Populations that experience severe stress may avoid extinction through adaptation by natural selection. This process is called evolutionary rescue and has been studied under different names in medicine, agriculture, and conservation biology. It is a component of the emerging field of eco-evolutionary dynamics, which investigates how the ecological attributes of species may evolve rapidly under strong selection. Its distinguishing feature is to combine the evolutionary concept of relative fitness with the ecological concept of absolute fitness in a synthetic theory of persistent adaptation. The likelihood of rescue will depend both on attributes of the population, particularly abundance and variation, and on properties of the environment, particularly the rate and severity of deterioration. Medical interventions (e.g., the administration of antibiotics), agricultural practices (e.g., the application of pesticides), and population ecology (e.g., the effects of species introductions) provide numerous examples of evolutionary rescue. The general theory of rescue has been tested in laboratory experiments with microbes, in which experimental evolution shows how different treatments affect the frequency of rescue. Overall, these experiments have supported the predictions of general theory: In particular, abundance, variation, and dispersal have pronounced and repeatable effects on the rescue of populations and communities. Extending these laboratory results to the field is a major task for future research.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Agashe D. 2009. The stabilizing effect of intraspecific genetic variation on population dynamics in novel and ancestral habitats. Am. Nat. 174:2255–67 [Google Scholar]
  2. Agashe D, Falk JJ, Bolnick DI. 2011. Effects of founding genetic variation on adaptation to a novel resource. Evolution 65:92481–91 [Google Scholar]
  3. Alexander HK, Martin G, Martin OY, Bonhoeffer S. 2014. Evolutionary rescue: linking theory for conservation and medicine. Evol. Appl. 7:101161–79 [Google Scholar]
  4. Al-Hiyaly SAK, McNeilly T, Bradshaw AD, Mortimer AM. 1993. The effect of zinc contamination from electricity pylons. Genetic constraints on selection for zinc tolerance. Heredity 70:22–32 [Google Scholar]
  5. Anagnostakis SL. 1987. Chestnut blight: the classical problem of an introduced pathogen. Mycologia 79:123–37 [Google Scholar]
  6. Bell BG, Schellevis F, Stobberingh E, Goossens H, Pringle M. 2014. A systematic review and meta-analysis of the effects of antibiotic consumption on antibiotic resistance. BMC Infect. Dis. 14:113 [Google Scholar]
  7. Bell G. 2013. Experimental evolution of heterotrophy in a green alga. Evolution 67:2468–76 [Google Scholar]
  8. Bell G, Collins S. 2008. Adaptation, extinction and global change. Evol. Appl. 1:13–16 [Google Scholar]
  9. Bell G, Gonzalez A. 2009. Evolutionary rescue can prevent extinction following environmental change. Ecol. Lett. 12:9942–48 [Google Scholar]
  10. Bell G, Gonzalez A. 2011. Adaptation and evolutionary rescue in metapopulations experiencing environmental deterioration. Science 332:60351327–30 [Google Scholar]
  11. Benner I, Diner RE, Lefebvre SC, Li D, Komada T. et al. 2013. Emiliania huxleyi increases calcification but not expression of calcification-related genes in long-term exposure to elevated temperature and pCO2. Philos. Trans. R. Soc. B 368:20130049 [Google Scholar]
