1932

Abstract

Deadwood represents a significant carbon pool and unique biodiversity reservoir in forests and savannas but has been largely overlooked until recently. Storage and release of carbon from deadwood is controlled by interacting decomposition drivers including biotic consumers (animals and microbes) and abiotic factors (water, fire, sunlight, and freeze–thaw). Although previous research has focused mainly on forests, we synthesize deadwood studies across diverse ecosystems with woody vegetation. As changing climates and land-use practices alter the landscape, we expect accelerating but variable rates of inputs and outputs from deadwood pools. Currently, Earth system models implicitly represent only microbial consumers as drivers of wood decomposition; we show that many other factors influence deadwood pools. Forest management practices increasingly recognize deadwood as an important contributor to forest dynamics, biodiversity, and carbon budgets. Together, emerging knowledge from modeling and management suggests a growing need for additional research on deadwood contributions to carbon storage and greenhouse gas emissions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-110421-102327
2024-11-04
2025-02-19
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/55/1/annurev-ecolsys-110421-102327.html?itemId=/content/journals/10.1146/annurev-ecolsys-110421-102327&mimeType=html&fmt=ahah

Literature Cited

  1. Acanakwo EF, Sheil D, Moe SR. 2019.. Wood decomposition is more rapid on than off termite mounds in an African savanna. . Ecosphere 10:(1):e02554
    [Crossref] [Google Scholar]
  2. Ahlström A, Raupach MR, Schurgers G, Smith B, Arneth A, et al. 2015.. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. . Science 348:(6237):89599
    [Crossref] [Google Scholar]
  3. Anderegg WRL, Trugman AT, Badgley G, Anderson CM, Bartuska A, et al. 2020.. Climate-driven risks to the climate mitigation potential of forests. . Science 368:(6497):eaaz7005
    [Crossref] [Google Scholar]
  4. Anderson-Teixeira KJ, Wang MMH, McGarvey JC, LeBauer DS. 2016.. Carbon dynamics of mature and regrowth tropical forests derived from a pantropical database (TropForC-db). . Glob. Change Biol. 22:(5):1690709
    [Crossref] [Google Scholar]
  5. Austin AT. 2011.. Has water limited our imagination for aridland biogeochemistry?. Trends Ecol. Evol. 26:(5):22935
    [Crossref] [Google Scholar]
  6. Austin AT, Ballaré CL. 2023.. Attackers gain the upper hand over plants in the face of rapid global change. . Curr. Biol. 33:(11):R61120
    [Crossref] [Google Scholar]
  7. Austin AT, Méndez MS, Ballaré CL. 2016.. Photodegradation alleviates the lignin bottleneck for carbon turnover in terrestrial ecosystems. . PNAS 113:(16):439297
    [Crossref] [Google Scholar]
  8. Austin AT, Vivanco L. 2006.. Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. . Nature 442:(7102):55558
    [Crossref] [Google Scholar]
  9. Bar-On YM, Phillips R, Milo R. 2018.. The biomass distribution on Earth. . PNAS 115:(25):650611
    [Crossref] [Google Scholar]
  10. Bauman D, Fortunel C, Delhaye G, Malhi Y, Cernusak LA, et al. 2022.. Tropical tree mortality has increased with rising atmospheric water stress. . Nature 608:(7923):52833
    [Crossref] [Google Scholar]
  11. Bennett LT, Bruce MJ, MacHunter J, Kohout M, Tanase MA, Aponte C. 2016.. Mortality and recruitment of fire-tolerant eucalypts as influenced by wildfire severity and recent prescribed fire. . For. Ecol. Manag. 380::10717
    [Crossref] [Google Scholar]
  12. Berzaghi F, Longo M, Ciais P, Blake S, Bretagnolle F, et al. 2019.. Carbon stocks in central African forests enhanced by elephant disturbance. . Nat. Geosci. 12:(9):72529
