1932

Abstract

Globally, winter temperatures are rising, and snowpack is shrinking or disappearing entirely. Despite previous research and published literature reviews, it remains unknown whether biomes across the globe will cross important thresholds in winter temperature and precipitation that will lead to significant ecological changes. Here, we combine the widely used Köppen–Geiger climate classification system with worst-case-scenario projected changes in global monthly temperature and precipitation to illustrate how multiple climatic zones across Earth may experience shifting winter conditions by the end of this century. We then examine how these shifts may affect ecosystems within corresponding biomes. Our analysis demonstrates potential widespread losses of extreme cold (<−20°C) in Arctic, boreal, and cool temperate regions. We also show the possible disappearance of freezing temperatures (<0°C) and large decreases in snowfall in warm temperate and dryland areas. We identify important and potentially irreversible ecological changes associated with crossing these winter climate thresholds.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-110421-102101
2024-11-04
2025-02-16
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/55/1/annurev-ecolsys-110421-102101.html?itemId=/content/journals/10.1146/annurev-ecolsys-110421-102101&mimeType=html&fmt=ahah

Literature Cited

  1. Abatzoglou JT, Kolden CA. 2011.. Climate change in western US deserts: potential for increased wildfire and invasive annual grasses. . Rangel. Ecol. Manag. 64:(5):47178
    [Crossref] [Google Scholar]
  2. Adrian R, O'Reilly CM, Zagarese H, Baines SB, Hessen DO, et al. 2009.. Lakes as sentinels of climate change. . Limnol. Oceanogr. 54:(6):228397
    [Crossref] [Google Scholar]
  3. Arndt KA, Oechel WC, Goodrich JP, Bailey BA, Kalhori A, et al. 2019.. Sensitivity of methane emissions to later soil freezing in Arctic tundra ecosystems. . J. Geophys. Res. Biogeosci. 124:(8):2595609
    [Crossref] [Google Scholar]
  4. Baker EH, Painter TH, Schneider D, Meddens AJH, Hicke JA, Molotch NP. 2017.. Quantifying insect-related forest mortality with the remote sensing of snow. . Remote Sens. Environ. 188::2636
    [Crossref] [Google Scholar]
  5. Bales RC, Molotch NP, Painter TH, Dettinger MD, Rice R, Dozier J. 2006.. Mountain hydrology of the western United States. . Water Resour. Res. 42:(8):W08432
    [Crossref] [Google Scholar]
  6. Ban Z, Xin C, Fang Y, Ma X, Li D, Lettenmaier DP. 2023.. Snowmelt-radiation feedback impact on western U.S. streamflow. . Geophys. Res. Lett. 50:(23):e2023GL105118
    [Crossref] [Google Scholar]
  7. Barnett TP, Adam JC, Lettenmaier DP. 2005.. Potential impacts of a warming climate on water availability in snow-dominated regions. . Nature 438:(7066):3039
    [Crossref] [Google Scholar]
  8. Beck HE, Zimmermann NE, McVicar TR, Vergopolan N, Berg A, Wood EF. 2018.. Present and future Köppen-Geiger climate classification maps at 1-km resolution. . Sci. Data 5::180214
    [Crossref] [Google Scholar]
  9. Bennett JM, Sunday J, Calosi P, Villalobos F, Martínez B, et al. 2021.. The evolution of critical thermal limits of life on Earth. . Nat. Commun. 12:(1):1198
    [Crossref] [Google Scholar]
  10. Billman PD, Beever EA, McWethy DB, Thurman LL, Wilson KC. 2021.. Factors influencing distributional shifts and abundance at the range core of a climate-sensitive mammal. . Glob. Change Biol. 27::4498515
    [Crossref] [Google Scholar]
  11. Bintanja R, van der Linden EC. 2013.. The changing seasonal climate in the Arctic. . Sci. Rep. 3:(1):1556
    [Crossref] [Google Scholar]
  12. Bojórquez A, Álvarez-Yépiz JC, Búrquez A, Martínez-Yrízar A. 2019.. Understanding and predicting frost-induced tropical tree mortality patterns. . Glob. Change Biol. 25:(11):381728
    [Crossref] [Google Scholar]
  13. Bramorska B, Kowalczyk R, Kamiński T, Borowik T. 2023.. Linking winter severity to space use of European bison around feeding sites in Białowieża Primeval Forest (NE Poland). . Eur. J. Wildl. Res. 69:(4):66
    [Crossref] [Google Scholar]
  14. Buckley LB, Huey RB. 2016.. Temperature extremes: geographic patterns, recent changes, and implications for organismal vulnerabilities. . Glob. Change Biol. 22:(12):382942
    [Crossref] [Google Scholar]
  15. Campbell JL, Mitchell MJ, Groffman PM, Christenson LM, Hardy JP. 2005.. Winter in northeastern North America: a critical period for ecological processes. . Front. Ecol. Environ. 3:(6):31422
    [Crossref] [Google Scholar]
  16. Campbell JL, Socci AM, Templer PH. 2014.. Increased nitrogen leaching following soil freezing is due to decreased root uptake in a northern hardwood forest. . Glob. Change Biol. 20:(8):266373
    [Crossref] [Google Scholar]
  17. Cao D, Zhang J, Han J, Zhang T, Yang S, et al. 2022.. Projected increases in global terrestrial net primary productivity loss caused by drought under climate change. . Earth's Future 10:(7):e2022EF002681
    [Crossref] [Google Scholar]
  18. Casson NJ, Eimers MC, Buttle JM. 2010.. The contribution of rain-on-snow events to nitrate export in the forested landscape of south-central Ontario, Canada. . Hydrol. Process 24:(14):198593
    [Crossref] [Google Scholar]
  19. Casson NJ, Eimers MC, Watmough SA. 2012.. Impact of winter warming on the timing of nutrient export from forested catchments. . Hydrol. Process 26:(17):254654
    [Crossref] [Google Scholar]
  20. Cavaliere E, Baulch HM. 2019.. Winter nitrification in ice-covered lakes. . PLOS ONE 14:(11):e0224864
    [Crossref] [Google Scholar]
  21. Cavaliere E, Fournier IB, Hazuková V, Rue GP, Sadro S, et al. 2021.. The lake ice continuum concept: influence of winter conditions on energy and ecosystem dynamics. . J. Geophys. Res. Biogeosci. 126:(11):e2020JG006165
    [Crossref] [Google Scholar]
  22. Cayan DR, Kammerdiener SA, Dettinger MD, Caprio JM, Peterson DH. 2001.. Changes in the onset of spring in the western United States. . Bull. Am. Meteorol. Soc. 82:(3):399416
    [Crossref] [Google Scholar]
  23. Chapin FS III, Callaghan TV, Bergeron Y, Fukuda M, Johnstone JF, et al. 2004.. Global change and the boreal forest: thresholds, shifting states or gradual change?. AMBIO A J. Hum. Environ. 33:(6):36165
    [Crossref] [Google Scholar]
  24. Christenson LM, Mitchell MJ, Groffman PM, Lovett GM. 2010.. Winter climate change implications for decomposition in northeastern forests: comparisons of sugar maple litter with herbivore fecal inputs. . Glob. Change Biol. 16:(9):2589601