  12. Bishop JA. 1972. An experimental study of the cline of industrial melanism in Biston betularia (L.) (Lepidoptera) between urban Liverpool and rural North Wales. J. Anim. Ecol. 41:1209–43 [Google Scholar]
  13. Bishop JA, Hartley DJ, Partridge GG. 1977. The population dynamics of genetically determined resistance to warfarin in Rattus norvegicus from mid-Wales. Heredity 39:3389–98 [Google Scholar]
  14. Bonhoeffer S, Nowak MA. 1997. Pre-existence and emergence of drug resistance in HIV-1 infection. Proc. R. Soc. B 264:631–37 [Google Scholar]
  15. Boulding EG, Hay T. 2001. Genetic and demographic parameters determining population persistence after a discrete change in the environment. Heredity 86:313–24 [Google Scholar]
  16. Bourne EC, Bocedi G, Travis JM, Pakeman RJ, Brooker RW, Schiffers K. 2014. Between migration load and evolutionary rescue: dispersal, adaptation and the response of spatially structured populations to environmental change. Proc. R. Soc. B 281:177820132795 [Google Scholar]
  17. Bradshaw AD. 1991. The Croonian lecture, 1991: genostasis and the limits to evolution. Philos. Trans. R. Soc. B 333:1267289–305 [Google Scholar]
  18. Brotherton JE, Jeschke MR, Tranel PJ, Widholm JM. 2007. Identification of Arabidopsis thaliana variants with differential glyphosate responses. J. Plant Physiol. 164:101337–45 [Google Scholar]
  19. Browman HI. 2016. Applying organized scepticism to ocean acidification research. ICES J. Mar. Sci. 73:3529–36 [Google Scholar]
  20. Bürger R, Lynch M. 1995. Evolution and extinction in a changing environment: a quantitative-genetic analysis. Evolution 49:1151–63 [Google Scholar]
  21. Busi R, Powles S. 2009. Evolution of glyphosate resistance in a Lolium rigidum population by glyphosate selection at sublethal doses. Heredity 103:318–25 [Google Scholar]
  22. Cain AJ, Provine WB. 1992. Genes and ecology in history. Genes in Ecology TJ Crawford, GM Hewitt 3–28 Oxford, UK: Blackwell [Google Scholar]
  23. Chevin L-M, Lande R. 2010. When do phenotypic plasticity and genetic evolution prevent extinction of a density-regulated population?. Evolution 64:1143–50 [Google Scholar]
  24. Chin KM, Chavaillaz D, Kaesbohrer M, Staub T, Felsenstein FG. 2001. Characterizing resistance risk of Erysiphe graminis f.sp. tritici to strobilurins. Crop Prot 20:287–96 [Google Scholar]
  25. Chopra I, O'Neill AJ, Miller K. 2003. The role of mutators in the emergence of antibiotic-resistant bacteria. Drug Resist. Updates 6:3137–45 [Google Scholar]
  26. Collins S, Bell G. 2004. Phenotypic consequences of 1,000 generations of selection at elevated CO2 in a green alga. Nature 431:7008566–69 [Google Scholar]
  27. Collins S, De Meaux J. 2009. Adaptation to different rates of environmental change in Chlamydomonas. Evolution 63:112952–65 [Google Scholar]
  28. Collins S, Rost B, Rynearson TA. 2014. Evolutionary potential of marine phytoplankton under ocean acidification. Evol. Appl. 7:1140–55 [Google Scholar]
  29. Costelloe C, Metcalfe C, Lovering A, Mant D, Hay AD. 2010. Effect of antibiotic prescribing in primary care on antimicrobial resistance in individual patients: systematic review and meta-analysis. BMJ 340:c2096 [Google Scholar]
  30. Couce A, Rodríguez-Rojas A, Blázquez J. 2015. Bypass of genetic constraints during mutator evolution to antibiotic resistance. Proc. R. Soc. B 282:180420142698 [Google Scholar]
  31. Crawfurd KJ, Raven JA, Wheeler GL, Baxter EJ, Joint I. 2011. The response of Thalassiosira pseudonana to long-term exposure to increased CO2 and decreased pH. PLOS ONE 6:10e26695 [Google Scholar]