    [Crossref] [Google Scholar]
  13. Bird MI, Wynn JG, Saiz G, Wurster CM, McBeath A. 2015.. The pyrogenic carbon cycle. . Annu. Rev. Earth Planet. Sci. 43::27398
    [Crossref] [Google Scholar]
  14. Birkemoe T, Jacobsen RM, Sverdrup-Thygeson A, Biedermann PH. 2018.. Insect–fungus interactions in dead wood systems. . In Saproxylic Insects: Diversity, Ecology and Conservation, ed. MD Ulyshen , pp. 377427. Cham, Switz:.: Springer
    [Google Scholar]
  15. Błońska E, Lasota J, Piaszczyk W. 2019.. Dissolved carbon and nitrogen release from deadwood of different tree species in various stages of decomposition. . Soil Sci. Plant Nutr. 65:(1):1007
    [Crossref] [Google Scholar]
  16. Bowman DMJS, Kolden CA, Abatzoglou JT, Johnston FH, van der Werf GR, Flannigan M. 2020.. Vegetation fires in the Anthropocene. . Nat. Rev. Earth Environ. 1:(10):50015
    [Crossref] [Google Scholar]
  17. Bradford MA, Veen GFC, Bradford EM, Covey KR, Crowther TW, et al. 2023.. Coarse woody debris accelerates the decomposition of deadwood inputs across temperate forest. . Biogeochemistry 164::489507
    [Crossref] [Google Scholar]
  18. Brando PM, Balch JK, Nepstad DC, Morton DC, Putz FE, et al. 2014.. Abrupt increases in Amazonian tree mortality due to drought–fire interactions. . PNAS 111:(17):634752
    [Crossref] [Google Scholar]
  19. Burton JE, Bennett LT, Kasel S, Nitschke CR, Tanase MA, et al. 2021.. Fire, drought and productivity as drivers of dead wood biomass in eucalypt forests of south-eastern Australia. . For. Ecol. Manag. 482::118859
    [Crossref] [Google Scholar]
  20. Campbell JL, Fontaine JB, Donato DC. 2016.. Carbon emissions from decomposition of fire-killed trees following a large wildfire in Oregon, United States. . J. Geophys. Res. Biogeosci. 121:(3):71830
    [Crossref] [Google Scholar]
  21. Campbell JL, Green MB, Yanai RD, Woodall CW, Fraver S, et al. 2019.. Estimating uncertainty in the volume and carbon storage of downed coarse woody debris. . Ecol. Appl. 29:(2):e01844
    [Crossref] [Google Scholar]
  22. Carmichael MJ, Bernhardt ES, Bräuer SL, Smith WK. 2014.. The role of vegetation in methane flux to the atmosphere: Should vegetation be included as a distinct category in the global methane budget?. Biogeochemistry 119:(1):124
    [Crossref] [Google Scholar]
  23. Chen J, Xu H, He D, Li Y, Luo T, et al. 2019.. Historical logging alters soil fungal community composition and network in a tropical rainforest. . For. Ecol. Manag. 433::22839
    [Crossref] [Google Scholar]
  24. Choat B, Brodribb TJ, Brodersen CR, Duursma RA, López R, Medlyn BE. 2018.. Triggers of tree mortality under drought. . Nature 558:(7711):53139
    [Crossref] [Google Scholar]
  25. Clausen CA. 1996.. Bacterial associations with decaying wood: a review. . Int. Biodeterior. Biodegrad. 37:(1):1017
    [Crossref] [Google Scholar]
  26. Cook GD, Liedloff AC, Meyer CPM, Richards AE, Bray SG, et al. 2020.. Standing dead trees contribute significantly to carbon budgets in Australian savannas. . Int. J. Wildland Fire. 29:(3):21528
    [Crossref] [Google Scholar]
  27. Cornelissen JHC, Grootemaat S, Verheijen LM, Cornwell WK, van Bodegom PM, et al. 2017.. Are litter decomposition and fire linked through plant species traits?. New Phytol. 216:(3):65369
    [Crossref] [Google Scholar]
  28. Cornwell WK, Cornelissen JHC, Allison SD, Bauhus J, Eggleton P, et al. 2009.. Plant traits and wood fates across the globe: rotted, burned, or consumed?. Glob. Change Biol. 15:(10):243149
    [Crossref] [Google Scholar]
  29. Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, et al. 2008.. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. . Ecol. Lett. 11:(10):106571
