1932

Abstract

Changes in climate, land use, fire incidence, and ecological connections all may contribute to current species' range shifts. Species shift range individually, and not all species shift range at the same time and rate. This variation causes community reorganization in both the old and new ranges. In terrestrial ecosystems, range shifts alter aboveground-belowground interactions, influencing species abundance, community composition, ecosystem processes and services, and feedbacks within communities and ecosystems. Thus, range shifts may result in no-analog communities where foundation species and community genetics play unprecedented roles, possibly leading to novel ecosystems. Long-distance dispersal can enhance the disruption of aboveground-belowground interactions of plants, herbivores, pathogens, symbiotic mutualists, and decomposer organisms. These effects are most likely stronger for latitudinal than for altitudinal range shifts. Disrupted aboveground-belowground interactions may have influenced historical postglacial range shifts as well. Assisted migration without considering aboveground-belowground interactions could enhance risks of such range shift–induced invasions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-110411-160423
2012-12-01
2025-03-23
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/43/1/annurev-ecolsys-110411-160423.html?itemId=/content/journals/10.1146/annurev-ecolsys-110411-160423&mimeType=html&fmt=ahah

Literature Cited

  1. Agrawal AA, Kotanen PM, Mitchell CE, Power AG, Godsoe W, Klironomos J. 2005. Enemy release? An experiment with congeneric plant pairs and diverse above- and belowground enemies. Ecology 86:2979–89 [Google Scholar]
  2. Archer S, Schimel DS, Holland EA. 1995. Mechanisms of shrubland expansion: land use, climate or CO2?. Clim. Chang. 29:91–99 [Google Scholar]
  3. Ayres E, Steltzer H, Simmons BL, Simpson RT, Steinweg JM. et al. 2009. Home-field advantage accelerates leaf litter decomposition in forests. Soil Biol. Biochem. 41:606–10 [Google Scholar]
  4. Balbontín J, Negro JJ, Sarasola JH, Ferrero JJ, Rivera D. 2008. Land-use changes may explain the recent range expansion of the Black-shouldered Kite Elanus caeruleus in southern Europe. Ibis 150:707–16 [Google Scholar]
  5. Bardgett RD, Wardle DA. 2010. Aboveground-Belowground Linkages: Biotic Interactions, Ecosystem Processes and Global Change New York: Oxford Univ. Press [Google Scholar]
  6. Barry JC, Morgan MLE, Flynn LJ, Pilbeam D, Behrensmeyer AK. et al. 2002. Faunal and environmental change in the late Miocene Siwaliks of northern Pakistan. Paleobiology 28:1–71 [Google Scholar]
  7. Berg MP, Kiers ET, Driessen G, Van der Heijden M, Kooi BW. et al. 2010. Adapt or disperse: understanding species persistence in a changing world. Glob. Chang. Biol. 16:587–98 [Google Scholar]
  8. Bertrand R, Lenoir J, Piedallu C, Riofrío-Dillon G, de Ruffray P. et al. 2011. Changes in plant community composition lag behind climate warming in lowland forests. Nature 479:517–20 [Google Scholar]
  9. Bezemer TM, Fountain MT, Barea JM, Christensen S, Dekker SC. et al. 2010. Divergent composition but similar function of soil food webs of individual plants: plant species and community effects. Ecology 91:3027–36 [Google Scholar]
  10. Blankinship JC, Niklaus PA, Hungate BA. 2011. A meta-analysis of responses of soil biota to global change. Oecologia 165:553–65 [Google Scholar]
  11. Blossey B, Nötzold R. 1995. Evolution of increased competitive ability in invasive nonindigenous plants: a hypothesis. J. Ecol. 83:887–89 [Google Scholar]
