J. Proc. Linn. Soc. 3:45–62Represents a seminal publication that should be included as a historical justification for, and insight into, Wallace's research in Malesia.
    [Google Scholar]
  30. Davis RC, Noon SW, Harrington J 2007. The petroleum potential of Tertiary coals from Western Indonesia: relationship to mire type and sequence stratigraphic setting. Int. J. Coal Geol. 70:35–52
    [Google Scholar]
  31. de Bruyn M, Stelbrink B, Morley RJ, Hall R, Carvalho GR et al. 2014. Borneo and Indochina are major evolutionary hotspots for Southeast Asian biodiversity. Syst. Biol. 63:879–901Illustrates how some areas in Malesia operate as sources of diversity and dispersing taxa, while others are sinks for immigrating lineages.
    [Google Scholar]
  32. Dettmann ME. 1994. Cretaceous vegetation: the microfossil record. See Hill 1994 143–70
  33. Ding L, Spicer RA, Yang J, Xu Q, Cai F et al. 2017. Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon. Geology 45:215–18
    [Google Scholar]
  34. Ducousso M, Béna G, Bourgeois C, Buyck B, Eyssartier G et al. 2004. The last common ancestor of Sarcolaenaceae and Asian dipterocarp trees was ectomycorrhizal before the India–Madagascar separation, about 88 million years ago. Mol. Ecol. 13:231–36
    [Google Scholar]
  35. Dutta S, Tripathi SM, Mallick M, Mathews RP, Greenwood PF et al. 2011. Eocene out-of-India dispersal of Asian dipterocarps. Rev. Palaeobot. Palynol. 166:63–68
    [Google Scholar]
  36. Escapa IH, Iglesias A, Wilf P, Catalano SA, Caraballo-Ortiz MA, Rubén Cúneo N 2018. Agathis trees of Patagonia's Cretaceous–Paleogene death landscapes and their evolutionary significance. Am. J. Bot. 105:1345–68
    [Google Scholar]
  37. Falster DS, Brännström A, Westoby M, Dieckmann U 2017. Multitrait successional forest dynamics enable diverse competitive coexistence. PNAS 114:E2719–28Describes how existing successional niche models can be extended to include multiple plant species that coexist while competing for the same resources; provides particularly relevant insights into community assembly and plant strategies.
    [Google Scholar]
  38. Feng X, Tang B, Kodrul TM, Jin J 2013. Winged fruits and associated leaves of Shorea (Dipterocarpaceae) from the Late Eocene of South China and their phytogeographic and paleoclimatic implications. Am. J. Bot. 100:574–81
    [Google Scholar]
  39. Geyler HT. 1900. Über fossile Pflanzen von Borneo. Palaeontographica 3:Suppl.61–84
    [Google Scholar]
  40. Ghazoul J. 2016. Dipterocarp Biology, Ecology, and Conservation Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  41. Gingerich PD. 1989. New earliest Wasatchian mammalian fauna from the Eocene of northwestern Wyoming: composition and diversity in a rarely sampled high-floodplain assemblage. Univ. Mich. Pap. Paleontol. 28:1–97
    [Google Scholar]
  42. Good R. 1960. On the Geographical Relationships of the Angiosperm Flora of New Guinea 2 London: Bull. Br. Mus. Nat. Hist.
    [Google Scholar]
  43. Grudinski M, Wanntorp L, Pannell CM, Muellner‐Riehl AN 2014. West to east dispersal in a widespread animal‐dispersed woody angiosperm genus (Aglaia, Meliaceae) across the Indo‐Australian Archipelago. J. Biogeogr. 41:1149–59
    [Google Scholar]
  44. Guleria JS. 1996. Occurrence of Dipterocarpus in the Mar Formation of Bikaner, Rajasthan, western India. Paleobotanist 43:49–53
    [Google Scholar]
  45. Hall R. 1996. Reconstructing Cenozoic SE Asia. Tectonic Evolution of Southeast Asia R Hall, D Blundell 153–84 London: Geol. Soc. London
    [Google Scholar]
  46. Hall R. 2009. Southeast Asia's changing palaeogeography. Blumea 54:148–61
    [Google Scholar]
  47. Hall R. 2012. Sundaland and Wallacea, geology, plate tectonics and palaeogeography. Biotic Evolution and Environmental Change in Southeast Asia DJ Gower, KG Johnson, JE Richardson, BR Rosen, L Rüber, ST Williams 32–78 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  48. Hall R, Sevastjanova I. 2012. Australian crust in Indonesia. Aust. J. Earth Sci. 59:827–44
    [Google Scholar]
  49. Hartley TG. 1986. Floristic relationships of the rainforest flora of New Guinea. Telopea 2:619–30
    [Google Scholar]
  50. Heckenhauer J, Samuel R, Ashton PS, Turner B, Barfuss MH et al. 2017. Phylogenetic analyses of plastid DNA suggest a different interpretation of morphological evolution than those used as the basis for previous classifications of Dipterocarpaceae (Malvales). Bot. J. Linn. Soc. 185:1–26
    [Google Scholar]