    [Crossref] [Google Scholar]
  30. Crowther TW, Thomas SM, Maynard DS, Baldrian P, Covey K, et al. 2015.. Biotic interactions mediate soil microbial feedbacks to climate change. . PNAS 112:(22):703338
    [Crossref] [Google Scholar]
  31. Dai Z, Trettin CC, Burton AJ, Jurgensen MF, Page-Dumroese DS, et al. 2021.. Coarse woody debris decomposition assessment tool: model development and sensitivity analysis. . PLOS ONE 16:(6):e0251893
    [Crossref] [Google Scholar]
  32. Dix NJ, Webster J. 1995.. Fungal Ecology. Berlin:: Springer Science & Business Media
    [Google Scholar]
  33. Dossa GGO, Schaefer D, Zhang J-L, Tao J-P, Cao K-F, et al. 2018.. The cover uncovered: bark control over wood decomposition. . J. Ecol. 106:(6):214760
    [Crossref] [Google Scholar]
  34. Driscoll DA, Armenteras D, Bennett AF, Brotons L, Clarke MF, et al. 2021.. How fire interacts with habitat loss and fragmentation. . Biol. Rev. 96:(3):97698
    [Crossref] [Google Scholar]
  35. Edman M, Eriksson A-M. 2016.. Competitive outcomes between wood-decaying fungi are altered in burnt wood. . FEMS Microbiol. Ecol. 92:(6):fiw068
    [Crossref] [Google Scholar]
  36. Esquivel-Muelbert A, Phillips OL, Brienen RJW, Fauset S, Sullivan MJP, et al. 2020.. Tree mode of death and mortality risk factors across Amazon forests. . Nat. Commun. 11:(1):5515
    [Crossref] [Google Scholar]
  37. Fei S, Morin RS, Oswalt CM, Liebhold AM. 2019.. Biomass losses resulting from insect and disease invasions in US forests. . PNAS 116:(35):1737176
    [Crossref] [Google Scholar]
  38. Flores-Moreno H, Yatsko AR, Cheesman AW, Allison SD, Cernusak LA, et al. 2024.. Shifts in internal stem damage along a tropical precipitation gradient and implications for forest biomass estimation. . New Phytol. 241:(3):104761
    [Crossref] [Google Scholar]
  39. Frank J, Castle ME, Westfall JA, Weiskittel AR, MacFarlane DW, et al. 2018.. Variation in occurrence and extent of internal stem decay in standing trees across the eastern US and Canada: evaluation of alternative modelling approaches and influential factors. . For. Int. J. For. Res. 91:(3):38299
    [Google Scholar]
  40. Franklin JF, Shugart HH, Harmon ME. 1987.. Tree death as an ecological process. . BioScience 37:(8):55056
    [Crossref] [Google Scholar]
  41. Freschet GT, Aerts R, Cornelissen JHC. 2012a.. Multiple mechanisms for trait effects on litter decomposition: moving beyond home-field advantage with a new hypothesis. . J. Ecol. 100:(3):61930
    [Crossref] [Google Scholar]
  42. Freschet GT, Weedon JT, Aerts R, van Hal JR, Cornelissen JHC. 2012b.. Interspecific differences in wood decay rates: insights from a new short-term method to study long-term wood decomposition. . J. Ecol. 100:(1):16170
    [Crossref] [Google Scholar]
  43. García-Palacios P, Maestre FT, Kattge J, Wall DH. 2013.. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. . Ecol. Lett. 16:(8):104553
    [Crossref] [Google Scholar]
  44. Gora EM, Esquivel-Muelbert A. 2021.. Implications of size-dependent tree mortality for tropical forest carbon dynamics. . Nat. Plants 7:(4):38491
    [Crossref] [Google Scholar]
  45. Grace J, José JS, Meir P, Miranda HS, Montes RA. 2006.. Productivity and carbon fluxes of tropical savannas. . J. Biogeogr. 33:(3):387400
    [Crossref] [Google Scholar]
  46. Griffiths HM, Ashton LA, Parr CL, Eggleton P. 2021a.. The impact of invertebrate decomposers on plants and soil. . New Phytol. 231:(6):214249
    [Crossref] [Google Scholar]
  47. Griffiths HM, Eggleton P, Hemming-Schroeder N, Swinfield T, Woon JS, et al. 2021b.. Carbon flux and forest dynamics: increased deadwood decomposition in tropical rainforest tree-fall canopy gaps. . Glob. Change Biol. 27:(8):160113