  32. Daborn PJ, Le Goff G. 2004. The genetics and genomics of insecticide resistance. TRENDS Genet 20:3163–70 [Google Scholar]
  33. Day T, Huijben S, Read AF. 2015. Is selection relevant in the evolutionary emergence of drug resistance?. Trends Microbiol 23:3126–33 [Google Scholar]
  34. Délye C, Jasieniuk M, Le Corre V. 2013. Deciphering the evolution of herbicide resistance in weeds. Trends Genet 29:11649–58 [Google Scholar]
  35. Doney SC, Fabry VJ, Feely RA, Kleypas JA. 2009. Ocean acidification: the other CO2 problem. Annu. Rev. Mar. Sci. 1:169–92 [Google Scholar]
  36. Donnan PT, Wei L, Steinke DT, Phillips G, Clarke R. et al. 2004. Presence of bacteriuria caused by trimethoprim resistant bacteria in patients prescribed antibiotics: multilevel model with practice and individual patient data. BMJ 328:1297–300 [Google Scholar]
  37. Drlica K. 2003. The mutant selection window and antimicrobial resistance. J. Antimicrob. Chemother. 52:11–17 [Google Scholar]
  38. Duarte CM, Fulweiler RW, Lovelock CE, Martinetto P, Saunders MI. et al. 2015. Reconsidering ocean calamities. BioScience 65:2130–39 [Google Scholar]
  39. Eliopoulos GM, Blázquez J. 2003. Hypermutation as a factor contributing to the acquisition of antimicrobial resistance. Clin. Infect. Dis. 37:91201–9 [Google Scholar]
  40. Fenner F. 1983. The Florey lecture, 1983: biological control, as exemplified by smallpox eradication and myxomatosis. Proc. R. Soc. B 218:1212259–85 [Google Scholar]
  41. Fraaije BA, Butters JA, Coelho JM, Jones DR, Hollomon DW. 2002. Following the dynamics of strobilurin resistance in Blumeria graminis f.sp. tritici using quantitative allele‐specific real‐time PCR measurements with the fluorescent dye SYBR Green I. Plant Pathol 51:145–54 [Google Scholar]
  42. Franks SJ, Weber JJ, Aitken SN. 2014. Evolutionary and plastic responses to climate change in terrestrial plant populations. Evol. Appl. 7:1123–39 [Google Scholar]
  43. Fussmann GF, Gonzalez A. 2013. Evolutionary rescue can maintain an oscillating community undergoing environmental change. Interface Focus 3:20130036 [Google Scholar]
  44. Gabriel W, Bürger R. 1992. Survival of small populations under demographic stochasticity. Theor. Popul. Biol. 41:144–71 [Google Scholar]
  45. Gandon S, Hochberg ME, Holt RD, Day T. 2012. What limits the evolutionary emergence of pathogens. Philos. Trans. R. Soc. B 368:20120086 [Google Scholar]
  46. Gatenby RA, Silva AS, Gillies RJ, Frieden BR. 2009. Adaptive therapy. Cancer Res 69:4894–4903 [Google Scholar]
  47. Godet F, Limpert E. 1998. Recent evolution of multiple resistance of Blumeria (Erysiphe) graminis f.sp. tritici to selected DMI and morpholine fungicides in France. Pest Manag. Sci. 54:3244–52 [Google Scholar]
  48. Goldie JH, Coldman AJ. 1979. A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treat. Rep. 63:1727–31 [Google Scholar]
  49. Gomulkiewicz R, Holt RD. 1995. When does evolution by natural selection prevent extinction. Evolution 49:1201–7 [Google Scholar]
  50. Gomulkiewicz R, Houle D. 2009. Demographic and genetic constraints on evolution. Am. Nat. 174:E218–29 [Google Scholar]
  51. Gonzalez A, Bell G. 2013. Evolutionary rescue and adaptation to abrupt environmental change depends upon the history of stress. Philos. Trans. R. Soc. B 368:161020120079 [Google Scholar]
  52. Griffitts JS, Aroian RV. 2005. Many roads to resistance: how invertebrates adapt to Bt toxins. Bioessays 27:6614–24 [Google Scholar]