  51. Heer O. 1874. Ueber fossile Pflanzen von Sumatra Zurich: Abh. Schweiz. Paläontol. Ges.
    [Google Scholar]
  52. Heer O. 1879. Beiträge zur fossilen Flora von Sumatra Zurich: Allg. Schweiz. Ges. Gesammten Naturwiss.
    [Google Scholar]
  53. Hill RS. 1986. Lauraceous leaves from the Eocene of Nerriga, New South Wales. Alcheringa 10:327–51
    [Google Scholar]
  54. Hill RS 1994. History of the Australian Vegetation: Cretaceous to Recent Cambridge, UK: Cambridge Univ. PressRepresents the most important single contribution describing and benchmarking the history of Australian vegetation.
    [Google Scholar]
  55. Hill RS, Carpenter RJ. 1989. Tertiary gymnosperms from Tasmania: Cupressaceae. Alcheringa 13:89–102
    [Google Scholar]
  56. Hill RS, Lewis T, Carpenter RJ, Whang SS 2008. Agathis (Araucariaceae) macrofossils from Cainozoic sediments in south-eastern Australia. Aust. Syst. Bot. 21:162–77
    [Google Scholar]
  57. Huang J-F, Li L, van der Werff H, Li H-W, Rohwer JG et al. 2016. Origins and evolution of cinnamon and camphor: a phylogenetic and historical biogeographical analysis of the Cinnamomum group (Lauraceae). Mol. Phylogenetics Evol. 96:33–44
    [Google Scholar]
  58. Huang Y, Jacques FM, Su T, Ferguson DK, Tang H et al. 2015. Distribution of Cenozoic plant relicts in China explained by drought in dry season. Sci. Rep. 5:14212
    [Google Scholar]
  59. Jacobs BF. 2004. Palaeobotanical studies from tropical Africa: relevance to the evolution of forest, woodland and savannah biomes. Philos. Trans. R. Soc. B 359:1573–83
    [Google Scholar]
  60. Jacobs BF, Pan AD, Scotese CR 2010. A review of the Cenozoic vegetation history of Africa. Cenozoic Mammals of Africa L Werdelin, W Sanders 57–98 Berkeley: Univ. Calif. Press
    [Google Scholar]
  61. Jacques FM, Shi G, Su T, Zhou Z 2015. A tropical forest of the middle Miocene of Fujian (SE China) reveals Sino-Indian biogeographic affinities. Rev. Palaeobot. Palynol. 216:76–91
    [Google Scholar]
  62. Jia L-B, Su T, Huang Y-J, Wu F-X, Deng T, Zhou Z-K 2019. First fossil record of Cedrelospermum (Ulmaceae) from the Qinghai–Tibetan Plateau: implications for morphological evolution and biogeography. J. Syst. Evol. 57:94–104
    [Google Scholar]
  63. Jiang H, Su T, Wong WO, Wu F, Huang J, Shi G 2019. Oligocene Koelreuteria (Sapindaceae) from the Lunpola Basin in central Tibet and its implication for early diversification of the genus. J. Asian Earth Sci. 175:98–108
    [Google Scholar]
  64. Jin J, Herman AB, Spicer RA, Kodrul TM 2017. Palaeoclimate background of the diverse Eocene floras of South China. Sci. Bull. 62:1501–3
    [Google Scholar]
  65. Jin J, Qiu J, Zhu Y, Kodrul TM 2010. First fossil record of the genus Nageia (Podocarpaceae) in south China and its phytogeographic implications. Plant Syst. Evol. 285:159–63
    [Google Scholar]
  66. Johns RJ. 1976. Classification of the montane forests of Papua New Guinea. Sci. N. Guin. 4:105–17
    [Google Scholar]
  67. Kershaw AP, Bretherton SC, van der Kaars S 2007. A complete pollen record of the last 230 ka from Lynch's Crater, north-eastern Australia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 251:23–45
    [Google Scholar]
  68. Khan MA, Bera S. 2010. Record of fossil fruit wing of Shorea Roxb. from the Neogene of Arunachal Pradesh. Curr. Sci. 98:1573–74
    [Google Scholar]
  69. Kitayama K. 1992. An altitudinal transect study of the vegetation on Mount Kinabalu, Borneo. Vegetatio 102:149–71
    [Google Scholar]
  70. Kitayama K, Aiba S-I. 2002. Ecosystem structure and productivity of tropical rain forests along altitudinal gradients with contrasting soil phosphorus pools on Mount Kinabalu, Borneo. J. Ecol. 90:37–51
    [Google Scholar]
  71. Klaus S, Morley RJ, Plath M, Zhang Y-P, Li J-T 2016. Biotic interchange between the Indian subcontinent and mainland Asia through time. Nat. Commun. 7:121–32Provides insights into GAFIs by discussing how biotic interchange develops over longer time frames following secondary contact of different biotas by using a phylogeographical meta-analysis.
