Ecological networks depict the interactions between species, mainly based on observations in the field. The information contained in such interaction matrices depends on the sampling design, and typically, compounds preferences (specialization) and abundances (activity). Null models are the primary vehicles to disentangle the effects of specialization from those of sampling and abundance, but they ignore the feedback of network structure on abundances. Hence, network structure, as exemplified here by modularity, is difficult to link to specific causes. Indeed, various processes lead to modularity and to specific interaction patterns more generally. Inferring (co)evolutionary dynamics is even more challenging, as competition and trait matching yield identical patterns of interactions. A satisfactory resolution of the underlying factors determining network structure will require substantial additional information, not only on independently assessed abundances, but also on traits, and ideally on fitness consequences as measured in experimental setups.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Albrecht M, Padrón B, Bartomeus I, Traveset A. 2014. Consequences of plant invasions on compartmentalization and species' roles in plant–pollinator networks. Proc. R. Soc. B 281:20140773 [Google Scholar]
  2. Allesina S, Pascual M. 2009. Food web models: a plea for groups. Ecol. Lett. 12:652–62 [Google Scholar]
  3. Allesina S, Tang S. 2012. Stability criteria for complex ecosystems. Nature 483:205–8 [Google Scholar]
  4. Almeida-Neto M, Guimarães P, Guimarães PR Jr., Loyola RD, Ulrich W. 2008. A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117:1227–39 [Google Scholar]
  5. Armbruster WS. 2017. The specialization continuum in pollination systems: diversity of concepts and implications for ecology, evolution and conservation. Funct. Ecol. 31:88–100 [Google Scholar]
  6. Augustyn WJ, Anderson B, Ellis AG. 2016. Experimental evidence for fundamental, and not realised, niche partitioning in a plant–herbivore community interaction network. J. Anim. Ecol. 85:994–1003 [Google Scholar]
  7. Banašek-Richter C, Cattin MF, Bersier LF. 2004. Sampling effects and the robustness of quantitative and qualitative food-web descriptors. J. Theor. Biol. 226:23–32 [Google Scholar]
  8. Barber M. 2007. Modularity and community detection in bipartite networks. Phys. Rev. E 76:066102 [Google Scholar]
  9. Bartomeus I, Gravel D, Tylianakis JM, Aizen MA, Dickie IA, Bernard-Verdier M. 2016. A common framework for identifying linkage rules across different types of interactions. Funct. Ecol. 30:1894–903 [Google Scholar]
  10. Bascompte J, Jordano P. 2014. Mutualistic Networks Princeton, NJ: Princeton Univ. Press [Google Scholar]
  11. Bascompte J, Jordano P, Melián CJ, Olesen JM. 2003. The nested assembly of plant–animal mutualistic networks. PNAS 100:9383–87 [Google Scholar]
  12. Bastolla U, Fortuna MA, Pascual-García A, Ferrera A, Luque B, Bascompte J. 2009. The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458:1018–20 [Google Scholar]
  13. Beckett SJ. 2015. Improved community detection in weighted bipartite networks. R. Soc. Open Sci. 3:140536 [Google Scholar]
  14. Benadi G, Blüthgen N, Hovestadt T, Poethke HJ. 2012. Population dynamics of plant and pollinator communities: stability reconsidered. Am. Nat. 179:157–268 [Google Scholar]
