Receiver bias in plant–animal interactions is here defined as “selection mediated by behavioral responses of animals, where those responses have evolved in a context outside the interactions.” As a consequence, the responses are not necessarily linked to fitness gains in interacting animals. Thus, receiver bias can help explain seemingly maladaptive patterns of behavior in interacting animals and the evolution of plant traits that trigger such behavior. In this review, I discuss principles of receiver bias, show its overlap with mimicry and how it differs from mimicry, and outline examples in different plant–animal interactions. The most numerous and best documented examples of receiver bias occur within plant–pollinator interactions. I elaborate on the ability of some plants to heat up their flowers (i.e., floral thermogenesis) and argue that this trait likely evolved under receiver bias, especially in pollination systems with oviposition mimicry. Further examples include signals in insect-mediated seed dispersal and plant defense through repellence of aphids. These examples show that receiver bias is widespread in different plant–animal interactions. For a broader understanding of the role of receiver bias in those interactions, we need more data on how animals respond to plant signals, the context and evolutionary history of those behaviors, and the evolutionary patterns of plant signals.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Angioy AM, Stensmyr MC, Urru I, Puliafito M, Collu I, Hansson BS. 2004. Function of the heater: the dead horse arum revisited. Proc. R. Soc. B 271:S13–15 [Google Scholar]
  2. Barfod AS, Hagen M, Borchsenius F. 2011. Twenty-five years of progress in understanding pollination mechanisms in palms (Arecaceae). Ann. Bot. 108:1503–16 [Google Scholar]
  3. Barthlott W, Szarzynski J, Vlek P, Lobin W, Korotkova N. 2009. A torch in the rain forest: thermogenesis of the Titan arum (Amorphophallus titanum). Plant Biol 11:499–505 [Google Scholar]
  4. Beattie AJ, Hughes L. 2002. Ant–plant interactions. Plant–Animal Interactions: An Evolutionary Approach CM Herrera, O Pellmyr 211–35 Malden, MA: Blackwell [Google Scholar]
  5. Benitez-Vieyra S, Fornoni J, Perez-Alquicira J, Boege K, Dominguez CA. 2014. The evolution of signal–reward correlations in bee- and hummingbird-pollinated species of Salvia. Proc. R. Soc. B 281:20132934 [Google Scholar]
  6. Biesmeijer JC, Giurfa M, Koedam D, Potts SG, Joel DM, Dafni A. 2005. Convergent evolution: floral guides, stingless bee nest entrances, and insectivorous pitchers. Naturwissenschaften 92:444–50 [Google Scholar]
  7. Boulay R, Coll-Toledano J, Cerda X. 2006. Geographic variations in Helleborus foetidus elaiosome lipid composition: implications for dispersal by ants. Chemoecology 16:1–7 [Google Scholar]
  8. Brew CR, Odowd DJ, Rae ID. 1989. Seed dispersal by ants—behavior-releasing compounds in elaiosomes. Oecologia 80:490–97 [Google Scholar]
  9. Briscoe AD, Chittka L. 2001. The evolution of color vision in insects. Annu. Rev. Entomol. 46:471–510 [Google Scholar]
  10. Brodmann J, Emer D, Ayasse M. 2012. Pollinator attraction of the wasp-flower Scrophularia umbrosa (Scrophulariaceae). Plant Biol 14:500–5 [Google Scholar]
  11. Brodmann J, Twele R, Francke W, Holzler G, Zhang QH, Ayasse M. 2008. Orchids mimic green-leaf volatiles to attract prey-hunting wasps for pollination. Curr. Biol. 18:740–74 [Google Scholar]
  12. Brodmann J, Twele R, Francke W, Luo YB, Song XQ, Ayasse M. 2009. Orchid mimics honey bee alarm pheromone in order to attract hornets for pollination. Curr. Biol. 19:1368–72 [Google Scholar]