    [Google Scholar]
  72. Kooyman RM, Rossetto M, Cornwell W, Westoby M 2011. Phylogenetic tests of community assembly across regional to continental scales in tropical and sub-tropical rainforests. Glob. Ecol. Biogeogr. 20:707–16
    [Google Scholar]
  73. Kooyman RM, Wilf P, Barreda VD, Carpenter RJ, Jordan GJ et al. 2014. Paleo-Antarctic rainforest into the modern Old World tropics: the rich past and threatened future of the “southern wet forest survivors.”. Am. J. Bot. 101:2121–35
    [Google Scholar]
  74. Kunstler G, Falster D, Coomes DA, Hui F, Kooyman RM et al. 2016. Plant functional traits have globally consistent effects on competition. Nature 529:204–7
    [Google Scholar]
  75. Lee CP. 1992. Fossil localities in Malaysia: their conservation and significance Malays. Natl. Conserv. Strateg. Backgr. Pap., Econ. Plan. Unit, Off. Prime Minist., Kuala Lumpur, Malaysia
    [Google Scholar]
  76. Lelono EB. 2000. Palynological studies of the Eocene Nanggulan Formation of Central Java PhD Thesis, Royal Holloway, Univ. London, London, UK
    [Google Scholar]
  77. Lelono EB, Morley RJ. 2011. Oligocene palynological succession from the East Java Sea. Geol. Soc. Lond. Spec. Publ. 355:333–45
    [Google Scholar]
  78. Licht A, Boura A, De Franceschi D, Ducrocq S, Soe AN, Jaeger J-J 2014. Fossil woods from the late middle Eocene Pondaung Formation, Myanmar. Rev. Palaeobot. Palynol. 202:29–46
    [Google Scholar]
  79. Lohman DJ, de Bruyn M, Page T, von Rintelen K, Hall R et al. 2011. Biogeography of the Indo-Australian Archipelago. Annu. Rev. Ecol. Evol. Syst. 42:205–26
    [Google Scholar]
  80. Macphail MK, Hill RS. 2018. What was the vegetation in northwest Australia during the Paleogene, 66–23 million years ago?. Aust. J. Bot. 66:556–74
    [Google Scholar]
  81. Manchester SR, Kapgate DK, Wen J 2013. Oldest fruits of the grape family (Vitaceae) from the Late Cretaceous Deccan Cherts of India. Am. J. Bot. 100:1849–59
    [Google Scholar]
  82. Maynard D, Crayn D, Rossetto M, Kooyman R, Coode M 2008. Elaeocarpus sedentarius sp. nov. (Elaeocarpaceae)—morphometric analysis of a new, rare species from eastern Australia. Aust. Syst. Bot. 21:192–200
    [Google Scholar]
  83. McPherson H, Van der Merwe M, Delaney SK, Edwards MA, Henry RJ et al. 2013. Capturing chloroplast variation for molecular ecology studies: a simple next generation sequencing approach applied to a rainforest tree. BMC Ecol 13:8
    [Google Scholar]
  84. Mehrotra RC. 2000. Study of plant megafossils from the Tura Formation of Nangwalbibra, Garo Hills, Meghalaya, India. Palaeobotanist 49:225–37
    [Google Scholar]
  85. Mehrotra RC. 2003. Status of plant megafossils during the early Paleogene in India. Causes and Consequences of Globally Warm Climates in the Early Paleogene 369 SL Wing, PD Gingerich, B Schmitz, E Thomas 413–23 Boulder, CO: Geol. Soc. Am.