    [Crossref] [Google Scholar]
  25. Ciais P, Canadell JG, Luyssaert S, Chevallier F, Shvidenko A, et al. 2010.. Can we reconcile atmospheric estimates of the Northern terrestrial carbon sink with land-based accounting?. Curr. Opin. Environ. Sustain. 2:(4):22530
    [Crossref] [Google Scholar]
  26. Commane R, Lindaas J, Benmergui J, Luus KA, Chang RY-W, et al. 2017.. Carbon dioxide sources from Alaska driven by increasing early winter respiration from Arctic tundra. . PNAS 114:(21):536166
    [Crossref] [Google Scholar]
  27. Contosta AR, Casson NJ, Nelson SJ, Garlick S. 2020.. Defining frigid winter illuminates its loss across seasonally snow-covered areas of eastern North America. . Environ. Res. Lett. 15:(3):34020
    [Crossref] [Google Scholar]
  28. Cook BI, Wolkovich EM, Parmesan C. 2012.. Divergent responses to spring and winter warming drive community level flowering trends. . PNAS 109:(23):90005
    [Crossref] [Google Scholar]
  29. Cooper AE, Kirchner JW, Wolf S, Lombardozzi DL, Sullivan BW, et al. 2020.. Snowmelt causes different limitations on transpiration in a Sierra Nevada conifer forest. . Agric. For. Meteorol. 291::108089
    [Crossref] [Google Scholar]
  30. Cooper EJ. 2014.. Warmer shorter winters disrupt arctic terrestrial ecosystems. . Annu. Rev. Ecol. Evol. Syst. 45::27195
    [Crossref] [Google Scholar]
  31. Coulson SJ, Convey P, Schuuring S, Lang SI. 2023.. Interactions between winter temperatures and duration of exposure may structure Arctic microarthropod communities. . J. Therm. Biol. 114::103499
    [Crossref] [Google Scholar]
  32. Dalerum F, Freire S, Angerbjörn A, Lecomte N, Lindgren Å, et al. 2017.. Exploring the diet of arctic wolves (Canis lupus arctos) at their northern range limit. . Can. J. Zool. 96:(3):27781
    [Crossref] [Google Scholar]
  33. DeBeer CM, Wheater HS, Pomeroy JW, Barr AG, Baltzer JL, et al. 2021.. Summary and synthesis of Changing Cold Regions Network (CCRN) research in the interior of western Canada – Part 2: future change in cryosphere, vegetation, and hydrology. . Hydrol. Earth Syst. Sci. 25:(4):184982
    [Crossref] [Google Scholar]
  34. DeLuca WV, King DI. 2016.. Montane birds shift downslope despite recent warming in the northern Appalachian Mountains. . J. Ornithol. 158::493505
    [Crossref] [Google Scholar]
  35. Dore MHI. 2005.. Climate change and changes in global precipitation patterns: What do we know?. Environ. Int. 31:(8):116781
    [Crossref] [Google Scholar]
  36. Duncan RJ, Andrew ME, Forchhammer MC. 2021.. Snow mediates climatic impacts on Arctic herbivore populations. . Polar Biol. 44:(7):125171
    [Crossref] [Google Scholar]
  37. Edwards AC, Cresser MS. 1992.. Freezing and its effect on chemical and biological properties of soil. . In Advances in Soil Science, Vol. 18, ed. BA Stewart , pp. 5979. New York:: Springer
    [Google Scholar]
  38. Edwards KA, Jefferies RL. 2013.. Inter-annual and seasonal dynamics of soil microbial biomass and nutrients in wet and dry low-Arctic sedge meadows. . Soil Biol. Biochem. 57::8390
    [Crossref] [Google Scholar]
  39. Elmendorf SC, Henry GHR, Hollister RD, Björk RG, Boulanger-Lapointe N, et al. 2012.. Plot-scale evidence of tundra vegetation change and links to recent summer warming. . Nat. Clim. Change 2:(6):45357
    [Crossref] [Google Scholar]
  40. Elsen PR, Tingley MW. 2015.. Global mountain topography and the fate of montane species under climate change. . Nat. Clim. Change 5::510
    [Crossref] [Google Scholar]
  41. Ernakovich JG, Hopping KA, Berdanier AB, Simpson RT, Kachergis EJ, et al. 2014.. Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change. . Glob. Change Biol. 20:(10):325669
    [Crossref] [Google Scholar]
  42. Fan Z, Neff JC, Harden JW, Zhang T, Veldhuis H, et al. 2011.. Water and heat transport in boreal soils: implications for soil response to climate change. . Sci. Total Environ. 409:(10):183642
    [Crossref] [Google Scholar]
  43. Fang X, Stefan HG. 2009.. Simulations of climate effects on water temperature, dissolved oxygen, and ice and snow covers in lakes of the contiguous U.S. under past and future climate scenarios. . Limnol. Oceanogr. 54:(6 Part 2):235970
    [Crossref] [Google Scholar]
  44. Feng S, Hu Q. 2007.. Changes in winter snowfall/precipitation ratio in the contiguous United States. . J. Geophys. Res. Atmos. 112:(15):D15109
    [Google Scholar]
  45. Fick SE, Hijmans RJ. 2017.. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. . Int. J. Climatol. 37:(12):430215
    [Crossref] [Google Scholar]
  46. Filazzola A, Blagrave K, Imrit MA, Sharma S. 2020.. Climate change drives increases in extreme events for lake ice in the Northern Hemisphere. . Geophys. Res. Lett. 47:(18):e2020GL089608
    [Crossref] [Google Scholar]
  47. Fischer J-C, Walentowitz A, Beierkuhnlein C. 2022.. The biome inventory – standardizing global biogeographical land units. . Glob. Ecol. Biogeogr. 31:(11):217283
    [Crossref] [Google Scholar]
  48. Fleming RA, Candau J-N, McAlpine RS. 2002.. Landscape-scale analysis of interactions between insect defoliation and forest fire in central Canada. . Clim. Change 55:(1):25172
    [Crossref] [Google Scholar]
  49. Freeman BG, Song Y, Feeley KJ, Zhu K. 2021.. Montane species track rising temperatures better in the tropics than in the temperate zone. . Ecol. Lett. 24:(8):1697708
    [Crossref] [Google Scholar]
  50. Frei ER, Henry GHR. 2021.. Long-term effects of snowmelt timing and climate warming on phenology, growth, and reproductive effort of Arctic tundra plant species. . Arct. Sci. 8:(3):70021
    [Crossref] [Google Scholar]
  51. Gallant D, Lecomte N, Berteaux D. 2020.. Disentangling the relative influences of global drivers of change in biodiversity: a study of the twentieth-century red fox expansion into the Canadian Arctic. . J. Anim. Ecol. 89:(2):56576
    [Crossref] [Google Scholar]
  52. Gallinat AS, Primack RB. 2016.. Spring budburst in a changing climate. . Am. Sci. 104::102
    [Crossref] [Google Scholar]
  53. García Criado M, Myers-Smith IH, Bjorkman AD, Lehmann CER, Stevens N. 2020.. Woody plant encroachment intensifies under climate change across tundra and savanna biomes. . Glob. Ecol. Biogeogr. 29:(5):92543
    [Crossref] [Google Scholar]
  54. Gilarranz LJ, Narwani A, Odermatt D, Siber R, Dakos V. 2022.. Regime shifts, trends, and variability of lake productivity at a global scale. . PNAS 119:(35):e2116413119
    [Crossref] [Google Scholar]