  15. Benadi G, Blüthgen N, Hovestadt T, Poethke HJ. 2013. When can plant-pollinator interactions promote plant diversity. Am. Nat. 182:131–46 [Google Scholar]
  16. Benkman CW. 1999. The selection mosaic and diversifying coevolution between crossbills and lodgepole pine. Am. Nat. 153:S75–91 [Google Scholar]
  17. Bisanzio D, Bertolotti L, Tomassone L, Amore G, Ragagli C. et al. 2010. Modeling the spread of vector-borne diseases on bipartite networks. PLOS ONE 5:e13796 [Google Scholar]
  18. Blüthgen N, Fründ J, Vázquez DP, Menzel F. 2008. What do interaction network metrics tell us about specialization and biological traits. Ecology 89:3387–99 [Google Scholar]
  19. Blüthgen N, Menzel F, Blüthgen N. 2006. Measuring specialization in species interaction networks. BMC Ecol 6:9 [Google Scholar]
  20. Blüthgen N, Menzel F, Hovestadt T, Fiala B, Blüthgen N. 2007. Specialization, constraints, and conflicting interests in mutualistic networks. Curr. Biol. 17:341–46 [Google Scholar]
  21. Boccaletti S, Bianconi G, Criado R, del Genio CI, Gómez-Gardeñes J. et al. 2014. The structure and dynamics of multilayer networks. Phys. Rep. 544:1–122 [Google Scholar]
  22. Brosi BJ, Briggs HM. 2013. Single pollinator species losses reduce floral fidelity and plant reproductive function. PNAS 110:13044–48 [Google Scholar]
  23. Cagnolo L, Salvo A, Valladares G. 2011. Network topology: patterns and mechanisms in plant-herbivore and host-parasitoid food webs. J. Anim. Ecol. 80:342–51 [Google Scholar]
  24. Coux C, Rader R, Bartomeus I, Tylianakis JM. 2016. Linking species functional roles to their network roles. Ecol. Lett. 19:762–70 [Google Scholar]
  25. Crea C, Ali RA, Rader R. 2015. A new model for ecological networks using species level traits. Methods Ecol. Evol. 7:232–41 [Google Scholar]
  26. Dalsgaard B, Trøjelsgaard K, Martín González AM, Nogués-Bravo D, Ollerton J. et al. 2013. Historical climate-change influences modularity and nestedness of pollination networks. Ecography 36:1331–40 [Google Scholar]
  27. Dehling DM, Jordano P, Schaefer HM, Böhning-Gaese K, Schleuning M. 2016. Morphology predicts species' functional roles and their degree of specialisation in plant–frugivore interactions. Proc. R. Soc. B 283:20152444 [Google Scholar]
  28. Dehling DM, Töpfer T, Schaefer HM, Jordano P, Böhning-Gaese K, Schleuning M. 2014. Functional relationships beyond species richness patterns: trait matching in plant–bird mutualisms across scales. Glob. Ecol. Biogeogr. 23:1085–93 [Google Scholar]
  29. Dicks LV, Corbet SA, Pywell RF. 2002. Compartmentalization in plant–insect flower visitor webs. J. Anim. Ecol. 71:32–43 [Google Scholar]
  30. Donatti CI, Guimarães PR, Galetti M, Pizo MA, Marquitti FMD, Dirzo R. 2011. Analysis of a hyper-diverse seed dispersal network: modularity and underlying mechanisms. Ecol. Lett. 14:773–81 [Google Scholar]
  31. Dormann CF. 2011. How to be a specialist? Quantifying specialisation in pollination networks. Netw. Biol. 1:1–20 [Google Scholar]
  32. Dormann CF, Blüthgen N, Fründ J, Gruber B. 2009. Indices, graphs and null models: analyzing bipartite ecological networks. Open Ecol. J. 2:7–24 [Google Scholar]
  33. Dormann CF, Strauß R. 2014. A method for detecting modules in quantitative bipartite networks. Methods Ecol. Evol. 5:90–98 [Google Scholar]
  34. Dupont YL, Olesen JM. 2009. Ecological modules and roles of species in heathland plant: insect flower visitor networks. J. Anim. Ecol. 78:346–53 [Google Scholar]