    [Google Scholar]
  86. Mehrotra RC, Shukla A, Srivastava G, Tiwari RP 2014. Miocene megaflora of peninsular India: present status and future prospect. Spec. Publ. Palaeontol. Soc. India 5:283–90
    [Google Scholar]
  87. Merckx VS, Hendriks KP, Beentjes KK, Mennes CB, Becking LE et al. 2015. Evolution of endemism on a young tropical mountain. Nature 524:347–50
    [Google Scholar]
  88. Metcalfe I, Smith JM, Morwood M, Davidson I 2001. Faunal and Floral Migration and Evolution in SE Asia–Australasia Lisse, Neth.: A.A. Balkema
    [Google Scholar]
  89. Missiaen P, Gingerich PD. 2014. New basal Perissodactyla (Mammalia) from the lower Eocene Ghazij formation of Pakistan. Contrib. Mus. Paleontol. Univ. Mich. 32:139–60
    [Google Scholar]
  90. Moore TA, Ferm JC. 1992. Composition and grain size of an Eocene coal bed in southeastern Kalimantan, Indonesia. Int. J. Coal Geol. 21:1–30
    [Google Scholar]
  91. Morley RJ. 1982. Fossil pollen attributable to Alangium Lamarck (Alangiaceae) from the Tertiary of Malesia. Rev. Palaeobot. Palynol. 36:65–94
    [Google Scholar]
  92. Morley RJ. 1998. Palynological evidence for Tertiary plant dispersals in the SE Asia region in relation to plate tectonics and climate. Biogeography and Geological Evolution of SE Asia R Hall, JD Holloway 177–200 Leiden, Neth.: Backhuys
    [Google Scholar]
  93. Morley RJ. 2000. Origin and Evolution of Tropical Rain Forests Chichester, UK: Wiley
    [Google Scholar]
  94. Morley RJ. 2002. Tertiary vegetational history of Southeast Asia, with emphasis on the biogeographical relationships with Australia. Bridging Wallace's Line: The Environmental and Cultural History and Dynamics of the SE-Asian-Australian Region AP Kershaw, B David, N Tapper, D Penny, J Brown 49–60 Reiskirchen, Ger.: Catena
    [Google Scholar]
  95. Morley RJ. 2003. Interplate dispersal paths for megathermal angiosperms. Perspect. Plant Ecol. Syst. 6:5–20
    [Google Scholar]
  96. Morley RJ. 2012. A review of the Cenozoic palaeoclimate history of Southeast Asia. Biotic Evolution and Environmental Change in Southeast Asia DJ Gower, KG Johnson, JE Richardson, BR Rosen, L Rüber, ST Williams 79–114 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  97. Morley RJ. 2018a. Assembly and division of the South and South-East Asian flora in relation to tectonics and climate change. J. Trop. Ecol. 34:209–34
    [Google Scholar]
  98. Morley RJ. 2018b. The complex history of mountain building and the establishment of mountain biota in Southeast Asia and Eastern Indonesia. Mountains, Climate and Diversity C Hoorn, A Perrigo, A Antonelli 475–94 New York: Wiley
    [Google Scholar]
  99. Moss PT, Kershaw AP. 2000. The last glacial cycle from the humid tropics of northeastern Australia: comparison of a terrestrial and a marine record. Palaeogeogr. Palaeoclimatol. Palaeoecol. 155:155–76
    [Google Scholar]
  100. Moss PT, Kershaw AP. 2007. A late Quaternary marine palynological record (oxygen isotope stages 1 to 7) for the humid tropics of northeastern Australia based on ODP Site 820. Palaeogeogr. Palaeoclimatol. Palaeoecol. 251:4–22
    [Google Scholar]
  101. Muellner AN, Pannell CM, Coleman A, Chase MW 2008. The origin and evolution of Indomalesian, Australasian and Pacific island biotas: insights from Aglaieae (Meliaceae, Sapindales). J. Biogeogr. 35:1769–89
    [Google Scholar]
  102. Muller J. 1968. Palynology of the Pedawan and plateau sandstone formations (Cretaceous–Eocene) in Sarawak. Malaysia: Micropaleontology 14:1–37
    [Google Scholar]
  103. Muller J. 1981. Fossil pollen records of extant angiosperms. Bot. Rev. 47:1
    [Google Scholar]
  104. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GA, Kent J 2000. Biodiversity hotspots for conservation priorities. Nature 403:853–58
    [Google Scholar]
  105. Ng CH, Lee SL, Tnah LH, Ng KKS, Lee CT et al. 2017. Geographic origin and individual assignment of Shorea platyclados (Dipterocarpaceae) for forensic identification. PLOS ONE 12:e0176158
    [Google Scholar]