  53. Hao YQ, Brockhurst MA, Petchey OL, Zhang QG. 2015. Evolutionary rescue can be impeded by temporary environmental amelioration. Ecol. Lett. 18:9892–98 [Google Scholar]
  54. Hay AD, Thomas M, Montgomery A, Wetherell M, Lovering A. et al. 2005. The relationship between primary care antibiotic prescribing and bacterial resistance in adults in the community: a controlled observational study using individual patient data. J. Antimicrob. Chemother. 56:146–53 [Google Scholar]
  55. Henderson DA, Klepac P. 2013. Lessons from the eradication of smallpox: an interview with DA Henderson. Philos. Trans. R. Soc. B 368:162320130113 [Google Scholar]
  56. Hendry AP. 2016. Eco-Evolutionary Dynamics Princeton, NJ: Princeton Univ. Press
  57. Hillier S, Roberts Z, Dunstan F, Butler C, Howard A, Palmer S. 2007. Prior antibiotics and risk of antibiotic-resistant community-acquired urinary tract infection: a case-control study. J. Antimicrob. Chemother. 60:92–99 [Google Scholar]
  58. Hirata T, Kaneko T, Ono T, Nakazato T, Furukawa N. et al. 2003. Mechanism of acid adaptation of a fish living in a pH 3.5 lake. Am. J. Physiol. Regul. Integr. Comp. Physiol. 284:5R1199–212 [Google Scholar]
  59. Hocart MJ, Lucas JA, Peberdy JF. 1990. Resistance to fungicides in field isolates and laboratory-induced mutants of Pseudocercosporella herpotrichoides. Mycol. Res. 94:9–17 [Google Scholar]
  60. Hollomon DW. 1978. Competitive ability and ethirimol sensitivity in strains of barley powdery mildew. Ann. Appl. Biol. 90:2195–204 [Google Scholar]
  61. Hollomon DW, Wheeler I, Dixon K, Longhurst C, Skylakakis G. 1997. Defining the resistance risk of the new powdery mildew fungicide quinoxyfen. Pestic. Sci. 51:3347–51 [Google Scholar]
  62. Holt RD, Gomulkiewicz R. 1997. How does immigration influence local adaptation? A re-examination of a familiar paradigm. Am. Nat. 149:563–72 [Google Scholar]
  63. Holt RD, Hochberg ME. 1997. When is biological control stable (or is it). Ecology 78:1673–83 [Google Scholar]
  64. Hufbauer RA, Roderick GK. 2005. Microevolution in biological control: mechanisms, patterns, and processes. Biol. Control 35:3227–39 [Google Scholar]
  65. Jansen M, Coors A, Stoks R, De Meester L. 2011. Evolutionary ecotoxicology of pesticide resistance: a case study in Daphnia. Ecotoxicology 20:3543–51 [Google Scholar]
  66. Jumbe N, Louie A, Leary R, Liu W, Deziel MR. et al. 2003. Application of a mathematical model to prevent in vivo amplification of antibiotic-resistant bacterial populations during therapy. J. Clin. Investig. 112:275–85 [Google Scholar]
  67. Kirkpatrick M, Peischl S. 2013. Evolutionary rescue by beneficial mutations in environments that change in space and time. Philos. Trans. R. Soc. B 368:161020120082 [Google Scholar]
  68. Kohn MH, Pelz HJ, Wayne RK. 2000. Natural selection mapping of the warfarin-resistance gene. PNAS 97:147911–15 [Google Scholar]
  69. Komarova NL, Wodarz D. 2005. Drug resistance in cancer: principles of emergence and prevention. PNAS 102:9714–19 [Google Scholar]
  70. Kwiatkowski RE, Roff JC. 1976. Effects of acidity on the phytoplankton and primary productivity of selected northern Ontario lakes. Can. J. Bot. 54:222546–61 [Google Scholar]
  71. Lachapelle J, Bell G. 2012. Evolutionary rescue of sexual and asexual populations in a deteriorating environment. Evolution 66:113508–18 [Google Scholar]
  72. Lachapelle J, Bell G, Colegrave N. 2015. Experimental adaptation to marine conditions by a freshwater alga. Evolution 69:102662–75 [Google Scholar]