  35. Dupont YL, Padrón B, Olesen JM, Petanidou T. 2009. Spatio-temporal variation in the structure of pollination networks. Oikos 118:1261–69 [Google Scholar]
  36. Eklöf A, Jacob U, Kopp J, Bosch J, Castro-Urgal R. et al. 2013. The dimensionality of ecological networks. Ecol. Lett. 16:577–83 [Google Scholar]
  37. Elias M, Fontaine C, van Veen FJF. 2013. Evolutionary history and ecological processes shape a local multilevel antagonistic network. Curr. Biol. 23:1355–59 [Google Scholar]
  38. Finke DL, Snyder WE. 2008. Niche partitioning increases resource exploitation by diverse communities. Science 2137:1999–2002 [Google Scholar]
  39. Fonseca C, Ganade G. 1996. Asymmetries, compartments and null interactions in an Amazonian ant-plant community. J. Anim. Ecol. 65:339–47 [Google Scholar]
  40. Fontaine C, Dajoz I, Meriguet J, Loreau M. 2006. Functional diversity of plant–pollinator interaction webs enhances the persistence of plant communities. PLOS Biol 4:e1 [Google Scholar]
  41. Fort H, Vázquez DP, Lan BL. 2016. Abundance and generalization in mutualistic networks: solving the chicken-and-egg dilemma. Ecol. Lett. 19:4–11 [Google Scholar]
  42. Fortunato S. 2010. Community detection in graphs. Phys. Rep. 486:75–174 [Google Scholar]
  43. Fründ J, Dormann CF, Holzschuh A, Tscharntke T. 2013. Bee diversity effects on pollination depend on functional complementarity and niche shifts. Ecology 94:2042–54 [Google Scholar]
  44. Fründ J, Dormann CF, Tscharntke T. 2011. Linné’s floral clock is slow without pollinators—flower closure and plant-pollinator interaction webs. Ecol. Lett. 14:896–904 [Google Scholar]
  45. Fründ J, McCann KS, Williams NM. 2016. Sampling bias is a challenge for quantifying specialization and network structure: lessons from a quantitative niche model. Oikos 125:502–13 [Google Scholar]
  46. Galetti M, Guevara R, Côrtes MC, Fadini R, Von Matter S. et al. 2013. Functional extinction of birds drives rapid evolutionary changes in seed size. Science 340:1086–90 [Google Scholar]
  47. Galipaud M, Gillingham MAF, David M, Dechaume-Moncharmont FX. 2014. Ecologists overestimate the importance of predictor variables in model averaging: a plea for cautious interpretations. Methods Ecol. Evol. 5:983–91 [Google Scholar]
  48. Garay-Narváez L, Flores JD, Arim M, Ramos-Jiliberto R. 2014. Food web modularity and biodiversity promote species persistence in polluted environments. Oikos 123:583–88 [Google Scholar]
  49. Gianetto DA, Heydari B. 2015. Network modularity is essential for evolution of cooperation under uncertainty. Sci. Rep. 5:9340 [Google Scholar]
  50. Gibson RH, Knott B, Eberlein T, Memmott J. 2011. Sampling method influences the structure of plant–pollinator networks. Oikos 120:822–31 [Google Scholar]
  51. González-Castro A, Yang S, Nogales M, Carlo TA. 2015. Relative importance of phenotypic trait matching and species' abundances in determining plant–avian seed dispersal interactions in a small insular community. AoB Plants 7:plv017 [Google Scholar]
  52. Gotelli NJ, Graves GR. 1996. Null Models in Ecology Washington, DC: Smithsonian Inst. [Google Scholar]
  53. Grant PR, Grant BR. 2002. Unpredictable evolution in a 30-year study of Darwin's finches. Science 707:707–11 [Google Scholar]
  54. Guimarães PR Jr., Jordano P, Thompson JN. 2011. Evolution and coevolution in mutualistic networks. Ecol. Lett. 14:877–85 [Google Scholar]
  55. Guimerà R, Amaral LAN. 2005. Functional cartography of complex metabolic networks. Nature 433:895–900 [Google Scholar]