  106. Poole I. 1993. A dipterocarpaceous twig from the Eocene London Clay Formation of southeast England. Spec. Pap. Palaeontol. 49:155–63
    [Google Scholar]
  107. Prasad M. 1993. Siwalik (Middle Miocene) woods from the Kalagarh area in the Himalayan foot hills and their bearing on palaeoclimate and phytogeography. Rev. Palaeobot. Palynol. 76:49–82
    [Google Scholar]
  108. Prasad V, Farooqui A, Murthy S, Sarate OS, Bajpai S 2018. Palynological assemblage from the Deccan Volcanic Province, central India: insights into early history of angiosperms and the terminal Cretaceous paleogeography of peninsular India. Cretac. Res. 86:186–98
    [Google Scholar]
  109. Pubellier M, Morley CK. 2014. The basins of Sundaland (SE Asia): evolution and boundary conditions. Mar. Pet. Geol. 58:555–78
    [Google Scholar]
  110. Raes N, Cannon CH, Hijmans RJ, Piessens T, Saw LG et al. 2014. Historical distribution of Sundaland's dipterocarp rainforests at Quaternary glacial maxima. PNAS 111:16790–95Provides detailed climate niche modeling and historical reconstructions of potential past distribution ranges of the dominant woody components of Asian wet forests.
    [Google Scholar]
  111. Richardson JE, Costion C, Muellner AN 2012. The Malesian floristic interchange: plant migration patterns across Wallace's Line. Biotic Evolution and Environmental Change in Southeast Asia DJ Gower, KG Johnson, JE Richardson, BR Rosen, L Rüber, ST Williams 138–63 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  112. Ricklefs RE. 2007. History and diversity: explorations at the intersection of ecology and evolution. Am. Nat. 170:Suppl. 2S56–70
    [Google Scholar]
  113. Rose KD, Holbrook LT, Rana RS, Kumar K, Jones KE et al. 2014. Early Eocene fossils suggest that the mammalian order Perissodactyla originated in India. Nat. Commun. 5:5570
    [Google Scholar]
  114. Rossetto M, Crayn D, Ford A, Mellick R, Sommerville K 2009. The influence of environment and life-history traits on the distribution of genes and individuals: a comparative study of 11 rainforest trees. Mol. Ecol. 18:1422–38
    [Google Scholar]
  115. Rossetto M, Crayn D, Ford A, Ridgeway P, Rymer P 2007. The comparative study of range-wide genetic structure across related, co-distributed rainforest trees reveals contrasting evolutionary histories. Aust. J. Bot. 55:416–24
    [Google Scholar]
  116. Rossetto M, Kooyman RM. 2005. The tension between dispersal and persistence regulates the current distribution of rare palaeo-endemic rain forest flora: a case study. J. Ecol. 93:906–17
    [Google Scholar]
  117. Rossetto M, Kooyman R, Sherwin W, Jones R 2008. Dispersal limitations, rather than bottlenecks or habitat specificity, can restrict the distribution of rare and endemic rainforest trees. Am. J. Bot. 95:321–29
    [Google Scholar]
  118. Rossetto M, Kooyman R, Yap J-YS, Laffan SW 2015. From ratites to rats: the size of fleshy fruits shapes species’ distributions and continental rainforest assembly. Proc. R. Soc. B 282:20151998
    [Google Scholar]
  119. Rudra A, Dutta S, Raju SV 2017. The Paleogene vegetation and petroleum system in the tropics: a biomarker approach. Mar. Pet. Geol. 86:38–51
    [Google Scholar]
  120. Rust J, Singh H, Rana RS, McCann T, Singh L et al. 2010. Biogeographic and evolutionary implications of a diverse paleobiota in amber from the early Eocene of India. PNAS 107:18360–65
    [Google Scholar]
  121. Sauquet H, Weston PH, Anderson CL, Barker NP, Cantrill DJ et al. 2009. Contrasted patterns of hyperdiversification in Mediterranean hotspots. PNAS 106:221–25
    [Google Scholar]
  122. Saxena RK, Tripathi SKM, Prasad V 1996. Palynofloral investigation of the Tura Formation (Palaeocene) in Nongwal Bibra area, East Garo Hills, Meghalaya. Geophytology 26:19–31
    [Google Scholar]
  123. Schuster RM. 1972. Continental movements, “Wallace's Line” and Indomalayan–Australasian dispersal of land plants: some eclectic concepts. Bot. Rev. 38:3–86
    [Google Scholar]
  124. Scotese CR, Boucot AJ, Chen X 2014. Atlas of Phanerozoic Climatic Zones (Mollweide Projection) 6 vols Evanston, IL: PALEOMAP Proj.