  13. Burns KC. 2005. Does mimicry occur between fleshy-fruits?. Evol. Ecol. Res. 7:1067–76 [Google Scholar]
  14. Chittka L. 1996. Does bee color vision predate the evolution of flower color?. Naturwissenschaften 83:136–38 [Google Scholar]
  15. Chouteau M, Gibernau M, Barabe D. 2008. Relationships between floral characters, pollination mechanisms, life forms, and habitats in Araceae. Bot. J. Linn. Soc. 156:29–42 [Google Scholar]
  16. Chouteau M, McClure M, Gibernau M. 2007. Pollination ecology of Monstera obliqua (Araceae) in French Guiana. J. Trop. Ecol. 23:607–10 [Google Scholar]
  17. Cragg JB. 1956. The olfactory behaviour of Lucilia species (Diptera) under natural conditions. Ann. Appl. Biol. 44:467–77 [Google Scholar]
  18. Cusimano N, Bogner J, Mayo SJ, Boyce PC, Wong SY. et al. 2011. Relationships within the Araceae: comparison of morphological patterns with molecular phylogenies. Am. J. Bot. 98:654–68 [Google Scholar]
  19. Darst CR, Cummings ME. 2006. Predator learning favours mimicry of a less-toxic model in poison frogs. Nature 440:208–11 [Google Scholar]
  20. Dieringer G, Cabrera L, Lara M, Loya L, Reyes-Castillo P. 1999. Beetle pollination and floral thermogenicity in Magnolia tamaulipana (Magnoliaceae). Int. J. Plant Sci. 160:64–71 [Google Scholar]
  21. Dieringer G, Reyes-Castillo P, Lara M, Cabrera LR, Loya L. 1998. Endothermy and floral utilization of Cyclocephala caelestis (Coleoptera: Scarabaeoidea; Melolonthidae): a cloud forest endemic beetle. Acta Zool. Mex. 73:145–53 [Google Scholar]
  22. Dormer KJ. 1960. The truth about pollination in Arum. New Sci 59:298–301 [Google Scholar]
  23. Edwards DP, Yu DW. 2007. The roles of sensory traps in the origin, maintenance, and breakdown of mutualism. Behav. Ecol. Sociobiol. 61:1321–27 [Google Scholar]
  24. El Hadi MAM, Zhang FJ, Wu FF, Tao J. 2013. Advances in fruit aroma volatile research. Molecules 18:78200–29 [Google Scholar]
  25. Ellis AG, Johnson SD. 2010. Floral mimicry enhances pollen export: the evolution of pollination by sexual deceit outside of the Orchidaceae. Am. Nat. 176:E143–51 [Google Scholar]
  26. Eriksson R. 1994. Phylogeny of the Cyclanthaceae. Plant Syst. Evol. 190:31–47 [Google Scholar]
  27. Ervik F, Barfod A. 1999. Thermogenesis in palm inflorescences and its ecological significance. Acta Bot. Venezuélica 22:195–212 [Google Scholar]
  28. Ervik F, Knudsen JT. 2003. Water lilies and scarabs: faithful partners for 100 million years?. Biol. J. Linn. Soc. 80:539–43 [Google Scholar]
  29. Fischer RC, Richter A, Hadacek F, Mayer V. 2008. Chemical differences between seeds and elaiosomes indicate an adaptation to nutritional needs of ants. Oecologia 155:539–47 [Google Scholar]
  30. Flynn RP, Wood CW. 1996. Temperature and chemical changes during composting of broiler litter. Compost Sci. Util. 4:62–70 [Google Scholar]
  31. Foster MS, Delay LS. 1998. Dispersal of mimetic seeds of three species of Ormosia (Leguminosae). J. Trop. Ecol. 14:389–411 [Google Scholar]
  32. Francis FD, Martin T, Lognay G, Haubruge E. 2005. Role of (E)-β-farnesene in systematic aphid prey location by Episyrphus balteatus larvae (Diptera: Syrphidae). Eur. J. Entomol. 102:431–36 [Google Scholar]
  33. Franz NM. 2004. Analysing the history of the derelomine flower weevil–Carludovica association (Coleoptera: Curculionidae; Cyclanthaceae). Biol. J. Linn. Soc. 81:483–517 [Google Scholar]
  34. Galetti M. 2002. Seed dispersal of mimetic fruits: parasitism, mutualism, aposematism or exaptation?. Seed Dispersal and Frugivory: Ecology, Evolution and Conservation DJ Levey, WR Silva, M Galetti 177–91 New York: CABI [Google Scholar]