  56. Helbing D. 2013. Globally networked risks and how to respond. Nature 497:51–59 [Google Scholar]
  57. Iwao K, Rausher MD. 1997. Evolution of plant resistance to multiple herbivores: quantifying diffuse coevolution. Am. Nat. 149:316–35 [Google Scholar]
  58. James A, Pitchford JW, Plank MJ. 2012. Disentangling nestedness from models of ecological complexity. Nature 487:227–30 [Google Scholar]
  59. Janzen DH. 1980. When is it coevolution. Evolution 34:611–12 [Google Scholar]
  60. Janzen DH. 1985. On ecological fitting. Oikos 45:308–10 [Google Scholar]
  61. Jordano P. 1987. Patterns of mutualistic interactions in pollination and seed dispersal–connectance, dependence asymmetries, and coevolution. Am. Nat. 129:657–77 [Google Scholar]
  62. Jordano P. 2016. Sampling networks of ecological interactions. Funct. Ecol. 30:1883–93 [Google Scholar]
  63. Junker RR, Blüthgen N, Brehm T, Binkenstein J, Paulus J. et al. 2013. Specialization on traits as basis for the niche-breadth of flower visitors and as structuring mechanism of ecological networks. Funct. Ecol. 27:329–41 [Google Scholar]
  64. Kimura K, Yumoto T, Kikuzawa K. 2001. Fruiting phenology of fleshy-fruited plants and seasonal dynamics of frugivorous birds in four vegetation zones on Mt. Kinabalu, Borneo. J. Trop. Ecol. 17:833–58 [Google Scholar]
  65. Krasnov BR, Fortuna MA, Mouillot D, Khokhlova IS, Shenbrot GI, Poulin R. 2012. Phylogenetic signal in module composition and species connectivity in compartmentalized host-parasite networks. Am. Nat. 179:501–11 [Google Scholar]
  66. Krause AE, Frank KA, Mason DM, Ulanowicz RE, Taylor WW. 2003. Compartments revealed in food-web structure. Nature 426:282–85 [Google Scholar]
  67. Krishna A, Guimarães PR Jr., Jordano P, Bascompte J. 2008. A neutral-niche theory of nestedness in mutualistic networks. Oikos 117:1609–18 [Google Scholar]
  68. Laliberté E, Tylianakis JM. 2010. Deforestation homogenizes tropical parasitoid–host networks. Ecology 91:1740–47 [Google Scholar]
  69. Lewinsohn TM, Prado PI, Jordano P, Bascompte J, Olesen JM. 2006. Structure in plant–animal interaction assemblages. Oikos 113:174–84 [Google Scholar]
  70. Lopezaraiza-Mikel ME, Hayes RB, Whalley MR, Memmott J. 2007. The impact of an alien plant on a native plant–pollinator network: an experimental approach. Ecol. Lett. 10:539–50 [Google Scholar]
  71. Maglianesi MA, Blüthgen N, Böhning-Gaese K, Schleuning M. 2014. Morphological traits determine specialization and resource use in plant–hummingbird networks in the neotropics. Ecology 95:3325–34 [Google Scholar]
  72. Martín González AM, Allesina S, Rodrigo A, Bosch J. 2012. Drivers of compartmentalization in a Mediterranean pollination network. Oikos 121:2001–13 [Google Scholar]
  73. May RM. 1972. Will a large complex system be stable. Nature 238:413–14 [Google Scholar]
  74. May RM. 1973. Stability and Complexity in Model Ecosystems Princeton, NJ: Princeton Univ. Press [Google Scholar]
  75. Mello MAR, Marquitti FMD, Guimarães PR, Kalko EKV, Jordano P, Martinez de Aguiar MA. 2011. The modularity of seed dispersal: differences in structure and robustness between bat– and bird–fruit networks. Oecologia 167:131–40 [Google Scholar]
  76. Morris RJ, Gripenberg S, Lewis OT, Roslin T. 2013. Antagonistic interaction networks are structured independently of latitude and host guild. Ecol. Lett. 27:340–49 [Google Scholar]