    [Google Scholar]
  125. Scriven LJ, Hill RS. 1995. Macrofossil Casuarinaceae: their identification and the oldest macrofossil record, Gymnostoma antiquum sp. nov., from the Late Paleocene of New South Wales, Australia. Aust. Syst. Bot. 8:1035–53
    [Google Scholar]
  126. Shi G, Jacques FM, Li H 2014. Winged fruits of Shorea (Dipterocarpaceae) from the Miocene of Southeast China: evidence for the northward extension of dipterocarps during the Mid-Miocene Climatic Optimum. Rev. Palaeobot. Palynol. 200:97–107
    [Google Scholar]
  127. Shrestha N, Wang Z, Su X, Xu X, Lyu L et al. 2018. Global patterns of Rhododendron diversity: the role of evolutionary time and diversification rates. Glob. Ecol. Biogeogr. 27:913–24
    [Google Scholar]
  128. Shukla A, Guleria JS, Mehrotra RC 2012. A fruit wing of Shorea Roxb. from the Early Miocene sediments of Kachchh, Gujarat and its bearing on palaeoclimatic interpretation. J. Earth Syst. Sci. 122:1373–86
    [Google Scholar]
  129. Shukla A, Mehrotra RC, Guleria JS 2013. Emergence and extinction of Dipterocarpaceae in western India with reference to climate change: fossil wood evidences. J. Earth Syst. Sci. 122:1373–86
    [Google Scholar]
  130. Simard M, Pinto N, Fisher J, Baccini A 2011. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. 116:G04021 https://doi.org/10.1029/2011JG001708
    [Crossref] [Google Scholar]
  131. Slik JF, Aiba S-I, Bastian M, Brearley FQ, Cannon CH et al. 2011. Soils on exposed Sunda Shelf shaped biogeographic patterns in the equatorial forests of Southeast Asia. PNAS 108:12343–47
    [Google Scholar]
  132. Slik JF, Arroyo-Rodríguez V, Aiba S-I, Alvarez-Loayza P, Alves LF et al. 2015. An estimate of the number of tropical tree species. PNAS 112:7472–77
    [Google Scholar]
  133. Slik JF, Franklin J, Arroyo-Rodríguez V, Field R, Aguilar S et al. 2018. Phylogenetic classification of the world's tropical forests. PNAS 115:1837–42
    [Google Scholar]
  134. Slik JF, Raes N, Aiba S-I, Brearley FQ, Cannon CH et al. 2009. Environmental correlates for tropical tree diversity and distribution patterns in Borneo. Divers. Distrib. 15:523–32
    [Google Scholar]
  135. Smith T, Kumar K, Rana RS, Folie A, Solé F et al. 2016. New early Eocene vertebrate assemblage from western India reveals a mixed fauna of European and Gondwana affinities. Geosi. Front. 7:969–1001
    [Google Scholar]
  136. Sniderman JK, Jordan GJ. 2011. Extent and timing of floristic exchange between Australian and Asian rain forests. J. Biogeogr. 38:1445–55
    [Google Scholar]
  137. Srivastava G, Mehrotra RC, Shukla A, Tiwari RP 2014. Miocene vegetation and climate in extra peninsular India: megafossil evidences. Palaeontol. Soc. Ind. 5:283–90
    [Google Scholar]
  138. Stapf O. 1894. On the flora of Mount Kinabalu, in North Borneo. Trans. Linn. Soc. Lond. 4:69–263
    [Google Scholar]
  139. Stehli FG, Webb SD. 1985. The Great American Biotic Interchange New York/London: Plenum
    [Google Scholar]
  140. Symington CF. 1943. Foresters’ Manual of Dipterocarps Malays. For. Rec. Ser. 16 Kuala Lumpur: Penerbit Univ. Malaya
    [Google Scholar]
  141. Tapponnier P, Peltzer G, Armijo R 1986. On the mechanics of the collision between India and Asia. Geol. Soc. Lond. Spec. Publ. 19:113–57
    [Google Scholar]
  142. Tarran M, Wilson PG, Paull R, Biffin E, Hill RS 2018. Identifying fossil Myrtaceae leaves: the first described fossils of Syzygium from Australia. Am. J. Bot. 105:1–12
    [Google Scholar]