  55. Girardin MP, Guo XJ, Gervais D, Metsaranta J, Campbell EM, et al. 2022.. Cold-season freeze frequency is a pervasive driver of subcontinental forest growth. . PNAS 119:(18):e2117464119
    [Crossref] [Google Scholar]
  56. Gladun E, Nysten-Haarala S, Tulaeva S. 2021.. Indigenous economies in the Arctic: to thrive or to survive?. Elementa 9::00088
    [Google Scholar]
  57. Gleason KE, Nolin AW, Roth TR. 2013.. Charred forests increase snowmelt: effects of burned woody debris and incoming solar radiation on snow ablation. . Geophys. Res. Lett. 40:(17):465461
    [Crossref] [Google Scholar]
  58. Gordon BL, Brooks PD, Krogh SA, Boisrame GFS, Carroll RWH, et al. 2022.. Why does snowmelt-driven streamflow response to warming vary? A data-driven review and predictive framework. . Environ. Res. Lett. 17:(5):053004
    [Crossref] [Google Scholar]
  59. Gottlieb AR, Mankin JS. 2024.. Evidence of human influence on Northern Hemisphere snow loss. . Nature 625:(7994):293300
    [Crossref] [Google Scholar]
  60. Gray DR. 2008.. The relationship between climate and outbreak characteristics of the spruce budworm in eastern Canada. . Clim. Change 87:(3):36183
    [Crossref] [Google Scholar]
  61. Grimm NB, Chapin FS III, Bierwagen B, Gonzalez P, Groffman PM, et al. 2013.. The impacts of climate change on ecosystem structure and function. . Front. Ecol. Environ. 11:(9):47482
    [Crossref] [Google Scholar]
  62. Groffman PM, Baron JS, Blett T, Gold AJ, Goodman I, et al. 2006.. Ecological thresholds: the key to successful environmental management or an important concept with no practical application?. Ecosystems 9:(1):113
    [Crossref] [Google Scholar]
  63. Groffman PM, Driscoll CT, Fahey TJ, Hardy JP, Fitzhugh RD, Tierney GL. 2001.. Colder soils in a warmer world: a snow manipulation study in a northern hardwood forest ecosystem. . Biogeochemistry 56:(2):13550
    [Crossref] [Google Scholar]
  64. Groffman PM, Rustad LE, Templer PH, Campbell JL, Christenson LM, et al. 2012.. Long-term integrated studies show complex and surprising effects of climate change in the northern hardwood forest. . Bioscience 62:(12):105666
    [Crossref] [Google Scholar]
  65. Grogan P, Jonasson S. 2003.. Controls on annual nitrogen cycling in the understory of a subarctic birch forest. . Ecology 84:(1):20218
    [Crossref] [Google Scholar]
  66. Groisman PY, Bulygina ON, Yin X, Vose RS, Gulev SK, et al. 2016.. Recent changes in the frequency of freezing precipitation in North America and Northern Eurasia. . Environ. Res. Lett. 11:(4):045007
    [Crossref] [Google Scholar]
  67. Gustine DD, Brinkman TJ, Lindgren MA, Schmidt JI, Rupp TS, Adams LG. 2014.. Climate-driven effects of fire on winter habitat for caribou in the Alaskan-Yukon Arctic. . PLOS ONE 9:(7):e100588
    [Crossref] [Google Scholar]
  68. Haggerty CJE, Crisman TL. 2015.. Pulse disturbance impacts from a rare freeze event in Tampa, Florida on the exotic invasive Cuban treefrog, Osteopilus septentrionalis, and native treefrogs. . Biol. Invasions 17:(7):210311
    [Crossref] [Google Scholar]
  69. Hammond JC, Harpold AA, Weiss S, Kampf SK. 2019.. Partitioning snowmelt and rainfall in the critical zone: effects of climate type and soil properties. . Hydrol. Earth Syst. Sci. 23:(9):355370
    [Crossref] [Google Scholar]
  70. Hampton SE, Galloway AWE, Powers SM, Ozersky T, Woo KH, et al. 2017.. Ecology under lake ice. . Ecol. Lett. 20:(1):98111
    [Crossref] [Google Scholar]
  71. Hance T, van Baaren J, Vernon P, Boivin G. 2007.. Impact of extreme temperatures on parasitoids in a climate change perspective. . Annu. Rev. Entomol. 52::10726
    [Crossref] [Google Scholar]
  72. Harpold AA. 2016.. Diverging sensitivity of soil water stress to changing snowmelt timing in the western U.S. . Adv. Water Resour. 92::11629
    [Crossref] [Google Scholar]
  73. Harpold AA, Brooks PD. 2018.. Humidity determines snowpack ablation under a warming climate. . PNAS 115:(6):121520
    [Crossref] [Google Scholar]
  74. Harpold AA, Rajagopal S, Crews JB, Winchell T, Schumer R. 2017.. Relative humidity has uneven effects on shifts from snow to rain over the western U.S. . Geophys. Res. Lett. 44:(19):974250
    [Crossref] [Google Scholar]
  75. Hatami S, Nazemi A. 2022.. Compound changes in temperature and snow depth lead to asymmetric and nonlinear responses in landscape freeze–thaw. . Sci. Rep. 12:(1):2196
    [Crossref] [Google Scholar]
  76. Hausfather Z, Marvel K, Schmidt GA, Nielsen-Gammon JW, Zelinka M. 2022.. Climate simulations: recognize the ‘hot model’ problem. . Nature 605::2629
    [Crossref] [Google Scholar]
  77. Helbig M, Pappas C, Sonnentag O. 2016.. Permafrost thaw and wildfire: equally important drivers of boreal tree cover changes in the Taiga Plains, Canada. . Geophys. Res. Lett. 43:(4):1598606
    [Crossref] [Google Scholar]
  78. Hennon PE, D'Amore DV, Schaberg PG, Wittwer DT, Shanley CS. 2012.. Shifting climate, altered niche, and a dynamic conservation strategy for yellow-cedar in the north Pacific coastal rainforest. . Bioscience 62:(2):14758
    [Crossref] [Google Scholar]
  79. Henry EH, Terando AJ, Morris WF, Daniels JC, Haddad NM. 2022.. Shifting precipitation regimes alter the phenology and population dynamics of low latitude ectotherms. . Clim. Change Ecol. 3::100051
    [Crossref] [Google Scholar]
  80. Henry HAL. 2008.. Climate change and soil freezing dynamics: historical trends and projected changes. . Clim. Change 87:(3):42134
    [Crossref] [Google Scholar]
  81. Hillebrand H, Donohue I, Harpole WS, Hodapp D, Kucera M, et al. 2020.. Thresholds for ecological responses to global change do not emerge from empirical data. . Nat. Ecol. Evol. 4:(11):15029
    [Crossref] [Google Scholar]
  82. Hobbie SE, Chapin FS III. 1996.. Winter regulation of tundra litter carbon and nitrogen dynamics. . Biogeochemistry 35:(2):32738
    [Crossref] [Google Scholar]
  83. Hoerling M, Barsugli J, Livneh B, Eischeid J, Quan X, Badger A. 2019.. Causes for the century-long decline in Colorado river flow. . J. Clim. 32:(23):8181203
    [Crossref] [Google Scholar]
  84. Hollesen J, Buchwal A, Rachlewicz G, Hansen BU, Hansen MO, et al. 2015.. Winter warming as an important co-driver for Betula nana growth in western Greenland during the past century. . Glob. Change Biol. 21:(6):241023
    [Crossref] [Google Scholar]
  85. Hu JIA, Moore DJP, Burns SP, Monson RK. 2010.. Longer growing seasons lead to less carbon sequestration by a subalpine forest. . Glob. Change Biol. 16:(2):77183
    [Crossref] [Google Scholar]