  77. Newman MEJ. 2006. Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74:036104 [Google Scholar]
  78. Nielsen A, Bascompte J. 2007. Ecological networks, nestedness and sampling effort. J. Ecol. 95:1134–41 [Google Scholar]
  79. Nogales M, Heleno R, Rumeu B, Traveset A, Vargas P, Olesen JM. 2015. Seed-dispersal networks on the Canaries and the Galápagos archipelagos: interaction modules as biogeographical entities. Glob. Ecol. Biogeogr. 7:912–22 [Google Scholar]
  80. Olesen JM, Bascompte J, Dupont YL, Jordano P. 2006. The smallest of all worlds: pollination networks. J. Theor. Biol. 240:270–76 [Google Scholar]
  81. Olesen JM, Bascompte J, Dupont YL, Jordano P. 2007. The modularity of pollination networks. PNAS 104:19891–96 [Google Scholar]
  82. Olesen JM, Bascompte J, Elberling H, Jordano P. 2008. Temporal dynamics in a pollination network. Ecology 89:1573–82 [Google Scholar]
  83. Ollerton J, Alarcón R, Waser NM, Price MV, Watts S. et al. 2009. A global test of the pollination syndrome hypothesis. Ann. Bot. 103:1471–80 [Google Scholar]
  84. Parrish JAD, Bazzaz FA. 1979. Difference in pollination niche relationships in early and late successional plant communities. Ecology 60:597–610 [Google Scholar]
  85. Pascual M, Dunne J. , eds. 2006. Ecological Networks: Linking Structure to Dynamics in Food Webs Oxford: Oxford Univ. Press [Google Scholar]
  86. Peralta G. 2016. Merging evolutionary history into species interaction networks. Funct. Ecol. 30:1917–25 [Google Scholar]
  87. Petanidou T, Kallimanis AS, Tzanopoulos J, Sgardelis SP, Pantis JD. 2008. Long-term observation of a pollination network: fluctuation in species and interactions, relative invariance of network structure and implications for estimates of specialization. Ecol. Lett. 11:564–75 [Google Scholar]
  88. Petchey OL. 2003. Integrating methods that investigate how complementarity influences ecosystem functioning. Oikos 101:323–30 [Google Scholar]
  89. Pilosof S, Porter MA, Pascual M, Kéfi S. 2017. The multilayer nature of ecological networks. Nat. Ecol. Evol. 1:0101 [Google Scholar]
  90. Pimm SL. 1979. The structure of food webs. Theor. Popul. Biol. 16:144–58 [Google Scholar]
  91. Pimm SL. 1982. Food Webs Chicago: Chicago Univ. Press [Google Scholar]
  92. Pimm SL, Lawton JH. 1980. Are food webs divided into compartments?. J. Anim. Ecol. 49:879–98 [Google Scholar]
  93. Poisot T, Canard E, Mouillot D, Mouquet N, Gravel D, Jordan F. 2012. The dissimilarity of species interaction networks. Ecol. Lett. 15:1353–61 [Google Scholar]
  94. Poisot T, Stouffer DB, Gravel D. 2015. Beyond species: why ecological interactions vary through space and time. Oikos 124:243–51 [Google Scholar]
  95. Poulin R, Krasnov BR, Pilosof S, Thieltges DW. 2013. Phylogeny determines the role of helminth parasites in intertidal food webs. J. Anim. Ecol. 82:1265–75 [Google Scholar]
  96. Prado PI, Lewinsohn TM. 2004. Compartments in insect–plant associations and their consequences for community structure. J. Anim. Ecol. 73:1168–78 [Google Scholar]
  97. Raffaelli D, Hall SJ. 1992. Compartments and predation in an estuarine food web. J. Anim. Ecol. 61:551–60 [Google Scholar]
  98. Rasmussen C, Dupont YL, Mosbacher JB, Trøjelsgaard K, Olesen JM. 2013. Strong impact of temporal resolution on the structure of an ecological network. PLOS ONE 8:e81694 [Google Scholar]
  99. Rezende EL, Albert EM, Fortuna MA, Bascompte J. 2009. Compartments in a marine food web associated with phylogeny, body mass, and habitat structure. Ecol. Lett. 12:779–88 [Google Scholar]