  73. Lachapelle J, Colegrave N, Bell G. 2017. The effect of selection history on extinction risk during severe environmental change. J. Evol. Biol. In press. https://doi.org/10.1111/jeb.13147 [Crossref]
  74. Lagator M, Vogwill T, Colegrave N, Neve P. 2013a. Herbicide cycling has diverse effects on evolution of resistance in Chlamydomonas reinhardtii. Evol. Appl. 6:2197–206 [Google Scholar]
  75. Lagator M, Vogwill T, Mead A, Colegrave N, Neve P. 2013b. Herbicide mixtures at high doses slow the evolution of resistance in experimentally evolving populations of Chlamydomonas reinhardtii. New Phytol 198:3938–45 [Google Scholar]
  76. Langwig KE, Hoyt JR, Parise KL, Frick WF, Foster JT, Kilpatrick AM. 2017. Resistance in persisting bat populations after white-nose syndrome invasion. Philos. Trans. R. Soc. B 372:20160044 [Google Scholar]
  77. LeClerc JE, Li B, Payne WL, Cebula TA. 1996. High mutation frequencies among Escherichia coli and Salmonella pathogens. Science 274:1208–11 [Google Scholar]
  78. Lindsey HA, Gallie J, Taylor S, Kerr B. 2013. Evolutionary rescue from extinction is contingent on a lower rate of environmental change. Nature 494:7438463–67 [Google Scholar]
  79. Lipsitch M, Levin BR. 1997. The population dynamics of antimicrobial chemotherapy. Antimicrob. Agents Chemother. 41:363–73 [Google Scholar]
  80. Lohbeck KT, Riebesell U, Reusch TB. 2012. Adaptive evolution of a key phytoplankton species to ocean acidification. Nat. Geosci. 5:5346–51 [Google Scholar]
  81. Lopes PC, Sucena É, Santos ME, Magalhães S. 2008. Rapid experimental evolution of pesticide resistance in C. elegans entails no costs and affects the mating system. PLOS ONE 3:11e3741 [Google Scholar]
  82. Low-Décarie E, Jewell MD, Fussmann GF, Bell G. 2013. Long-term culture at elevated atmospheric CO2 fails to evoke specific adaptation in seven freshwater phytoplankton species. Proc. R. Soc. B 280:175420122598 [Google Scholar]
  83. Low-Décarie E, Kolber M, Homme P, Lofano A, Dumbrell A. et al. 2015. Community rescue in experimental metacommunities. PNAS 112:4614307–12 [Google Scholar]
  84. Lucas JA, Hawkins NJ, Fraaije BA. 2015. Chapter two—the evolution of fungicide resistance. Adv. Appl. Microbiol. 90:29–92 [Google Scholar]
  85. Lynch M, Lande R. 1993. Evolution and extinction in response to environmental change. Biot. Interact. Glob. Change 1993:234–50 [Google Scholar]
  86. Mallet J. 1989. The evolution of insecticide resistance: Have the insects won?. Trends Ecol. Evol. 4:11336–40 [Google Scholar]
  87. Manalil S, Busi R, Renton M, Powles SB. 2011. Rapid evolution of herbicide resistance by low herbicide dosages. Weed Sci 59:210–17 [Google Scholar]
  88. McLean AR, Emery VC, Webster A, Griffiths PD. 1991. Population-dynamics of HIV within an individual after treatment with zidovudine. AIDS 5:485–89 [Google Scholar]
  89. McNeilly T, Bradshaw AD. 1968. Evolutionary processes in populations of copper tolerant Agrostis tenuis Sibth. Evolution 22:1108–18 [Google Scholar]
  90. Merilä J, Hendry AP. 2014. Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evol. Appl. 7:11–14 [Google Scholar]
  91. Metlay JP, Strom BL, Asch DA. 2003. Prior antimicrobial drug exposure: a risk factor for trimethoprim-sulfamethoxazole-resistant urinary tract infections. J. Antimicrob. Chemother. 51:963 [Google Scholar]
  92. Miller MP, Vincent ER. 2008. Rapid natural selection for resistance to an introduced parasite of rainbow trout. Evol. Appl. 1:2336–41 [Google Scholar]