    [Crossref] [Google Scholar]
  48. Guo C, Tuo B, Ci H, Yan E-R, Cornelissen JHC. 2021.. Dynamic feedbacks among tree functional traits, termite populations and deadwood turnover. . J. Ecol. 109:(4):157890
    [Crossref] [Google Scholar]
  49. Harmon ME. 2001.. Moving towards a new paradigm for woody detritus management. . Ecol. Bull. 49::26978
    [Google Scholar]
  50. Harmon ME, Fasth BG, Yatskov M, Kastendick D, Rock J, Woodall CW. 2020.. Release of coarse woody detritus-related carbon: a synthesis across forest biomes. . Carbon Balance Manag. 15:(1):1
    [Crossref] [Google Scholar]
  51. Harmon ME, Franklin JF, Swanson FJ, Sollins P, Gregory SV, et al. 1986.. Ecology of coarse woody debris in temperate ecosystems. . In Advances in Ecological Research, Vol. 15, ed. A MacFadyen, ED Ford , pp. 133302. London:: Academic
    [Google Scholar]
  52. Hartmann H, Bastos A, Das AJ, Esquivel-Muelbert A, Hammond WM, et al. 2022.. Climate change risks to global forest health: emergence of unexpected events of elevated tree mortality worldwide. . Annu. Rev. Plant Biol. 73::673702
    [Crossref] [Google Scholar]
  53. Hlásny T, König L, Krokene P, Lindner M, Montagné-Huck C, et al. 2021.. Bark beetle outbreaks in Europe: state of knowledge and ways forward for management. . Curr. For. Rep. 7:(3):13865
    [Crossref] [Google Scholar]
  54. Hu Z, Michaletz ST, Johnson DJ, McDowell NG, Huang Z, et al. 2018.. Traits drive global wood decomposition rates more than climate. . Glob. Change Biol. 24:(11):525969
    [Crossref] [Google Scholar]
  55. Hyvärinen E, Kouki J, Martikainen P. 2006.. Fire and green-tree retention in conservation of red-listed and rare deadwood-dependent beetles in Finnish boreal forests. . Conserv. Biol. 20:(6):171019
    [Crossref] [Google Scholar]
  56. Ibanez T, Platt WJ, Bellingham PJ, Vieilledent G, Franklin J, et al. 2022.. Altered cyclone–fire interactions are changing ecosystems. . Trends Plant Sci. 27:(12):121830
    [Crossref] [Google Scholar]
  57. IPCC (Intergov. Panel Clim. Change). 2023.. Summary for policymakers. . In Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, ed. Core Writing Team, H Lee, J Romero , pp. 134. Geneva:: IPCC
    [Google Scholar]
  58. Ito A, Hajima T, Lawrence DM, Brovkin V, Delire C, et al. 2020.. Soil carbon sequestration simulated in CMIP6-LUMIP models: implications for climatic mitigation. . Environ. Res. Lett. 15:(12):124061
    [Crossref] [Google Scholar]
  59. Jeffrey LC, Reithmaier G, Sippo JZ, Johnston SG, Tait DR, et al. 2019.. Are methane emissions from mangrove stems a cryptic carbon loss pathway? Insights from a catastrophic forest mortality. . New Phytol. 224:(1):14654
    [Crossref] [Google Scholar]
  60. Junninen K, Kouki J, Renvall P. 2008.. Restoration of natural legacies of fire in European boreal forests: an experimental approach to the effects on wood-decaying fungi. . Can. J. For. Res. 38:(2):20215
    [Crossref] [Google Scholar]
  61. Keenan T, Williams C. 2018.. The terrestrial carbon sink. . Annu. Rev. Environ. Resour. 43::21943
    [Crossref] [Google Scholar]
  62. Kim YS, Singh AP. 2000.. Micromorphological characteristics of wood biodegradation in wet environments: a review. . IAWA J. 21:(2):13555
    [Crossref] [Google Scholar]
  63. Krishna MP, Mohan M. 2017.. Litter decomposition in forest ecosystems: a review. . Energy Ecol. Environ. 2:(4):23649
    [Crossref] [Google Scholar]
  64. Le Breton TD, Lyons MB, Nolan RH, Penman T, Williamson GJ, Ooi MK. 2022.. Megafire-induced interval squeeze threatens vegetation at landscape scales. . Front. Ecol. Environ. 20:(5):32734