  12. Bukovinszky T, van Veen FJF, Jongema Y, Dicke M. 2008. Direct and indirect effects of resource quality on food web structure. Science 319:804–7 [Google Scholar]
  13. Burrows MT, Schoeman DS, Buckley LB, Moore P, Poloczanska ES. et al. 2011. The pace of shifting climate in marine and terrestrial ecosystems. Science 334:652–55 [Google Scholar]
  14. Bush MB. 2002. Distributional change and conservation on the Andean flank: a palaeoecological perspective. Glob. Ecol. Biogeogr. 11:463–73 [Google Scholar]
  15. Callaway RM, Brooker RW, Choler P, Kikvidze Z, Lortie CJ. et al. 2002. Positive interactions among alpine plants increase with stress. Nature 417:844–48 [Google Scholar]
  16. Callaway RM, Ridenour WM. 2004. Novel weapons: invasive success and the evolution of increased competitive ability. Front. Ecol. Environ. 2:436–43 [Google Scholar]
  17. Cannone N, Sgorbati S, Guglielmin M. 2007. Unexpected impacts of climate change on alpine vegetation. Front. Ecol. Environ. 5:360–64 [Google Scholar]
  18. Chen I-C, Hill JK, Ohlemüller R, Roy DB, Thomas CD. 2011. Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–26 [Google Scholar]
  19. Clay K, Holah J. 1999. Fungal endophyte symbiosis and plant diversity in successional fields. Science 285:1742–44 [Google Scholar]
  20. Colwell RK, Brehm G, Cardelús CL, Gilman AC, Longino JT. 2008. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322:258–61 [Google Scholar]
  21. Crimmins SM, Dobrowski SZ, Greenberg JA, Abatzoglou JT, Mynsberge AR. 2011. Changes in climatic water balance drive downhill shifts in plant species' optimum elevations. Science 331:324–27 [Google Scholar]
  22. Dawson TP, Jackson ST, House JI, Prentice IC, Mace GM. 2011. Beyond predictions: biodiversity conservation in a changing climate. Science 332:53–58 [Google Scholar]
  23. De Vries F, Liiri M, Bjørnlund L, Bowker M, Christensen S. et al. 2012. Land use alters the resistance and resilience of soil food webs to drought. Nat. Clim. Chang. 2:276–80 [Google Scholar]
  24. Diez JM, Dickie I, Edwards G, Hulme PE, Sullivan JJ, Duncan RP. 2010. Negative soil feedbacks accumulate over time for non-native plant species. Ecol. Lett. 13:803–9 [Google Scholar]
  25. Ehrenfeld JG, Ravit B, Elgersma K. 2005. Feedback in the plant-soil system. Annu. Rev. Environ. Resour. 30:75–115 [Google Scholar]
  26. Ellison AM, Bank MS, Clinton BD, Colburn EA, Elliott K. et al. 2005. Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Front. Ecol. Environ. 3:479–86 [Google Scholar]
  27. Engelkes T, Morriën E, Verhoeven KJF, Bezemer TM, Biere A. et al. 2008. Successful range-expanding plants experience less above-ground and below-ground enemy impact. Nature 456:946–48 [Google Scholar]
  28. Fierer N, Strickland MS, Liptzin D, Bradford MA, Cleveland CC. 2009. Global patterns in belowground communities. Ecol. Lett. 12:1238–49 [Google Scholar]
  29. Grabherr G, Gottfried M, Pauli H. 1994. Climate effects on mountain plants. Nature 369:448 [Google Scholar]
  30. Grime JP. 1998. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J. Ecol. 86:902–10 [Google Scholar]
  31. Harris J. 2009. Soil microbial communities and restoration ecology: facilitators or followers?. Science 325:573–74 [Google Scholar]
  32. Hättenschwiler S, Gasser P. 2005. Soil animals alter plant litter diversity effects on decomposition. Proc. Natl. Acad. Sci. USA 102:1519–24 [Google Scholar]