  86. Huang L, Timmermann A, Lee S-S, Rodgers KB, Yamaguchi R, Chung E-S. 2022.. Emerging unprecedented lake ice loss in climate change projections. . Nat. Commun. 13:(1):5798
    [Crossref] [Google Scholar]
  87. Hughes TP, Carpenter S, Rockström J, Scheffer M, Walker B. 2013.. Multiscale regime shifts and planetary boundaries. . Trends Ecol. Evol. 28:(7):38995
    [Crossref] [Google Scholar]
  88. Imrit MA, Sharma S. 2021.. Climate change is contributing to faster rates of lake ice loss in lakes around the Northern Hemisphere. . J. Geophys. Res. Biogeosci. 126:(7):e2020JG006134
    [Crossref] [Google Scholar]
  89. Inamdar S, Johnson E, Rowland R, Warner D, Walter R, Merritts D. 2018.. Freeze–thaw processes and intense rainfall: the one-two punch for high sediment and nutrient loads from mid-Atlantic watersheds. . Biogeochemistry 141:(3):33349
    [Crossref] [Google Scholar]
  90. Inman RM, Magoun AJ, Persson J, Mattisson J. 2012.. The wolverine's niche: linking reproductive chronology, caching, competition, and climate. . J. Mammal. 93::63444
    [Crossref] [Google Scholar]
  91. IPCC (Intergov. Panel Clim. Change). 2023.. Climate Change 2021 – The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  92. Isaak DJ, Luce CH, Rieman BE, Nagel DE, Peterson EE, et al. 2010.. Effects of climate change and wildfire on stream temperatures and salmonid thermal habitat in a mountain river network. . Ecol. Appl. 20:(5):135071
    [Crossref] [Google Scholar]
  93. Isaak DJ, Young MK, Nagel DE, Horan DL, Groce MC. 2015.. The cold-water climate shield: delineating refugia for preserving salmonid fishes through the 21st century. . Glob. Change Biol. 21:(7):254053
    [Crossref] [Google Scholar]
  94. Ivan JS, Seglund AE, Truex RL, Newkirk ES. 2018.. Mammalian responses to changed forest conditions resulting from bark beetle outbreaks in the southern Rocky Mountains. . Ecosphere 9:(8):e02369
    [Crossref] [Google Scholar]
  95. Jalili A, Jamzad Z, Thompson K, Araghi MK, Ashrafi S, et al. 2010.. Climate change, unpredictable cold waves and possible brakes on plant migration. . Glob. Ecol. Biogeogr. 19:(5):64248
    [Crossref] [Google Scholar]
  96. Jennings KS, Winchell TS, Livneh B, Molotch NP. 2018.. Spatial variation of the rain–snow temperature threshold across the Northern Hemisphere. . Nat. Comm. 9:(1):1148
    [Crossref] [Google Scholar]
  97. Johnson MD, Kellermann JL, Stercho AM. 2010.. Pest reduction services by birds in shade and sun coffee in Jamaica. . Anim. Conserv. 13:(2):14047
    [Crossref] [Google Scholar]
  98. Jones HG. 1999.. The ecology of snow-covered systems: a brief overview of nutrient cycling and life in the cold. . Hydrol. Process. 13:(14–15):213547
    [Crossref] [Google Scholar]
  99. Jungqvist G, Oni SK, Teutschbein C, Futter MN. 2014.. Effect of climate change on soil temperature in Swedish boreal forests. . PLOS ONE 9:(4):e93957
    [Crossref] [Google Scholar]
  100. Kim J-S, Kug J-S, Jeong S-J, Park H, Schaepman-Strub G. 2020.. Extensive fires in southeastern Siberian permafrost linked to preceding Arctic Oscillation. . Sci. Adv. 6:(2):eaax3308
    [Crossref] [Google Scholar]
  101. Kitti H, Forbes BC, Oksanen J. 2009.. Long- and short-term effects of reindeer grazing on tundra wetland vegetation. . Polar Biol. 32:(2):25361
    [Crossref] [Google Scholar]
  102. Kleeberg A, Freidank A, Jöhnk K. 2013.. Effects of ice cover on sediment resuspension and phosphorus entrainment in shallow lakes: combining in situ experiments and wind-wave modeling. . Limnol. Oceanogr. 58:(5):181933
    [Crossref] [Google Scholar]
  103. Klein DR. 1968.. The introduction, increase, and crash of reindeer on St. Matthew Island. . J. Wildl. Manag. 32:(2):35067
    [Crossref] [Google Scholar]
  104. Köppen W. 1884.. The thermal zones of the earth according to the duration of hot, moderate and cold periods and to the impact of heat on the organic world. . Meteorol. Z. 1::21526
    [Google Scholar]
  105. Kortsch S, Primicerio R, Fossheim M, Dolgov AV, Aschan M. 2015.. Climate change alters the structure of arctic marine food webs due to poleward shifts of boreal generalists. . Proc. R. Soc. B 282:(1814):20151546
    [Crossref] [Google Scholar]
  106. Koshkin AL, Hatchett BJ, Nolin AW. 2022.. Wildfire impacts on western United States snowpacks. . Front. Water 4::971271
    [Crossref] [Google Scholar]
  107. Kottek M, Grieser J, Beck C, Rudolf B, Rubel F. 2006.. World map of the Köppen-Geiger climate classification updated. . Meteorol. Zeitschrift. 15:(3):25963
    [Crossref] [Google Scholar]
  108. Kreyling J. 2020.. The ecological importance of winter in temperate, boreal, and Arctic ecosystems in times of climate change. . In Progress in Botany, Vol. 81, ed. FM Cánovas, U Lüttge, C Leuschner, M-C Risueño , pp. 37799. Cham, Switz:.: Springer
    [Google Scholar]
  109. Kreyling J, Bittner T, Jaeschke A, Jentsch A, Steinbauer MJ, et al. 2011.. Assisted colonization: a question of focal units and recipient localities. . Restor. Ecol. 19:(4):43340
    [Crossref] [Google Scholar]
  110. Kreyling J, Grant K, Hammerl V, Arfin-Khan MAS, Malyshev AV, et al. 2019.. Winter warming is ecologically more relevant than summer warming in a cool-temperate grassland. . Sci. Rep. 9:(1):14632
    [Crossref] [Google Scholar]
  111. Kubelka V, Sandercock BK, Székely T, Freckleton RP. 2022.. Animal migration to northern latitudes: environmental changes and increasing threats. . Trends Ecol. Evol. 37:(1):3041
    [Crossref] [Google Scholar]
  112. Ladwig LM, Ratajczak ZR, Ocheltree TW, Hafich KA, Churchill AC, et al. 2016.. Beyond arctic and alpine: the influence of winter climate on temperate ecosystems. . Ecology 97:(2):37282
    [Crossref] [Google Scholar]
  113. Larsen KS, Grogan P, Jonasson S, Michelsen A. 2007.. Respiration and microbial dynamics in two subarctic ecosystems during winter and spring thaw: effects of increased snow depth. . Arctic Antarct. Alp. Res. 39:(2):26876
    [Crossref] [Google Scholar]
  114. Lebourgeois F, Rathgeber CBK, Ulrich E. 2010.. Sensitivity of French temperate coniferous forests to climate variability and extreme events (Abies alba, Picea abies and Pinus sylvestris). . J. Veg. Sci. 21:(2):36476
    [Crossref] [Google Scholar]
  115. Lehtonen I, Kämäräinen M, Gregow H, Venäläinen A, Peltola H. 2016.. Heavy snow loads in Finnish forests respond regionally asymmetrically to projected climate change. . Nat. Hazards Earth Syst. Sci. 16:(10):225971
    [Crossref] [Google Scholar]