  100. Rezende EL, Lavebre JE, Guimarães PR Jr., Jordano P, Bascompte J. 2007. Non-random coextinctions in phylogenetically structured mutualistic networks. Nature 448:925–28 [Google Scholar]
  101. Riedinger V, Mitesser O, Hovestadt T, Steffan-Dewenter I, Holzschuh A. 2015. Annual dynamics of wild bee densities: attractiveness and productivity effects of oilseed rape. Ecology 96:1351–60 [Google Scholar]
  102. Rivera-Hutinel A, Bustamante RO, Marín VH, Medel R. 2012. Effects of sampling completeness on the structure of plant–pollinator networks. Ecology 93:1593–603 [Google Scholar]
  103. Rohr RP, Saavedra S, Bascompte J. 2014. On the structural stability of mutualistic systems. Science 345:1253497 [Google Scholar]
  104. Ruiz-Moreno D, Pascual M, Riolo R. 2006. Exploring network space with genetic algorithms: modularity, resilience, and reactivity. Ecological Networks: Linking Structure to Dynamics in Food Webs M Pascual, JA Dunne 187–201 Oxford: Oxford Univ. Press [Google Scholar]
  105. Russo L, Shea K. 2016. Deliberately increased network connectance in a plant–pollinator community experiment. J. Complex Netw. 5:473–85 [Google Scholar]
  106. Sazatornil FD, Moré M, Benitez-Vieyra S, Cocucci AA, Kitching IJ. et al. 2016. Beyond neutral and forbidden links: morphological matches and the assembly of mutualistic hawkmoth–plant networks. J. Anim. Ecol. 85:1586–94 [Google Scholar]
  107. Schleuning M, Blüthgen N, Flörchinger M, Braun J, Schaefer HM, Böhning-Gaese K. 2011. Specialization and interaction strength in a tropical plant–frugivore network differ among forest strata. Ecology 92:26–36 [Google Scholar]
  108. Schleuning M, Fründ J, García D. 2015. Predicting ecosystem functions from biodiversity and mutualistic networks: an extension of trait-based concepts to plant–animal interactions. Ecography 38:380–92 [Google Scholar]
  109. Schleuning M, Ingmann L, Strauß R, Fritz SA, Dalsgaard B. et al. 2014. Ecological, historical and evolutionary determinants of modularity in weighted seed-dispersal networks. Ecol. Lett. 17:454–63 [Google Scholar]
  110. Sebastián-González E, Dalsgaard B, Sandel B, Guimarães PR Jr. 2015. Macroecological trends in nestedness and modularity of seed-dispersal networks: Human impact matters. Global 24:293–303 [Google Scholar]
  111. Sinha S. 2005. Complexity versus stability in small-world networks. Physica A 346:147–53 [Google Scholar]
  112. Sørensen PB, Damgaard CF, Strandberg B, Dupont YL, Marianne B. et al. 2011. A method for under-sampled ecological network data analysis: plant-pollination as case study. J. Pollinat. Ecol. 6:129–39 [Google Scholar]
  113. Spiesman BJ, Gratton C. 2016. Flexible foraging shapes the topology of plant–pollinator interaction networks. Ecology 97:1431–41 [Google Scholar]
  114. Stang M, Klinkhamer PGL, Waser NM, Stang I, van der Meijden E. 2009. Size-specific interaction patterns and size matching in a plant–pollinator interaction web. Ann. Bot. 103:1459–69 [Google Scholar]
  115. Stouffer DB, Sales-Pardo M, Sirer MI, Bascompte J. 2012. Evolutionary conservation of species' roles in food webs. Science 335:1489–92 [Google Scholar]
  116. Thébault E. 2013. Identifying compartments in presence–absence matrices and bipartite networks: insights into modularity measures. J. Biogeogr. 40:759–68 [Google Scholar]
  117. Thébault E, Fontaine C. 2010. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329:853–56 [Google Scholar]