  93. Moritz C, Agudo R. 2013. The future of species under climate change: resilience or decline?. Science 341:6145504–8 [Google Scholar]
  94. Neve P, Busi R, Renton M, Vila‐Aiub MM. 2014. Expanding the eco‐evolutionary context of herbicide resistance research. Pest Manag. Sci. 70:91385–93 [Google Scholar]
  95. Neve P, Powles S. 2005. Recurrent selection with reduced herbicide rates results in the rapid evolution of herbicide resistance in Lolium rigidum. Theor. Appl. Genet. 110:1154–66 [Google Scholar]
  96. Nixdorf B, Mischke U, Leßmann D. 1998. Chrysophytes and chlamydomonads: pioneer colonists in extremely acidic mining lakes (pH < 3) in Lusatia (Germany). Phytoplankton and Trophic Gradients M Alvarez-Cobelas, CS Reynolds, P Sánchez-Castillo, J Kristiansen 315–27 Dordrecht, Neth.: Springer [Google Scholar]
  97. Norsworthy JK, Scott RC, Smith KL, Oliver LR. 2008. Response of northeastern Arkansas Palmer amaranth (Amaranthus palmeri) accessions to glyphosate. Weed Technol 22:408–13 [Google Scholar]
  98. Ochman H, Lawrence JG, Groisman EA. 2000. Lateral gene transfer and the nature of bacterial innovation. Nature 405:6784299–304 [Google Scholar]
  99. Oliver A, Cantón R, Campo P, Baquero F, Blázquez J. 2000. High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288:1251–53 [Google Scholar]
  100. Orr HA, Unckless RL. 2008. Population extinction and the genetics of adaptation. Am. Nat. 172:160–69 [Google Scholar]
  101. Orr HA, Unckless RL. 2014. The population genetics of evolutionary rescue. PLOS Genet 10:8e1004551 [Google Scholar]
  102. Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC. et al. 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:7059681–86 [Google Scholar]
  103. Osmond MM, de Mazancourt C. 2013. How competition affects evolutionary rescue. Philos. Trans. R. Soc. B 368:20120085 [Google Scholar]
  104. Palumbi SR. 2001. Humans as the world's greatest evolutionary force. Science 293:55361786–90 [Google Scholar]
  105. Pease CM, Lande R, Bull JJ. 1989. A model of population growth, dispersal and evolution in a changing environment. Ecology 70:1657–64 [Google Scholar]
  106. Perron GG, Gonzalez A, Buckling A. 2008. The rate of environmental change drives adaptation to an antibiotic sink. J. Evol. Biol. 21:61724–31 [Google Scholar]
  107. Perron GG, Zasloff M, Bell G. 2006. Experimental evolution of resistance to an antimicrobial peptide. Proc. R. Soc. B 273:1583251–56 [Google Scholar]
  108. Ramsayer J, Kaltz O, Hochberg ME. 2013. Evolutionary rescue in populations of Pseudomonas fluorescens across an antibiotic gradient. Evol. Appl. 6:4608–16 [Google Scholar]
  109. Read AF, Day T, Huijben S. 2011. The evolution of drug resistance and the curious orthodoxy of aggressive chemotherapy. PNAS 108:Suppl. 210871–77 [Google Scholar]
  110. Reijo RA, Cooper EM, Beagle GJ, Huffaker TC. 1994. Systematic mutational analysis of the yeast beta-tubulin gene. Mol. Biol. Cell 5:129–43 [Google Scholar]
  111. Ribeiro RM, Bonhoeffer S. 2000. Production of resistant HIV mutants during antiretroviral therapy. PNAS 97:7681–86 [Google Scholar]
  112. Roderick GK, Navajas M. 2003. Genes in new environments: genetics and evolution in biological control. Nat. Rev. Genet. 4:11889–99 [Google Scholar]
  113. Roush RT, McKenzie JA. 1987. Ecological genetics of insecticide and acaricide resistance. Annu. Rev. Entomol. 32:361–80 [Google Scholar]
  114. Russell PE. 2005. A century of fungicide evolution. J. Agric. Sci. 143:0111–25 [Google Scholar]