  116. Lenoir J, Bertrand R, Comte L, Bourgeaud L, Hattab T, et al. 2020.. Species better track climate warming in the oceans than on land. . Nat. Ecol. Evol. 4:(8):104459
    [Crossref] [Google Scholar]
  117. Li P, Sayer EJ, Jia Z, Liu W, Wu Y, et al. 2020.. Deepened winter snow cover enhances net ecosystem exchange and stabilizes plant community composition and productivity in a temperate grassland. . Glob. Change Biol. 26:(5):301527
    [Crossref] [Google Scholar]
  118. Lim H, Oren R, Näsholm T, Strömgren M, Lundmark T, et al. 2019.. Boreal forest biomass accumulation is not increased by two decades of soil warming. . Nat. Clim. Change 9:(1):4952
    [Crossref] [Google Scholar]
  119. Livensperger C, Steltzer H, Darrouzet-Nardi A, Sullivan PF, Wallenstein M, Weintraub MN. 2019.. Experimentally warmer and drier conditions in an Arctic plant community reveal microclimatic controls on senescence. . Ecosphere 10:(4):e02677
    [Crossref] [Google Scholar]
  120. Luce CH, Abatzoglou JT, Holden ZA. 2013.. The missing mountain water: Slower westerlies decrease orographic enhancement in the Pacific Northwest USA. . Science 342:(6164):136064
    [Crossref] [Google Scholar]
  121. Maberly SC, O'Donnell RA, Woolway RI, Cutler MEJ, Gong M, et al. 2020.. Global lake thermal regions shift under climate change. . Nat. Commun. 11:(1):1232
    [Crossref] [Google Scholar]
  122. Malhi Y, Baldocchi DD, Jarvis PG. 1999.. The carbon balance of tropical, temperate and boreal forests. . Plant. Cell Environ. 22:(6):71540
    [Crossref] [Google Scholar]
  123. Manning AL, Harpold A, Csank A. 2022.. Spruce beetle outbreak increases streamflow from snow-dominated basins in southwest Colorado, USA. . Water Resour. Res. 58:(5):e2021WR029964
    [Crossref] [Google Scholar]
  124. Masoero G, Laaksonen T, Morosinotto C, Korpimäki E. 2020.. Climate change and perishable food hoards of an avian predator: Is the freezer still working?. Glob. Change Biol. 26:(10):541430
    [Crossref] [Google Scholar]
  125. Massoud EC, Lee HK, Terando A, Wehner M. 2023.. Bayesian weighting of climate models based on climate sensitivity. . Commun. Earth Environ. 4::365
    [Crossref] [Google Scholar]
  126. Mathias JA, Barica J. 1980.. Factors controlling oxygen depletion in ice-covered lakes. . Can. J. Fish. Aquat. Sci. 37:(2):18594
    [Crossref] [Google Scholar]
  127. Matzner E, Borken W. 2008.. Do freeze-thaw events enhance C and N losses from soils of different ecosystems?. Rev. Eur. J. Soil Sci. 59:(2):27484
    [Crossref] [Google Scholar]
  128. Mazzotti FJ, Cherkiss MS, Hart KM, Snow RW, Rochford MR, et al. 2011.. Cold-induced mortality of invasive Burmese pythons in south Florida. . Biol. Invasions 13:(1):14351
    [Crossref] [Google Scholar]
  129. Mazzotti FJ, Cherkiss MS, Parry M, Beauchamp J, Rochford M, et al. 2016.. Large reptiles and cold temperatures: Do extreme cold spells set distributional limits for tropical reptiles in Florida?. Ecosphere 7:(8):e01439
    [Crossref] [Google Scholar]
  130. McCrystall MR, Stroeve J, Serreze M, Forbes BC, Screen JA. 2021.. New climate models reveal faster and larger increases in Arctic precipitation than previously projected. . Nat. Commun. 12:(1):6765
    [Crossref] [Google Scholar]
  131. Meding ME, Jackson LJ. 2003.. Biotic, chemical, and morphometric factors contributing to winter anoxia in prairie lakes. . Limnol. Oceanogr. 48:(4):163342
    [Crossref] [Google Scholar]
  132. Mekonnen ZA, Riley WJ, Berner LT, Bouskill NJ, Torn MS, et al. 2021.. Arctic tundra shrubification: a review of mechanisms and impacts on ecosystem carbon balance. . Environ. Res. Lett. 16:(5):053001
    [Crossref] [Google Scholar]
  133. Mekonnen ZA, Riley WJ, Grant RF. 2018.. Accelerated nutrient cycling and increased light competition will lead to 21st century shrub expansion in North American Arctic tundra. . J. Geophys. Res. Biogeosci. 123:(5):1683701
    [Crossref] [Google Scholar]
  134. Milly PCD, Dunne KA. 2020.. Colorado River flow dwindles as warming-driven loss of reflective snow energizes evaporation. . Science 367:(6483):125255
    [Crossref] [Google Scholar]
  135. Minder JR, Bassill N, Fabry F, French JR, Friedrich K, et al. 2023.. P-type processes and predictability: the Winter Precipitation Type Research Multiscale Experiment (WINTRE-MIX). . Bull. Amer. Met. Soc. 104:(8):E146992
    [Crossref] [Google Scholar]
  136. Minder JR, Kingsmill DE. 2013.. Mesoscale variations of the atmospheric snow line over the northern Sierra Nevada: multiyear statistics, case study, and mechanisms. . J. Atmos. Sci. 70:(3):91638
    [Crossref] [Google Scholar]
  137. Miranda LE, Coppola G, Boxrucker J. 2020.. Reservoir fish habitats: a perspective on coping with climate change. . Rev. Fish. Sci. Aquac. 28:(4):47898
    [Crossref] [Google Scholar]
  138. Mitton JB, Ferrenberg SM. 2012.. Mountain pine beetle develops an unprecedented summer generation in response to climate warming. . Am. Nat. 179:(5):E16371
    [Crossref] [Google Scholar]
  139. Mueller DR, Van Hove P, Antoniades D, Jeffries MO, Vincent WF. 2009.. High Arctic lakes as sentinel ecosystems: cascading regime shifts in climate, ice cover, and mixing. . Limnol. Oceanogr. 54:(6 Part 2):237185
    [Crossref] [Google Scholar]
  140. Myers-Smith IH, Forbes BC, Wilmking M, Hallinger M, Lantz T, et al. 2011.. Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. . Environ. Res. Lett. 6:(4):045509
    [Crossref] [Google Scholar]
  141. Niemistö JP, Horppila J. 2007.. The contribution of ice cover to sediment resuspension in a shallow temperate lake: possible effects of climate change on internal nutrient loading. . J. Environ. Qual. 36:(5):131823
    [Crossref] [Google Scholar]
  142. Nolin AW, Daly C. 2006.. Mapping “at risk” snow in the Pacific Northwest. . J. Hydrometeorol. 7:(5):116471
    [Crossref] [Google Scholar]
  143. O'Brien S, Emahalala ER, Beard V, Rakotondrainy RM, Reid A, et al. 2003.. Decline of the Madagascar radiated tortoise Geochelone radiata due to overexploitation. . Oryx 37:(3):33843
    [Crossref] [Google Scholar]
  144. Olofsson J, Kitti H, Rautiainen P, Stark S, Oksanen L. 2001.. Effects of summer grazing by reindeer on composition of vegetation, productivity and nitrogen cycling. . Ecography 24:(1):1324
    [Crossref] [Google Scholar]
  145. Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, et al. 2001.. Terrestrial ecoregions of the world: a new map of life on earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. . Bioscience 51:(11):93338
    [Crossref] [Google Scholar]