  35. Gammans N, Bullock JM, Schonrogge K. 2005. Ant benefits in a seed dispersal mutualism. Oecologia 146:43–49 [Google Scholar]
  36. Gianoli E, Carrasco-Urra F. 2014. Leaf mimicry in a climbing plant protects against herbivory. Curr. Biol. 24:984–87 [Google Scholar]
  37. Gibernau M, Barabe D, Labat D, Cerdan P, Dejean A. 2003. Reproductive biology of Montrichardia arborescens (Araceae) in French Guiana. J. Trop. Ecol. 19:103–7 [Google Scholar]
  38. Gibernau M, Macquart D, Przetak G. 2004. Pollination in the genus Arum—a review. Aroideana 27:148–66 [Google Scholar]
  39. Gibson RW, Pickett JA. 1983. Wild potato repels aphids by release of aphid alarm pheromone. Nature 302:608–9 [Google Scholar]
  40. Gonzálvez FG, Chen J, Rodríguez-Gironés MA. 2015. The function of ant repellence by flowers: testing the “nectar protection” and “pollinator protection” hypotheses. Evol. Ecol. 29:391–403 [Google Scholar]
  41. Goulson D, McGuire K, Munro EE, Adamson S, Colliar L. et al. 2009. Functional significance of the dark central floret of Daucus carota (Apiaceae) L.; is it an insect mimic. Plant Species Biol 24:77–82 [Google Scholar]
  42. Haverkamp A, Bing J, Badeke E, Hansson BS, Knaden M. 2016. Innate olfactory preferences for flowers matching proboscis length ensure optimal energy gain in a hawkmoth. Nat. Commun. 7:11644 [Google Scholar]
  43. Herrera CM. 2002. Seed dispersal by vertebrates. Plant–Animal Interactions: An Evolutionary Approach CM Herrera, O Pellmyr 185–208 Malden, MA: Blackwell [Google Scholar]
  44. Holter P. 2016. Herbivore dung as food for dung beetles: elementary coprology for entomologists. Ecol. Entomol. 41:367–77 [Google Scholar]
  45. Hughes L, Westoby M, Jurado E. 1994. Convergence of elaiosomes and insect prey: evidence from ant foraging behavior and fatty acid composition. Funct. Ecol. 8:358–65 [Google Scholar]
  46. Jin X-H, Ren Z-X, Xu S-Z, Wang H, Li D-Z, Li Z-Y. 2014. The evolution of floral deception in Epipactis veratrifolia (Orchidaceae): from indirect defense to pollination. BMC Plant Biol 14:64 [Google Scholar]
  47. Johnson SD, Schiestl FP. 2016. Floral mimicry Oxford, UK: Oxford Univ. Press [Google Scholar]
  48. Junker RR, Blüthgen N. 2008. Floral scents repel potentially nectar-thieving ants. Evol. Ecol. Res. 10:295–308 [Google Scholar]
  49. Jurgens A, Wee SL, Shuttleworth A, Johnson SD. 2013. Chemical mimicry of insect oviposition sites: a global analysis of convergence in angiosperms. Ecol. Lett. 16:1157–67 [Google Scholar]
  50. Kite G, Hetterscheid W, Lewis M, Boyce P, Ollerton J. et al. 1998. Inflorescence odours and pollinators of Arum and Amorphophallus (Araceae). Reproductive Biology in Systematics, Conservation, and Economic Botany S Owens, P Rudall 295–315 Kew, UK: Royal Botanic Gardens [Google Scholar]
  51. Kite G, Reynolds T, Prance GT. 1991. Potential pollinator-attracting chemicals from Victoria (Nymphaeacea). Biochem. Syst. Ecol. 19:535–39 [Google Scholar]
  52. Knauer AC, Schiestl FP. 2015. Bees use honest floral signals as indicators of reward when visiting flowers. Ecol. Lett. 18:135–43 [Google Scholar]
  53. Knudsen JT, Eriksson R, Gershenzon J, Stahl B. 2006. Diversity and distribution of floral scent. Bot. Rev. 72:1–120 [Google Scholar]
  54. Kumano-Nomura Y, Yamaoka R. 2009. Beetle visitations, and associations with quantitative variation of attractants in floral odors of Homalomena propinqua (Araceae). J. Plant Res. 122:183–92 [Google Scholar]
  55. Launchbaugh KL, Provenza FD. 1993. Can plants practice mimicry to avoid grazing by mammalian herbivores?. Oikos 66:501–4 [Google Scholar]
  56. Lev-Yadun S. 2009. Müllerian and Batesian mimicry rings of white-variegated aposematic spiny and thorny plants: a hypothesis. Israel J. Plant Sci. 57:107–16 [Google Scholar]