  33. Hegland SJ, Nielsen A, Lázaro A, Bjerknes AL, Totland O. 2009. How does climate warming affect plant-pollinator interactions?. Ecol. Lett. 12:184–95 [Google Scholar]
  34. Heikkilä M, Seppä H. 2003. A 11,000 yr palaeotemperature reconstruction from the southern boreal zone in Finland. Quat. Sci. Rev. 22:541–54 [Google Scholar]
  35. Hersch-Green EI, Turley NE, Johnson MTJ. 2011. Community genetics: What have we accomplished and where should we be going?. Philos. Trans. R. Soc. B-Biol. Sci. 366:1453–60 [Google Scholar]
  36. Hill JK, Griffiths HM, Thomas CD. 2011. Climate change and evolutionary adaptations at species' range margins. Annu. Rev. Entomol. 56:143–59 [Google Scholar]
  37. Hobbs RJ, Arico S, Aronson J, Baron JS, Bridgewater P. et al. 2006. Novel ecosystems: theoretical and management aspects of the new ecological world order. Glob. Ecol. Biogeogr. 15:1–7 [Google Scholar]
  38. Hoegh-Guldberg O, Hughes L, McIntyre S, Lindenmayer DB, Parmesan C. et al. 2008. Assisted colonization and rapid climate change. Science 321:345–46 [Google Scholar]
  39. Huntley B. 1990a. Dissimilarity mapping between fossil and contemporary pollen spectra in Europe for the past 13,000 years. Quat. Res. 33:360–76 [Google Scholar]
  40. Huntley B. 1990b. European postglacial forests: compositional changes in response to climatic change. J. Veg. Sci. 1:507–18 [Google Scholar]
  41. Jackson ST, Overpeck JT. 2000. Responses of plant populations and communities to environmental changes of the late Quaternary. Paleobiology 26:194–220 [Google Scholar]
  42. Jackson ST, Sax DF. 2010. Balancing biodiversity in a changing environment: extinction debt, immigration credit and species turnover. Trends Ecol. Evol. 25:153–60 [Google Scholar]
  43. Janz N, Nylin S, Wahlberg N. 2006. Diversity begets diversity: host expansions and the diversification of plant-feeding insects. BMC Evol. Biol. 6:4 [Google Scholar]
  44. Jump AS, Peñuelas J. 2005. Running to stand still: adaptation and the response of plants to rapid climate change. Ecol. Lett. 8:1010–20 [Google Scholar]
  45. Kardol P, Bezemer TM, Van der Putten WH. 2006. Temporal variation in plant-soil feedback controls succession. Ecol. Lett. 9:1080–88 [Google Scholar]
  46. Kardol P, Wardle DA. 2010. How understanding aboveground-belowground linkages can assist restoration ecology. Trends Ecol. Evol. 25:670–79 [Google Scholar]
  47. Keane RM, Crawley MJ. 2002. Exotic plant invasions and the enemy release hypothesis. Trends Ecol. Evol. 17:164–70 [Google Scholar]
  48. Klironomos JN. 2002. Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417:67–70 [Google Scholar]
  49. Lankau RA. 2011. Intraspecific variation in allelochemistry determines an invasive species' impact on soil microbial communities. Oecologia 165:453–63 [Google Scholar]
  50. Lankau RA, Nuzzo V, Spyreas G, Davis AS. 2009. Evolutionary limits ameliorate the negative impact of an invasive plant. Proc. Natl. Acad. Sci. USA 106:15362–67 [Google Scholar]
  51. Lau JA. 2006. Evolutionary responses of native plants to novel community members. Evolution 60:56–63 [Google Scholar]
  52. Lavergne S, Mouquet N, Thuiller W, Ronce O. 2010. Biodiversity and climate change: integrating evolutionary and ecological responses of species and communities. Annu. Rev. Ecol. Evol. Syst. 41:321–50 [Google Scholar]
  53. Le Roux PC, McGeoch MA. 2008. Rapid range expansion and community reorganization in response to warming. Glob. Chang. Biol. 14:2950–62 [Google Scholar]