  118. Thompson JN. 2005. The Geographic Mosaic of Coevolution Chicago: Univ. Chicago Press [Google Scholar]
  119. Thompson JN, Willson MF. 1979. Evolution of temperate fruit/bird interactions: phenological strategies. Evolution 33:973–82 [Google Scholar]
  120. Tylianakis JM, Morris RJ. 2017. Ecological networks across environmental gradients. Annu. Rev. Ecol. Evol. Syst. 48:25–48 [Google Scholar]
  121. Tylianakis JM, Tscharntke T, Lewis OT. 2007. Habitat modification alters the structure of tropical host–parasitoid food webs. Nature 445:202–5 [Google Scholar]
  122. Valdovinos FS, Moisset de Espanés P, Flores JD, Ramos-Jiliberto R. 2013. Adaptive foraging allows the maintenance of biodiversity of pollination networks. Oikos 122:907–17 [Google Scholar]
  123. Valverde J, Gómez JM, Perfectti F. 2016. The temporal dimension in individual-based plant pollination networks. Oikos 125:468–79 [Google Scholar]
  124. Vamosi JC, Moray CM, Garcha NK, Chamberlain SA, Mooers . 2014. Pollinators visit related plant species across 29 plant–pollinator networks. Ecol. Evol. 4:2303–15 [Google Scholar]
  125. Vázquez DP, Blüthgen N, Cagnolo L, Chacoff NP. 2009a. Uniting pattern and process in plant–animal mutualistic networks: a review. Ann. Bot. 103:1445–57 [Google Scholar]
  126. Vázquez DP, Chacoff N, Cagnolo L. 2009b. Evaluating multiple determinants of the structure of plant–animal mutualistic networks. Ecology 90:2039–46 [Google Scholar]
  127. Vázquez DP, Lomáscolo SB, Maldonado MB, Chacoff NP, Dorado J. et al. 2012. The strength of plant–pollinator interactions. Ecology 93:719–25 [Google Scholar]
  128. Vázquez DP, Melián CJ, Williams NM, Blüthgen N, Krasnov BR, Poulin R. 2007. Species abundance and asymmetric interaction strength in ecological networks. Oikos 116:1120–27 [Google Scholar]
  129. Vázquez DP, Ramos-Jiliberto R, Urbani P, Valdovinos FS. 2015. A conceptual framework for studying the strength of plant–animal mutualistic interactions. Ecol. Lett. 18:385–400 [Google Scholar]
  130. Verdú M, Valiente-Banuet A. 2011. The relative contribution of abundance and phylogeny to the structure of plant facilitation networks. Oikos 120:1351–56 [Google Scholar]
  131. Vesk PA, McCarthy MA, Moir ML. 2010. How many hosts? Modelling host breadth from field samples. Methods Ecol. Evol. 1:292–99 [Google Scholar]
  132. Vizentin-Bugoni J, Maruyama PK, Debastiani VJ, Duarte L da S, Dalsgaard B, Sazima M. 2016. Influences of sampling effort on detected patterns and structuring processes of a Neotropical plant–hummingbird network. J. Anim. Ecol. 85:262–72 [Google Scholar]
  133. Vizentin-Bugoni J, Maruyama PK, Sazima M. 2014. Processes entangling interactions in communities: Forbidden links are more important than abundance in a hummingbird–plant network. Proc. R. Soc. B 281:20132397 [Google Scholar]
  134. Wells K, Feldhaar H, O'Hara RB. 2014. Population fluctuations affect inference in ecological networks of multi-species interactions. Oikos 123:589–98 [Google Scholar]
  135. Wells K, O'Hara RB. 2013. Species interactions: estimating per-individual interaction strength and covariates before simplifying data into per-species ecological networks. Methods Ecol. Evol. 4:1–8 [Google Scholar]
  136. Williams RJ, Martinez ND. 2000. Simple rules yield complex foodwebs. Nature 404:180–83 [Google Scholar]

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error