  57. Liu Z, Hao G, Luo YB, Thien LB, Rosso SW. et al. 2006. Phylogeny and androecial evolution in Schisandraceae, inferred from sequences of nuclear ribosomal DNA ITS and chloroplast DNA trnL-F regions. Int. J. Plant Sci. 167:539–50 [Google Scholar]
  58. Maia ACD, Gibernau M, Carvalho AT, Goncalves EG, Schlindwein C. 2013. The cowl does not make the monk: scarab beetle pollination of the Neotropical aroid Taccarum ulei (Araceae: Spathicarpeae). Biol. J. Linn. Soc. 108:22–34 [Google Scholar]
  59. Maia ACD, Schlindwein C. 2006. Caladium bicolor (Araceae) and Cyclocephata celata (Coleoptera, Dynastinae): a well-established pollination system in the northern Atlantic rainforest of Pernambuco, Brazil. Plant Biol 8:529–34 [Google Scholar]
  60. Maia ACD, Schlindwein C, Navarro D, Gibernau M. 2010. Pollination of Philodendron acutatum (Araceae) in the Atlantic forest of northeastern Brazil: a single scarab beetle species guarantees high fruit set. Int. J. Plant Sci. 171:740–48 [Google Scholar]
  61. Meeuse BJD. 1975. Thermogenic respiration in aroids. Annu. Rev. Plant Physiol. 26:117–26 [Google Scholar]
  62. Midgley JJ, White JDM, Johnson SD, Bronner GN. 2015. Faecal mimicry by seeds ensures dispersal by dung beetles. Nat. Plants 1:15141 [Google Scholar]
  63. Naug D, Arathi HS. 2007. Receiver bias for exaggerated signals in honeybees and its implications for the evolution of floral displays. Biol. Lett. 3:635–37 [Google Scholar]
  64. Noge K, Kakuda T, Abe M, Tamogami S. 2015. Identification of the alarm pheromone of Hygia lativentris and changes in composition during development. J. Chem. Ecol. 41:757–65 [Google Scholar]
  65. Osche G. 1979. Zur Evolution optischer Signale bei Blütenpflanzen. Biol. Unserer Zeit 9:161–70 [Google Scholar]
  66. Patiño S, Aalto T, Edwards AA, Grace J. 2002. Is Rafflesia an endothermic flower. New Phytol 154:429–37 [Google Scholar]
  67. Patiño S, Grace J, Bänziger H. 2000. Endothermy by flowers of Rhizanthes lowii (Rafflesiaceae). Oecologia 124:149–55 [Google Scholar]
  68. Pfeiffer M, Huttenlocher H, Ayasse M. 2010. Myrmecochorous plants use chemical mimicry to cheat seed-dispersing ants. Funct. Ecol. 24:545–55 [Google Scholar]
  69. Pollan M. 2002. The Botany of Desire New York: Random House [Google Scholar]
  70. Provenza FD, Kimball BA, Villalba JJ. 2000. Roles of odor, taste, and toxicity in the food preferences of lambs: implications for mimicry in plants. Oikos 88:424–32 [Google Scholar]
  71. Raguso RA. 2008. Wake up and smell the roses: the ecology and evolution of floral scent. Annu. Rev. Ecol. Evol. Syst. 39:549–69 [Google Scholar]
  72. Raine NE, Chittka L. 2007. The adaptive significance of sensory bias in a foraging context: floral colour preferences in the bumblebee Bombus terrestris. PLOS ONE 2:e556 [Google Scholar]
  73. Schaefer HM, Ruxton GD. 2009. Deception in plants: mimicry or perceptual exploitation?. Trends Ecol. Evol. 24:676–85 [Google Scholar]
  74. Schaefer MH, Ruxton GD. 2011. Plant–Animal Communication Oxford, UK: Oxford Univ. Press [Google Scholar]
  75. Schaefer HM, Valido A, Jordano P. 2014. Birds see the true colours of fruits to live off the fat of the land. Proc. R. Soc. B 281:201325216 [Google Scholar]
  76. Schiestl FP. 2010. The evolution of floral scent and insect chemical communication. Ecol. Lett. 13:643–56 [Google Scholar]
  77. Schiestl FP. 2014. Correlation analyses between volatiles and glucosinolates show no evidence for chemical defense signaling in Brassica rapa. Front. Ecol. Evol. 2:1–10 [Google Scholar]