  143. ter Steege H, Pitman NC, Sabatier D, Baraloto C, Salomão RP et al. 2013. Hyperdominance in the Amazonian tree flora. Science 342:1243092
    [Google Scholar]
  144. Thornhill AH, Hope GS, Craven LA, Crisp MD 2012. Pollen morphology of the Myrtaceae. Part 2: Tribes Backhousieae, Melaleuceae, Metrosidereae, Osbornieae and Syzygieae. Aust. J. Bot. 60:200–24
    [Google Scholar]
  145. Tnah LH, Lee SL, Ng KK, Lee CT, Bhassu S, Othman RY 2012. Phylogeographical pattern and evolutionary history of an important Peninsular Malaysian timber species, Neobalanocarpus heimii (Dipterocarpaceae). J. Hered. 104:115–26
    [Google Scholar]
  146. Toussaint EFA, Hall R, Monaghan MT, Sagata K, Ibalim S et al. 2014. The towering orogeny of New Guinea as a trigger for arthropod megadiversity. Nat. Commun. 5:4001
    [Google Scholar]
  147. van Aarssen B, de Leeuw JD, Collinson M, Boon JJ, Goth K 1994. Occurrence of polycadinene in fossil and recent resins. Geochim. Cosmochim. Acta 58:223–30
    [Google Scholar]
  148. van der Merwe M, Crayn DM, Ford AJ, Weston PH, Rossetto M 2016. Evolution of Australian Cryptocarya (Lauraceae) based on nuclear and plastid phylogenetic trees: evidence of recent landscape-level disjunctions. Aust. Syst. Bot. 29:157–66
    [Google Scholar]
  149. van Gorsel JH. 2014. An introduction to Cenozoic macrofossils of Indonesia. Ber. Sedimentol. 30:63–81
    [Google Scholar]
  150. van Hinsbergen DJJ, Lippert PC, Dupont-Nivete G, McQuarrie N, Doubrovine PV et al. 2012. Greater India Basin hypothesis and a two-stage Cenozoic collision between India and Asia. PNAS 109:7659–64Provides important insights into areas of uncertainty around the India–Asia collision event.
    [Google Scholar]
  151. van Steenis CGGJ. 1934. On the origin of the Malaysian mountain flora. Parts 1–2. Bull. Jard. Bot. Buitenzorg Ser. III 13:133–262
    [Google Scholar]
  152. van Steenis CGGJ. 1964. Plant geography of the mountain flora of Mt Kinabalu. Proc. R. Soc. B 161:7–38
    [Google Scholar]
  153. van Steenis CGGJ. 1979. Plant geography of east Malesia. Bot. J. Linn. Soc. 79:97–178
    [Google Scholar]
  154. van Waveren IM, Booi M, Crow MJ, Hasibuan F, van Konijnenburg–van Cittert JHA et al. 2018. Depositional settings and changing composition of the Jambi palaeoflora within the Permian Mengkarang Formation (Sumatra, Indonesia). Geol. J. 53:2969–90
    [Google Scholar]
  155. Wallace AR. 1860. On the zoological geography of the Malay Archipelago. J. Proc. Linn. Soc. Lond. 4:172–84
    [Google Scholar]
  156. Wallace AR. 1869. The Malay Archipelago London: Macmillan
    [Google Scholar]
  157. Webb CO. 2000. Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. Am. Nat. 156:145–55
    [Google Scholar]
  158. Wells PM, Hill RS. 1989. Fossil imbricate-leaved Podocarpaceae from Tertiary sediments in Tasmania. Aust. Syst. Bot. 2:387–423
    [Google Scholar]
  159. Westoby M. 2006. Phylogenetic ecology at world scale, a new fusion between ecology and evolution. Ecology 87:Suppl. 7163–65
    [Google Scholar]
  160. Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ 2002. Plant ecological strategies: some leading dimensions of variation between species. Annu. Rev. Ecol. Syst. 33:125–59
    [Google Scholar]
  161. Wheeler EA, Srivastava R, Manchester SR, Baas P 2017. Surprisingly modern latest Cretaceous-earliest Paleocene woods of India. Int. Assoc. Wood Anat. J. 38:456–542Presents a pivotal and comprehensive reassessment of Deccan wood flora from near the Cretaceous–Paleogene boundary of India well prior to collision with Asia (GAFI 1).