  146. Oni SK, Mieres F, Futter MN, Laudon H. 2017.. Soil temperature responses to climate change along a gradient of upland–riparian transect in boreal forest. . Clim. Change 143:(1):2741
    [Crossref] [Google Scholar]
  147. Osland MJ, Chivoiu B, Feher LC, Dale LL, Lieurance D, et al. 2023.. Plant migration due to winter climate change: range expansion of tropical invasive plants in response to warming winters. . Biol. Invasions 25:(9):281330
    [Crossref] [Google Scholar]
  148. Osland MJ, Day RH, Hall CT, Feher LC, Armitage AR, et al. 2020.. Temperature thresholds for black mangrove (Avicennia germinans) freeze damage, mortality and recovery in North America: refining tipping points for range expansion in a warming climate. . J. Ecol. 108:(2):65465
    [Crossref] [Google Scholar]
  149. Osland MJ, Feher LC. 2020.. Winter climate change and the poleward range expansion of a tropical invasive tree (Brazilian pepper—Schinus terebinthifolius). . Glob. Change Biol. 26:(2):60715
    [Crossref] [Google Scholar]
  150. Osland MJ, Stevens PW, Lamont MM, Brusca RC, Hart KM, et al. 2021.. Tropicalization of temperate ecosystems in North America: the northward range expansion of tropical organisms in response to warming winter temperatures. . Glob. Change Biol. 27:(13):300934
    [Crossref] [Google Scholar]
  151. Painter TH, Barrett AP, Landry CC, Neff JC, Cassidy MP, et al. 2007.. Impact of disturbed desert soils on duration of mountain snow cover. . Geophys. Res. Lett. 34:(12):L12502
    [Crossref] [Google Scholar]
  152. Pauli JN, Zuckerberg B, Whiteman JP, Porter W. 2013.. The subnivium: a deteriorating seasonal refugium. . Front. Ecol. Environ. 11:(5):26067
    [Crossref] [Google Scholar]
  153. Penczykowski RM, Connolly BM, Barton BT. 2017.. Winter is changing: trophic interactions under altered snow regimes. . Food Webs 13::8091
    [Crossref] [Google Scholar]
  154. Peng X, Zhang T, Frauenfeld OW, Wang K, Cao B, et al. 2017.. Response of seasonal soil freeze depth to climate change across China. . Cryosphere 11:(3):105973
    [Crossref] [Google Scholar]
  155. Pepin D. 2015.. Elevation-dependent warming in mountain regions of the world. . Nat. Clim. Change 5::42430
    [Crossref] [Google Scholar]
  156. Pepin NC, Arnone E, Gobiet A, Haslinger K, Kotlarski S, et al. 2022.. Climate changes and their elevational patterns in the mountains of the world. . Rev. Geophys. 60:(1):e2020RG000730
    [Crossref] [Google Scholar]
  157. Pernica P, North RL, Baulch HM. 2017.. In the cold light of day: the potential importance of under-ice convective mixed layers to primary producers. . Inland Waters 7:(2):138150
    [Crossref] [Google Scholar]
  158. Polgar C, Gallinat A, Primack RB. 2014.. Drivers of leaf-out phenology and their implications for species invasions: insights from Thoreau's Concord. . New Phytol. 202:(1):10615
    [Crossref] [Google Scholar]
  159. Poppeliers SWM, Hefting M, Dorrepaal E, Weedon JT. 2022.. Functional microbial ecology in arctic soils: the need for a year-round perspective. . FEMS Microbiol. Ecol. 98:(12):fiac134
    [Crossref] [Google Scholar]
  160. Poujol B, Mooney PA, Sobolowski SP. 2021.. Physical processes driving intensification of future precipitation in the mid- to high latitudes. . Environ. Res. Lett. 16:(3):034051
    [Crossref] [Google Scholar]
  161. Price DT, Alfaro RI, Brown KJ, Flannigan MD, Fleming RA, et al. 2013.. Anticipating the consequences of climate change for Canada's boreal forest ecosystems. . Environ. Rev. 21:(4):32265
    [Crossref] [Google Scholar]
  162. Pureswaran DS, De Grandpré L, Paré D, Taylor A, Barrette M, et al. 2015.. Climate-induced changes in host tree–insect phenology may drive ecological state-shift in boreal forests. . Ecology 96:(6):148091
    [Crossref] [Google Scholar]
  163. Pureswaran DS, Roques A, Battisti A. 2018.. Forest insects and climate change. . Curr. For. Rep. 4:(2):3550
    [Crossref] [Google Scholar]
  164. Raju KS, Kumar DN. 2020.. Review of approaches for selection and ensembling of GCMs. . J. Water Clim. Change 11:(3):57799
    [Crossref] [Google Scholar]
  165. Rantanen M, Karpechko AY, Lipponen A, Nordling K, Hyvärinen O, et al. 2022.. The Arctic has warmed nearly four times faster than the globe since 1979. . Commun. Earth Environ. 3:(1):168
    [Crossref] [Google Scholar]
  166. Reinmann AB, Susser JR, Demaria EMC, Templer PH. 2019.. Declines in northern forest tree growth following snowpack decline and soil freezing. . Glob. Change Biol. 25:(2):42030
    [Crossref] [Google Scholar]
  167. Ricca MA, Miles AK, Van Vuren DH, Eviner VT. 2016.. Impacts of introduced Rangifer on ecosystem processes of maritime tundra on subarctic islands. . Ecosphere 7:(3):e01219
    [Crossref] [Google Scholar]
  168. Rixen C, Freppaz M, Stoeckli V, Huovinen C, Huovinen K, Wipf S. 2008.. Altered snow density and chemistry change soil nitrogen mineralization and plant growth. . Arctic Antarct. Alp. Res. 40:(3):56875
    [Crossref] [Google Scholar]
  169. Rixen C, Høye TT, Macek P, Aerts R, Alatalo JM, et al. 2022.. Winters are changing: snow effects on Arctic and alpine tundra ecosystems. . Arct. Sci. 8:(3):572608
    [Crossref] [Google Scholar]
  170. Rohli RV, Joyner TA, Reynolds SJ, Ballinger TJ. 2015.. Overlap of global Köppen–Geiger climates, biomes, and soil orders. . Phys. Geogr. 36:(2):15875
    [Crossref] [Google Scholar]
  171. Roland J, Matter SF. 2016.. Pivotal effect of early-winter temperatures and snowfall on population growth of alpine Parnassius smintheus butterflies. . Ecol. Monogr. 86::41228
    [Crossref] [Google Scholar]
  172. Rosenberg KV, Dokter AM, Blancher PJ, Sauer JR, Smith AC, et al. 2019.. Decline of the North American avifauna. . Science 366:(6461):12024
    [Crossref] [Google Scholar]
  173. Ruhí A, Boix D, Gascón S, Sala J, Batzer DP. 2013.. Functional and phylogenetic relatedness in temporary wetland invertebrates: current macroecological patterns and implications for future climatic change scenarios. . PLOS ONE 8:(11):e81739
    [Crossref] [Google Scholar]
  174. Rühland KM, Paterson AM, Smol JP. 2015.. Lake diatom responses to warming: reviewing the evidence. . J. Paleolimnol. 54:(1):135
    [Crossref] [Google Scholar]
  175. Sahoo GB, Schladow SG, Reuter JE, Coats R. 2011.. Effects of climate change on thermal properties of lakes and reservoirs, and possible implications. . Stoch. Environ. Res. Risk Assess. 25:(4):44556
    [Crossref] [Google Scholar]