  78. Schiestl FP, Cozzolino S. 2008. Evolution of sexual mimicry in the orchid subtribe orchidinae: the role of preadaptations in the attraction of male bees as pollinators. BMC Evol. Biol. 8:27 [Google Scholar]
  79. Schiestl FP, Dötterl S. 2012. The evolution of floral scent and olfactory preferences in pollinators: coevolution or pre-existing bias?. Evolution 66:2042–55 [Google Scholar]
  80. Schiestl FP, Johnson SD. 2013. Pollinator-mediated evolution of floral signals. Trends Ecol. Evol. 28:307–15 [Google Scholar]
  81. Schnee C, Köllner TG, Gershenzon J, Degenhardt J. 2002. The maize gene terpene synthase 1 encodes a sesquiterpene synthase catalyzing the formation of (E)-β-farnesene, (E)-nerolidol, and (E,E)-farnesol after herbivore damage. Plant Physiol 130:2049–60 [Google Scholar]
  82. Schultz K, Kaiser R, Knudsen JT. 1999. Cyclanthone and derivatives, new natural products in the flower scent of Cyclanthus bipartitus Poit. Flavour Fragr. J. 14:185–90 [Google Scholar]
  83. Scopece G, Juillet N, Mueller A, Schiestl FP, Cozzolino S. 2009. Pollinator attraction in Anacamptis papilionacea (Orchidaceae): a food or a sex promise?. Plant Species Biol 24:109–14 [Google Scholar]
  84. Seidel JL, Epstein WW, Davidson DW. 1990. Neotropical gardens. 1. Chemical constituents. J. Chem. Ecol. 16:1791–816 [Google Scholar]
  85. Seymour RS, Maass E, Bolin JF. 2009. Floral thermogenesis of three species of Hydnora (Hydnoraceae) in Africa. Ann. Bot. 104:823–32 [Google Scholar]
  86. Seymour RS, Schultze-Motel P. 1997. Heat-producing flowers. Endeavour 21125–29 [Google Scholar]
  87. Seymour RS, Schultze-Motel P. 1999. Respiration, temperature regulation and energetics of thermogenic inflorescences of the dragon lily Dracunculus vulgaris (Araceae). Proc. R. Soc. B 266:1975–83 [Google Scholar]
  88. Seymour RS, White CR, Gibernan M. 2003. Environmental biology: heat reward for insect pollinators. Nature 426:243–44 [Google Scholar]
  89. Shimizu N, Noge K, Mori N, Nishida R, Kuwahara Y. 2004. Chemical ecology of astigmatid mites LXXIII. Neral as an alarm pheromone of the acarid mite, Oulenzia sp. (Astigmata: Winterschmidtiidae). J. Acarol. Soc. Jpn. 13:57–64 [Google Scholar]
  90. Silberbauer-Gottsberger I, Gottsberger G, Webber AC. 2003. Morphological and functional flower characteristics of New and Old World Annonaceae with respect to their mode of pollination. Taxon 52:701–18 [Google Scholar]
  91. Stadler E, Renwick JAA, Radke CD, Sachdevgupta K. 1995. Tarsal contact chemoreceptor response to glucosinolates and cardenolides mediating oviposition in Pieris rapae. Physiol. Entomol. 20:175–87 [Google Scholar]
  92. Stanton ML, Preston RE. 1988. Ecological consequences and phenotypic correlates of petal size variation in wild radish, Raphanus sativus (Brassicaceae). Am. J. Bot. 75:528–39 [Google Scholar]
  93. Stensmyr MC, Urru I, Collu I, Celander M, Hansson BS, Angioy AM. 2002. Rotting smell of dead-horse arum florets. Nature 420:625–26 [Google Scholar]
  94. Stökl J, Brodmann J, Dafni A, Ayasse M, Hansson BS. 2011. Smells like aphids: orchid flowers mimic aphid alarm pheromones to attract hoverflies for pollination. Proc. R. Soc. B 278:1216–22 [Google Scholar]
  95. Terry I, Walter GH, Moore C, Roemer R, Hull C. 2007. Odor-mediated push-pull pollination in cycads. Science 318:70 [Google Scholar]
  96. Thien LB, Bernhardt P, Devall MS, Chen ZD, Luo YB. et al. 2009. Pollination biology of basal angiosperms (ANITA grade). Am. J. Bot. 96:166–82 [Google Scholar]
  97. Tribe GD, Burger BV. 2011. Olfactory ecology. Ecology and Evolution of Dung Beetles LW Simmons, TJ Ridsdill-Smith 87–106 Oxford, UK: Wiley & Blackwell [Google Scholar]
  98. Turner KM, Frederickson ME. 2013. Signals can trump rewards in attracting seed-dispersing ants. PLOS ONE 8:e71871 [Google Scholar]