    [Google Scholar]
  162. Wilf P. 2012. Rainforest conifers of Eocene Patagonia: attached cones and foliage of the extant Southeast Asian and Australasian genus Dacrycarpus (Podocarpaceae). Am. J. Bot. 99:562–84
    [Google Scholar]
  163. Wilf P, Cúneo NR, Escapa IH, Pol D, Woodburne MO 2013. Splendid and seldom isolated: the paleobiogeography of Patagonia. Annu. Rev. Earth Planet. Sci. 41:561–603
    [Google Scholar]
  164. Wilf P, Escapa IH. 2015. Green Web or megabiased clock? Patagonian plant fossils speak on evolutionary radiations. New Phytol 207:283–90
    [Google Scholar]
  165. Wilf P, Escapa IH, Cúneo NR, Kooyman RM, Johnson KR, Iglesias A 2014. First South American Agathis (Araucariaceae), Eocene of Patagonia. Am. J. Bot. 101:156–79
    [Google Scholar]
  166. Wilf P, Little SA, Iglesias A, del Carmen Zamaloa M, Gandolfo MA et al. 2009. Papuacedrus (Cupressaceae) in Eocene Patagonia: a new fossil link to Australasian rainforests. Am. J. Bot. 96:2031–47
    [Google Scholar]
  167. Wilf P, Nixon KC, Gandolfo MA, Cúneo NR 2019. Eocene Fagaceae from Patagonia and Gondwanan legacy in Asian rainforests. Science 364:eaaw5139
    [Google Scholar]
  168. Wing SL, Herrera F, Jaramillo CA, Gómez-Navarro C, Wilf P, Labandeira CC 2009. Late Paleocene fossils from the Cerrejón Formation, Colombia, are the earliest record of Neotropical rainforest. PNAS 106:18627–32
    [Google Scholar]
  169. Witts D, Hall R, Nichols G, Morley R 2012. A new depositional and provenance model for the Tanjung Formation, Barito Basin, SE Kalimantan, Indonesia. J. Asian Earth Sci. 56:77–104
    [Google Scholar]
  170. Woodcock DW, Meyer HW, Prado Y 2017. The Piedra Chamana fossil woods (Eocene, Peru). IAWA J 38:313–65
    [Google Scholar]
  171. Wright IJ, Dong N, Maire V, Prentice IC, Westoby M et al. 2017. Global climatic drivers of leaf size. Science 357:917–21
    [Google Scholar]
  172. Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z et al. 2004. The worldwide leaf economics spectrum. Nature 428:821–27
    [Google Scholar]
  173. Yao Y-F, Bera S, Ferguson DK, Mosbrugger V, Paudayal KN et al. 2009. Reconstruction of paleovegetation and paleoclimate in the Early and Middle Eocene, Hainan Island, China. Clim. Change 92:169–89
    [Google Scholar]
  174. Yap J-Y, Rossetto M, Costion C, Crayn D, Kooyman RM et al. 2018. Filters of floristic exchange: how traits and climate shape the invasion of Sahul from Sunda. J. Biogeogr. 45:838–47
    [Google Scholar]
  175. Zachos JC, Pagini M, Sloan L, Thomas E, Billups K 2001. Trends, rhythms and aberrations in global climate 65 Ma to present. Science 292:686–93
    [Google Scholar]
  176. Zamaloa MC, Gandolfo MA, González CC, Romero EJ, Cúneo NR et al. 2006. Casuarinaceae from the Eocene of Patagonia. Argentina: Int. J. Plant Sci. 167:1279–89
    [Google Scholar]
  177. Ziegler AM, Eshel G, Rees PMA, Rothfus TA, Rowley DB et al. 2003. Tracing the tropics across land and sea: Permian to present. Lethaia 36:227–54
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-110218-024737
Loading
/content/journals/10.1146/annurev-ecolsys-110218-024737
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error