  115. Saffhill R, Schneider-Bernloehr H, Orgel LE, Spiegelman S. 1970. In vitro selection of bacteriophage Qβ RNA variants resistant to ethidium bromide. J. Mol. Biol. 51:531–39 [Google Scholar]
  116. Samani P, Bell G. 2010. Adaptation of experimental yeast populations to stressful conditions in relation to population size. J. Evol. Biol. 23:4791–96 [Google Scholar]
  117. Samani P, Bell G. 2016. The ghosts of selection past reduces the probability of plastic rescue but increases the likelihood of evolutionary rescue to novel stressors in experimental populations of wild yeast. Ecol. Lett. 19:3289–98 [Google Scholar]
  118. Schlarbaum SE, Hebard F, Spaine PC, Kamalay JC. 1998. Three American tragedies: chestnut blight, butternut canker, and Dutch elm disease. Exot. Pests East. For. Conf. Proc. April 8–10, 1997, Nashville 45–54 Washington, DC/Nashville, TN: U.S. For. Serv./Tenn. Exot. Pest Plant Counc. [Google Scholar]
  119. Schlüter L, Lohbeck KT, Gutowska MA, Gröger JP, Riebesell U, Reusch TB. 2014. Adaptation of a globally important coccolithophore to ocean warming and acidification. Nat. Clim. Change 4:111024–30 [Google Scholar]
  120. Sekercioglu CH, Schneider SH, Fay JP, Loarie SR. 2008. Climate change, elevational range shifts, and bird extinctions. Conserv. Biol. 22:1140–50 [Google Scholar]
  121. Shaner DL. 2014. Lessons learned from the history of herbicide resistance. Weed Sci 62:2427–31 [Google Scholar]
  122. Sierotzki H, Wullschleger J, Gisi U. 2000. Point mutation in cytochrome b gene conferring resistance to strobilurin fungicides in Erysiphe graminis f. sp. tritici field isolates. Pestic. Biochem. Physiol 68:2107–12 [Google Scholar]
  123. Steinke DT, Seaton RA, Phillips G, MacDonald TM, Davey PG. 2001. Prior trimethoprim use and trimethoprim-resistant urinary tract infection: a nested case-control study with multivariate analysis for other risk factors. J. Antimicrob. Chemother. 47:781–87 [Google Scholar]
  124. Sunday JM, Calosi P, Dupont S, Munday PL, Stillman JH, Reusch TB. 2014. Evolution in an acidifying ocean. Trends Ecol. Evol. 29:2117–25 [Google Scholar]
  125. Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ. et al. 2004. Extinction risk from climate change. Nature 427:6970145–48 [Google Scholar]
  126. Tinghitella RM. 2008. Rapid evolutionary change in a sexual signal: genetic control of the mutation ‘flatwing’ that renders male field crickets (Teleogryllus oceanicus) mute. Heredity 100:3261–67 [Google Scholar]
  127. Travisano M, Shaw RG. 2012. Lost in the map. Evolution 67:2305–14 [Google Scholar]
  128. Veron JE. 2011. Ocean acidification and coral reefs: an emerging big picture. Diversity 3:2262–74 [Google Scholar]
  129. von Wintersdorff CJ, Penders J, van Niekerk JM, Mills ND, Majumder S. et al. 2016. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front. Microbiol. 7:173 [Google Scholar]
  130. Waddington CH. 1953. Genetic assimilation of an acquired character. Evolution 7:2118–26 [Google Scholar]
  131. Wolfe MS. 1984. Trying to understand and control powdery mildew. Plant Pathol 33:4451–66 [Google Scholar]
  132. Wyand RA, Brown JKM. 2005. Sequence variation in the CYP51 gene of Blumeria graminis associated with resistance to sterol demethylase inhibiting fungicides. Fungal Genet. Biol. 42:8726–35 [Google Scholar]
  133. Zuk M, Rotenberry JT, Tinghitella RM. 2006. Silent night: adaptive disappearance of a sexual signal in a parasitized population of field crickets. Biol. Lett. 2:4521–24 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error