  99. Uemura S, Ohkawara K, Kudo G, Wada N, Higashi S. 1993. Heat-production and cross-pollination of the Asian skunk cabbage Symplocarpus renifolius (Araceae). Am. J. Bot. 80:635–40 [Google Scholar]
  100. Umekawa Y, Seymour RS, Ito K. 2016. The biochemical basis for thermoregulation in heat-producing flowers. Sci. Rep. 6:24830 [Google Scholar]
  101. Urru I, Stensmyr MC, Hansson BS. 2011. Pollination by brood-site deception. Phytochemistry 72:1655–66 https://doi.org/10.1016/j.phytochem.2011.02.014 [Crossref] [Google Scholar]
  102. Van Kleunen M, Nanni I, Donaldson JS, Manning JC. 2007. The role of beetle marks and flower colour on visitation by monkey beetles (Hopliini) in the greater cape floral region, South Africa. Ann. Bot. 100:1483–89 [Google Scholar]
  103. Vandermoten S, Mescher MC, Francis F, Haubruge E, Verheggen FJ. 2012. Aphid alarm pheromone: an overview of current knowledge on biosynthesis and functions. Insect Biochem. Mol. Biol. 42:155–63 [Google Scholar]
  104. Vereecken NJ, Schiestl FP. 2008. The evolution of imperfect floral mimicry. PNAS 105:7484–88 [Google Scholar]
  105. Vereecken NJ, Wilson CA, Hoetling S, Schulz S, Banketov SA, Mardulyn P. 2012. Pre-adaptations and the evolution of pollination by sexual deception: Cope's rule of specialization revisited. Proc. R. Soc. B 279:4786–94 [Google Scholar]
  106. Vogel S. 1962. Duftdrüsen im Dienste der Bestäubung; Über Bau und Funktion der Osmophoren Mainz, Ger.: Akad. Wiss. Lit., Franz Steiner Verlag [Google Scholar]
  107. Watanabe K, Shimizu N. 2015. Alarm pheromone activity of nymph-specific geraniol in chrysanthemum lace bug Corythucha marmorata against adults and nymphs. Nat. Prod. Commun. 10:1495–98 [Google Scholar]
  108. Wickler W. 1965. Mimicry and evolution of animal communication. Nature 208:519–21 [Google Scholar]
  109. Williams KS, Gilbert LE. 1981. Insects as selective agents on plant vegetative morphology—egg mimicry reduces egg-laying by butterflies. Science 212:467–69 [Google Scholar]
  110. Willmer PG, Nuttman CV, Raine NE, Stone GN, Pattrick JG. et al. 2009. Floral volatiles controlling ant behaviour. Funct. Ecol. 23:888–900 [Google Scholar]
  111. Willmer PG, Stone GN. 1997. How aggressive ant-guards assist seed-set in Acacia flowers. Nature 388:165–67 [Google Scholar]
  112. Wilson EO, Durlach NI, Roth LM. 1958. Chemical releasers of necrophoric behavior in ants. Psyche 65:108–14 [Google Scholar]
  113. Wyatt TD. 2014. Fight or Flight: Alarm Pheromones and Cues Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  114. Yafuso M. 1993. Thermogenesis of Alocasia odora (Araceae) and the role of Colocasiomyia flies (Diptera, Drosophilidae) as cross-pollinators. Environ. Entomol. 22:601–6 [Google Scholar]
  115. Young HJ. 1986. Beetle pollination of Dieffenbachia longispatha (Araceae). Am. J. Bot. 73:931–44 [Google Scholar]
  116. Youngsteadt E, Nojima S, Haeberlein C, Schulz S, Schal C. 2008. Seed odor mediates an obligate ant-plant mutualism in Amazonian rainforests. PNAS 105:4571–75 [Google Scholar]
  117. Yu XD, Pickett J, Ma YZ, Bruce T, Napier J. et al. 2012. Metabolic engineering of plant-derived (E)-β-farnesene synthase genes for a novel type of aphid-resistant genetically modified crop plants. J. Integr. Plant Biol. 54:282–99 [Google Scholar]
  118. Yuan LC, Luo YB, Thien LB, Fan JH, Xu HL. et al. 2008. Pollination of Kadsura longipedunculata (Schisandraceae), a monoecious basal angiosperm, by female, pollen-eating Megommata sp. (Cecidomyiidae: Diptera) in China. Biol. J. Linn. Soc. 93:523–36 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error