    [Crossref] [Google Scholar]
  65. Lee H, Rahn T, Throop H. 2012.. An accounting of C-based trace gas release during abiotic plant litter degradation. . Glob. Change Biol. 18:(3):118595
    [Crossref] [Google Scholar]
  66. Leverkus AB, Gustafsson L, Lindenmayer DB, Castro J, Rey Benayas JM, et al. 2020.. Salvage logging effects on regulating ecosystem services and fuel loads. . Front. Ecol. Environ. 18:(7):391400
    [Crossref] [Google Scholar]
  67. Liers C, Ullrich R, Steffen KT, Hatakka A, Hofrichter M. 2006.. Mineralization of 14C-labelled synthetic lignin and extracellular enzyme activities of the wood-colonizing ascomycetes Xylaria hypoxylon and Xylaria polymorpha. . Appl. Microbiol. Biotechnol. 69:(5):57379
    [Crossref] [Google Scholar]
  68. Liski J, Palosuo T, Peltoniemi M, Sievänen R. 2005.. Carbon and decomposition model Yasso for forest soils. . Ecol. Model. 189:(1):16882
    [Crossref] [Google Scholar]
  69. Liu G, Cornwell WK, Cao K, Hu Y, Van Logtestijn RSP, et al. 2015.. Termites amplify the effects of wood traits on decomposition rates among multiple bamboo and dicot woody species. . J. Ecol. 103:(5):121423
    [Crossref] [Google Scholar]
  70. Lovato T, Peano D, Butenschön M, Materia S, Iovino D, et al. 2022.. CMIP6 simulations with the CMCC Earth System Model (CMCC-ESM2). . J. Adv. Model. Earth Syst. 14:(3):e2021MS002814
    [Crossref] [Google Scholar]
  71. Luke SH, Fayle TM, Eggleton P, Turner EC, Davies RG. 2014.. Functional structure of ant and termite assemblages in old growth forest, logged forest and oil palm plantation in Malaysian Borneo. . Biodivers. Conserv. 23:(11):281732
    [Crossref] [Google Scholar]
  72. Lunde LF, Boddy L, Sverdrup-Thygeson A, Jacobsen RM, Kauserud H, Birkemoe T. 2023.. Beetles provide directed dispersal of viable spores of a keystone wood decay fungus. . Fungal Ecol. 63::101232
    [Crossref] [Google Scholar]
  73. Lustenhouwer N, Maynard DS, Bradford MA, Lindner DL, Oberle B, et al. 2020.. A trait-based understanding of wood decomposition by fungi. . PNAS 117:(21):1155158
    [Crossref] [Google Scholar]
  74. Martin AR, Domke GM, Doraisami M, Thomas SC. 2021.. Carbon fractions in the world's dead wood. . Nat. Commun. 12:(1):889
    [Crossref] [Google Scholar]
  75. McDowell NG, Allen CD, Anderson-Teixeira K, Aukema BH, Bond-Lamberty B, et al. 2020.. Pervasive shifts in forest dynamics in a changing world. . Science 368:(6494):eaaz9463
    [Crossref] [Google Scholar]
  76. Mitchell SJ. 2013.. Wind as a natural disturbance agent in forests: a synthesis. . For. Int. J. For. Res. 86:(2):14757
    [Google Scholar]
  77. Moore JC, Berlow EL, Coleman DC, de Ruiter PC, Dong Q, et al. 2004.. Detritus, trophic dynamics and biodiversity. . Ecol. Lett. 7:(7):584600
    [Crossref] [Google Scholar]
  78. Norros V, Karhu E, Nordén J, Vähätalo AV, Ovaskainen O. 2015.. Spore sensitivity to sunlight and freezing can restrict dispersal in wood-decay fungi. . Ecol. Evol. 5:(16):331226
    [Crossref] [Google Scholar]
  79. Oberle B, Ogle K, Zanne AE, Woodall CW. 2018.. When a tree falls: Controls on wood decay predict standing dead tree fall and new risks in changing forests. . PLOS ONE 13:(5):e0196712
    [Crossref] [Google Scholar]
  80. Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, et al. 2011.. A large and persistent carbon sink in the world's forests. . Science 333:(6045):98893
    [Crossref] [Google Scholar]
  81. Parton WJ, Stewart JWB, Cole CV. 1988.. Dynamics of C, N, P and S in grassland soils: a model. . Biogeochemistry 5:(1):10931
    [Crossref] [Google Scholar]
  82. Pausas JG, Ribeiro E. 2013.. The global fire–productivity relationship. . Glob. Ecol. Biogeogr. 22:(6):72836