  54. Leithead MD, Anand M, Silva LCR. 2010. Northward migrating trees establish in treefall gaps at the northern limit of the temperate-boreal ecotone, Ontario, Canada. Oecologia 164:1095–106 [Google Scholar]
  55. Lenoir J, Gégout JC, Dupouey JL, Bert D, Svenning J-C. 2010. Forest plant community changes during 1989–2007 in response to climate warming in the Jura Mountains (France and Switzerland). J. Veg. Sci. 21:949–64 [Google Scholar]
  56. Lenoir J, Gégout JC, Marquet PA, de Ruffray P, Brisse H. 2008. A significant upward shift in plant species optimum elevation during the 20th century. Science 320:1768–71 [Google Scholar]
  57. Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD. 2009. The velocity of climate change. Nature 462:1052–55 [Google Scholar]
  58. Madritch MD, Lindroth RL. 2011. Soil microbial communities adapt to genetic variation in leaf litter inputs. Oikos 120:1696–704 [Google Scholar]
  59. Maron JL, Vilà M. 2001. When do herbivores affect plant invasion? Evidence for the natural enemies and biotic resistance hypotheses. Oikos 95:361–73 [Google Scholar]
  60. Meisner A, De Boer W, Cornelissen JHC, Van der Putten WH. 2012. Reciprocal effects of litter from exotic and congeneric native plant species via soil nutrients. PLoS One 7:e31596 [Google Scholar]
  61. Meisner A, De Boer W, Verhoeven KJF, Boschker HTS, Van der Putten WH. 2011. Comparison of nutrient acquisition in exotic plant species and congeneric natives. J. Ecol. 99:1308–15 [Google Scholar]
  62. Menéndez R, González-Megías A, Lewis OT, Shaw MR, Thomas CD. 2008. Escape from natural enemies during climate-driven range expansion: a case study. Ecol. Entomol. 33:413–21 [Google Scholar]
  63. Milton SJ. 2003. ‘Emerging ecosystems’—a washing-stone for ecologists, economists and sociologists?. S. Afr. J. Sci. 99:404–6 [Google Scholar]
  64. Mitchell CE, Power AG. 2003. Release of invasive plants from fungal and viral pathogens. Nature 421:625–27 [Google Scholar]
  65. Monroy F, Van der Putten WH, Yergeau E, Duyts H, Mortimer SR, Bezemer TM. 2012. Structure of microbial, nematode and plant communities in relation to geographical distance. Soil Biol. Biochem. 45:1–7 [Google Scholar]
  66. Moorcroft PR, Pacala SW, Lewis MA. 2006. Potential role of natural enemies during tree range expansions following climate change. J. Theor. Biol. 241:601–16 [Google Scholar]
  67. Morriën E, Engelkes T, Macel M, Meisner A, Van der Putten WH. 2010. Climate change and invasion by intracontinental range-expanding exotic plants: the role of biotic interactions. Ann. Bot. 105:843–48 [Google Scholar]
  68. Morriën E, Engelkes T, Van der Putten WH. 2011. Additive effects of aboveground polyphagous herbivores and soil feedback in native and range-expanding exotic plants. Ecology 92:1344–52 [Google Scholar]
  69. Müller-Schärer H, Schaffner U, Steinger T. 2004. Evolution in invasive plants: implications for biological control. Trends Ecol. Evol. 19:417–22 [Google Scholar]
  70. Muys B, Lust N. 1992. Inventory of the earthworm communities and the state of litter decomposition in the forests of Flanders, Belgium, and its implications for forest management. Soil Biol. Biochem. 24:1677–81 [Google Scholar]
  71. Naeem S, Bunker DE, Hector A, Loreau M, Perrings C. 2009. Biodiversity, Ecosystem Functioning, and Human Wellbeing: An Ecological and Economic Perspective New York: Oxford Univ. Press368 [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-110411-160423
Loading
/content/journals/10.1146/annurev-ecolsys-110411-160423
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error