  176. Sanders E, Wassens S, Michael DR, Nimmo DG, Turner JM. 2023.. Extinction risk of the world's freshwater mammals. . Conserv. Biol. 38:(1):e14168
    [Crossref] [Google Scholar]
  177. Sanders-DeMott R, McNellis R, Jabouri M, Templer PH. 2018a.. Snow depth, soil temperature and plant–herbivore interactions mediate plant response to climate change. . J. Ecol. 106:(4):150819
    [Crossref] [Google Scholar]
  178. Sanders-DeMott R, Sorensen PO, Reinmann AB, Templer PH. 2018b.. Growing season warming and winter freeze–thaw cycles reduce root nitrogen uptake capacity and increase soil solution nitrogen in a northern forest ecosystem. . Biogeochemistry 137:(3):33749
    [Crossref] [Google Scholar]
  179. Schädel C, Rogers BM, Lawrence DM, Koven CD, Brovkin V, et al. 2024.. Earth system models must include permafrost carbon processes. . Nat. Clim. Change 14:(2):11416
    [Crossref] [Google Scholar]
  180. Scheffer M, Hosper SH, Meijer M-L, Moss B, Jeppesen E. 1993.. Alternative equilibria in shallow lakes. . Trends Ecol. Evol. 8:(8):27579
    [Crossref] [Google Scholar]
  181. Schmidt NM, Mosbacher JB, Vesterinen EJ, Roslin T, Michelsen A. 2018.. Limited dietary overlap amongst resident Arctic herbivores in winter: complementary insights from complementary methods. . Oecologia 187:(3):68999
    [Crossref] [Google Scholar]
  182. Schroth AW, Giles CD, Isles PDF, Xu Y, Perzan Z, Druschel GK. 2015.. Dynamic coupling of iron, manganese, and phosphorus behavior in water and sediment of shallow ice-covered eutrophic lakes. . Environ. Sci. Technol. 49:(16):975867
    [Crossref] [Google Scholar]
  183. Scott AM, Gilbert JH, Pauli JN. 2022.. Small mammal dynamics in snow-covered forests. . J. Mammal. 103:(3):68092
    [Crossref] [Google Scholar]
  184. Sechley TH, Strickland D, Ryan Norris D. 2015.. Linking the availability of cached food to climate change: an experimental test of the hoard-rot hypothesis. . Can. J. Zool. 93::41119
    [Crossref] [Google Scholar]
  185. Seybold EC, Dwivedi R, Musselman KN, Kincaid DW, Schroth AW, et al. 2022.. Winter runoff events pose an unquantified continental-scale risk of high wintertime nutrient export. . Environ. Res. Lett. 17:(10):104044
    [Crossref] [Google Scholar]
  186. Sharma S, Richardson DC, Woolway RI, Imrit MA, Bouffard D, et al. 2021.. Loss of ice cover, shifting phenology, and more extreme events in Northern Hemisphere lakes. . J. Geophys. Res. Biogeosci. 126:(10):e2021JG006348
    [Crossref] [Google Scholar]
  187. Sharratt BS, Baker DG, Wall DB, Skaggs RH, Ruschy DL. 1992.. Snow depth required for near steady-state soil temperatures. . Agric. For. Meteorol. 57:(4):24351
    [Crossref] [Google Scholar]
  188. Shepherd T. 2014.. Atmospheric circulation as a source of uncertainty in climate change projections. . Nat. Geosci. 7::7038
    [Crossref] [Google Scholar]
  189. Shipley AA, Cruz J, Zuckerberg B. 2020.. Personality differences in the selection of dynamic refugia have demographic consequences for a winter-adapted bird. . Proc. R. Soc. B 2871934::20200609
    [Crossref] [Google Scholar]
  190. Shugar DH, Burr A, Haritashya UK, Kargel JS, Watson CS, et al. 2020.. Rapid worldwide growth of glacial lakes since 1990. . Nat. Clim. Change 10:(10):93945
    [Crossref] [Google Scholar]
  191. Sickman JO, Melack JM, Clow DW. 2003.. Evidence for nutrient enrichment of high-elevation lakes in the Sierra Nevada, California. . Limnol. Oceanogr. 48:(5):188592
    [Crossref] [Google Scholar]
  192. Sinclair BJ, Stinziano JR, Williams CM, Macmillan HA, Marshall KE, Storey KB. 2013.. Real-time measurement of metabolic rate during freezing and thawing of the wood frog, Rana sylvatica: implications for overwinter energy use. . J. Exp. Biol. 216:(Part 2):292302
    [Crossref] [Google Scholar]
  193. Sirén AP, Morelli TL. 2020.. Interactive range-limit theory (iRLT): an extension for predicting range shifts. . J. Animal Ecol. 89:(4):94054
    [Crossref] [Google Scholar]
  194. Sistla SA, Schimel JP. 2013.. Seasonal patterns of microbial extracellular enzyme activities in an arctic tundra soil: identifying direct and indirect effects of long-term summer warming. . Soil Biol. Biochem. 66::11929
    [Crossref] [Google Scholar]
  195. Slater AG, Lawrence DM, Koven CD. 2017.. Process-level model evaluation: a snow and heat transfer metric. . Cryosphere 11:(2):98996
    [Crossref] [Google Scholar]
  196. Slatyer RA, Umbers KD, Arnold PA. 2022.. Ecological responses to variation in seasonal snow cover. . Conserv. Biol. 36:(1):e13727
    [Crossref] [Google Scholar]
  197. Song Y, Sass-Klaassen U, Sterck F, Goudzwaard L, Akhmetzyanov L, Poorter L. 2021.. Growth of 19 conifer species is highly sensitive to winter warming, spring frost and summer drought. . Ann. Bot. 128:(5):54557
    [Crossref] [Google Scholar]
  198. Stralberg D, Carroll C, Nielsen SE. 2020.. Toward a climate-informed North American protected areas network: incorporating climate-change refugia and corridors in conservation planning. . Conserv. Lett. 13:(4):e12712
    [Crossref] [Google Scholar]
  199. Studd EK, Bates AE, Bramburger AJ, Fernandes T, Hayden B, et al. 2021.. Nine maxims for the ecology of cold-climate winters. . Bioscience 71:(8):82030
    [Crossref] [Google Scholar]
  200. Sturm M, Goldstein MA, Parr C. 2017.. Water and life from snow: a trillion dollar science question. . Water Resour. Res. 53:(5):353444
    [Crossref] [Google Scholar]
  201. Sturm M, Racine C, Tape K. 2001.. Climate change. Increasing shrub abundance in the Arctic. . Nature 411:(6837):54647
    [Crossref] [Google Scholar]
  202. Sumargo E, Cayan DR. 2018.. The influence of cloudiness on hydrologic fluctuations in the mountains of the western United States. . Water Resour. Res. 54:(10):847899
    [Crossref] [Google Scholar]
  203. Sutton AO, Studd EK, Fernandes T, Bates AE, Bramburger AJ, et al. 2021.. Frozen out: unanswered questions about winter biology. . Environ. Rev. 29:(4):43142
    [Crossref] [Google Scholar]
  204. Thellman A, Jankowski KJ, Hayden B, Yang X, Dolan W, et al. 2021.. The ecology of river ice. . J. Geophys. Res. Biogeosci. 126:(9):e2021JG006275
    [Crossref] [Google Scholar]
  205. Thind PS, Chandel KK, Sharma SK, Mandal TK, John S. 2019.. Light-absorbing impurities in snow of the Indian Western Himalayas: impact on snow albedo, radiative forcing, and enhanced melting. . Environ. Sci. Pollut. Res. 26:(8):756678
    [Crossref] [Google Scholar]
  206. Tierney GL, Fahey TJ, Groffman PM, Hardy JP, Fitzhugh RD, Driscoll CT. 2001.. Soil freezing alters fine root dynamics in a northern hardwood forest. . Biogeochemistry 56:(2):17590
    [Crossref] [Google Scholar]
  207. Tikkanen O-P, Kilpeläinen J, Mellado A, Hämäläinen A, Hódar JA, et al. 2021.. Freezing tolerance of seeds can explain differences in the distribution of two widespread mistletoe subspecies in Europe. . For. Ecol. Manag. 482::118806
    [Crossref] [Google Scholar]
  208. Tonn WM, Magnuson JJ. 1982.. Patterns in the species composition and richness of fish assemblages in northern Wisconsin lakes. . Ecology 63:(4):114966
    [Crossref] [Google Scholar]
  209. Trenberth KE. 1983.. What are the seasons?. Bull. Am. Meteorol. Soc. 64:(11):127682
    [Crossref] [Google Scholar]
  210. Trisos CH, Merow C, Pigot AL. 2020.. The projected timing of abrupt ecological disruption from climate change. . Nature 580:(7804):496501
    [Crossref] [Google Scholar]
  211. Turbill C. 2008.. Winter activity of Australian tree-roosting bats: influence of temperature and climatic patterns. . J. Zool. 276:(3):28590
    [Crossref] [Google Scholar]
  212. Turner MG, Calder WJ, Cumming GS, Hughes TP, Jentsch A, et al. 2020.. Climate change, ecosystems and abrupt change: science priorities. . Philos. Trans. R. Soc. B 375:(1794):20190105
    [Crossref] [Google Scholar]
  213. Udall B, Overpeck J. 2017.. The twenty-first century Colorado River hot drought and implications for the future. . Water Resour. Res. 53:(3):240418
    [Crossref] [Google Scholar]
  214. Van Hemert C, Pearce JM, Handel CM. 2014.. Wildlife health in a rapidly changing North: focus on avian disease. . Front. Ecol. Environ. 12:(10):54856
    [Crossref] [Google Scholar]
  215. Vergés A, Tomas F, Cebrian E, Ballesteros E, Kizilkaya Z, et al. 2014.. Tropical rabbitfish and the deforestation of a warming temperate sea. . J. Ecol. 102:(6):151827
    [Crossref] [Google Scholar]
  216. Virkkala R, Heikkinen RK, Leikola N, Luoto M. 2008.. Projected large-scale range reductions of northern-boreal land bird species due to climate change. . Biol. Conserv. 141:(5):134353
    [Crossref] [Google Scholar]
  217. Wallingford PD, Morelli TL, Allen JM, Beaury EM, Blumenthal DM, et al. 2020.. Adjusting the lens of invasion biology to focus on the impacts of climate-driven range shifts. . Nat. Clim. Change 10:(5):398405
    [Crossref] [Google Scholar]
  218. Walsh JE, Bigalke S, McAfee SA, Lader R, Serreze MC, Ballinger TJ. 2022.. Precipitation. . In Arctic Report Card 2022, ed. ML Druckenmiller, RL Thoman, TA Moon . Washington, DC:: Natl. Ocean. Atmos. Adm. https://doi.org/10.25923/n07s-3s69
    [Google Scholar]
  219. Walton DB, Hall A, Berg N, Schwartz M, Sun F. 2017.. Incorporating snow albedo feedback into downscaled temperature and snow cover projections for California's Sierra Nevada. . J. Clim. 30:(4):141738
    [Crossref] [Google Scholar]
  220. Wang H, Wu C, Ciais P, Peñuelas J, Dai J, et al. 2020.. Overestimation of the effect of climatic warming on spring phenology due to misrepresentation of chilling. . Nat. Commun. 11:(1):4945
    [Crossref] [Google Scholar]
  221. Weiskopf SR, Ledee OE, Thompson LM. 2019.. Climate change effects on deer and moose in the Midwest. . J. Wildl. Manag. 83:(4):76981
    [Crossref] [Google Scholar]
  222. Welborn GA, Skelly DK, Werner EE. 1996.. Mechanisms creating community structure across a freshwater habitat gradient. . Annu. Rev. Ecol. Syst. 27::33763
    [Crossref] [Google Scholar]
  223. Westerling AL. 2016.. Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring. . Philos. Trans. R. Soc. B 371:(1696):20150178
    [Crossref] [Google Scholar]
  224. Weyhenmeyer GA, Westöö A-K, Willén E. 2008.. Increasingly ice-free winters and their effects on water quality in Sweden's largest lakes. . Hydrobiologia 599:(1):11118
    [Crossref] [Google Scholar]
  225. Wheeler HC, Hik DS. 2013.. Arctic ground squirrels Urocitellus parryii as drivers and indicators of change in northern ecosystems. . Mamm. Rev. 43:(3):23855
    [Crossref] [Google Scholar]
  226. Williams JN, Rivera R, Choe H, Schwartz MW, Thorne JH. 2018.. Climate risk on two vegetation axes—tropical wet-to-dry and temperate arid-to-moist forests. . J. Biogeogr. 45:(10):236174
    [Crossref] [Google Scholar]
  227. Williamson CE, Saros JE, Vincent WF, Smol JP. 2009.. Lakes and reservoirs as sentinels, integrators, and regulators of climate change. . Limnol. Oceanogr. 54:(6):227382
    [Crossref] [Google Scholar]
  228. Winchell TS, Barnard DM, Monson RK, Burns SP, Molotch NP. 2016.. Earlier snowmelt reduces atmospheric carbon uptake in midlatitude subalpine forests. . Geophys. Res. Lett. 43:(15):816068
    [Crossref] [Google Scholar]
  229. Winkler R, Boon S, Zimonick B, Baleshta K. 2010.. Assessing the effects of post-pine beetle forest litter on snow albedo. . Hydrol. Process. 24:(6):80312
    [Crossref] [Google Scholar]
  230. Woo-Durand C, Matte J-M, Cuddihy G, McGourdji CL, Venter O, Grant JWA. 2020.. Increasing importance of climate change and other threats to at-risk species in Canada. . Environ. Rev. 28:(4):44956
    [Crossref] [Google Scholar]
  231. Woolway RI, Denfeld B, Tan Z, Jansen J, Weyhenmeyer GA, La Fuente S. 2022.. Winter inverse lake stratification under historic and future climate change. . Limnol. Oceanogr. Lett. 7:(4):30211
    [Crossref] [Google Scholar]
  232. Woolway RI, Kraemer BM, Lenters JD, Merchant CJ, O'Reilly CM, Sharma S. 2020.. Global lake responses to climate change. . Nat. Rev. Earth Environ. 1:(8):388403
    [Crossref] [Google Scholar]
  233. Yano Y, Brookshire ENJ, Holsinger J, Weaver T. 2015.. Long-term snowpack manipulation promotes large loss of bioavailable nitrogen and phosphorus in a subalpine grassland. . Biogeochemistry 124:(1):31933
    [Crossref] [Google Scholar]
  234. Zeeman MJ, Mauder M, Steinbrecher R, Heidbach K, Eckart E, Schmid HP. 2017.. Reduced snow cover affects productivity of upland temperate grasslands. . Agric. For. Meteorol. 232::51426
    [Crossref] [Google Scholar]
  235. Zimova M, Mills LS, Nowak JJ. 2016.. High fitness costs of climate change-induced camouflage mismatch. . Ecol. Lett. 19:(3):299307
    [Crossref] [Google Scholar]
  236. Zona D, Lafleur PM, Hufkens K, Gioli B, Bailey B, et al. 2023.. Pan-Arctic soil moisture control on tundra carbon sequestration and plant productivity. . Glob. Change Biol. 29:(5):126781
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-110421-102101
Loading
/content/journals/10.1146/annurev-ecolsys-110421-102101
Loading

Data & Media loading...

  • Article Type: Review Article