    [Crossref] [Google Scholar]
  83. Pfeifer M, Lefebvre V, Turner E, Cusack J, Khoo M, et al. 2015.. Deadwood biomass: an underestimated carbon stock in degraded tropical forests?. Environ. Res. Lett. 10:(4):044019
    [Crossref] [Google Scholar]
  84. Pietsch KA, Ogle K, Cornelissen JHC, Cornwell WK, Bönisch G, et al. 2014.. Global relationship of wood and leaf litter decomposability: the role of functional traits within and across plant organs. . Glob. Ecol. Biogeogr. 23:(9):104657
    [Crossref] [Google Scholar]
  85. Preston CM, Schmidt MWI. 2006.. Black (pyrogenic) carbon: a synthesis of current knowledge and uncertainties with special consideration of boreal regions. . Biogeosciences 3:(4):397420
    [Crossref] [Google Scholar]
  86. Pugh TAM, Rademacher T, Shafer SL, Steinkamp J, Barichivich J, et al. 2020.. Understanding the uncertainty in global forest carbon turnover. . Biogeosciences 17:(15):396189
    [Crossref] [Google Scholar]
  87. Reineke LH. 1933.. Perfecting a stand-density index for even-aged forests. . J. Agric. Res. 47:(7):62738
    [Google Scholar]
  88. Renne RR, Schlaepfer DR, Palmquist KA, Bradford JB, Burke IC, Lauenroth WK. 2019.. Soil and stand structure explain shrub mortality patterns following global change–type drought and extreme precipitation. . Ecology 100:(12):e02889
    [Crossref] [Google Scholar]
  89. Rinne KT, Rajala T, Peltoniemi K, Chen J, Smolander A, Mäkipää R. 2017.. Accumulation rates and sources of external nitrogen in decaying wood in a Norway spruce dominated forest. . Funct. Ecol. 31:(2):53041
    [Crossref] [Google Scholar]
  90. Rückamp D, Martius C, Bragança MAL, Amelung W. 2011.. Lignin patterns in soil and termite nests of the Brazilian Cerrado. . Appl. Soil Ecol. 48:(1):4552
    [Crossref] [Google Scholar]
  91. Russell MB, Fraver S, Aakala T, Gove JH, Woodall CW, et al. 2015.. Quantifying carbon stores and decomposition in dead wood: a review. . For. Ecol. Manag. 350::10728
    [Crossref] [Google Scholar]
  92. Sandström J, Bernes C, Junninen K, Lõhmus A, Macdonald E, et al. 2019.. Impacts of dead wood manipulation on the biodiversity of temperate and boreal forests. A systematic review. . J. Appl. Ecol. 56:(7):177081
    [Crossref] [Google Scholar]
  93. Seibold S, Rammer W, Hothorn T, Seidl R, Ulyshen MD, et al. 2021.. The contribution of insects to global forest deadwood decomposition. . Nature 597:(7874):7781
    [Crossref] [Google Scholar]
  94. Seidl R, Thom D, Kautz M, Martin-Benito D, Peltoniemi M, et al. 2017.. Forest disturbances under climate change. . Nat. Clim. Change 7:(6):395402
    [Crossref] [Google Scholar]
  95. Senande-Rivera M, Insua-Costa D, Miguez-Macho G. 2022.. Spatial and temporal expansion of global wildland fire activity in response to climate change. . Nat. Commun. 13:(1):1208
    [Crossref] [Google Scholar]
  96. Senf C, Pflugmacher D, Zhiqiang Y, Sebald J, Knorn J, et al. 2018.. Canopy mortality has doubled in Europe's temperate forests over the last three decades. . Nat. Commun. 9:(1):4978
    [Crossref] [Google Scholar]
  97. Sippo JZ, Lovelock CE, Santos IR, Sanders CJ, Maher DT. 2018.. Mangrove mortality in a changing climate: an overview. . Estuar. Coast. Shelf Sci. 215::24149
    [Crossref] [Google Scholar]
  98. Song Z, Dunn C, X-T, Qiao L, Pang J-P, Tang J-W. 2017.. Coarse woody decay rates vary by physical position in tropical seasonal rainforests of SW China. . For. Ecol. Manag. 385::20613
    [Crossref] [Google Scholar]
  99. Stokland JN, Siitonen J, Jonsson BG. 2012.. Biodiversity in Dead Wood. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  100. Swanson ME, Magee MI, Nelson AS, Engstrom R, Adams HD. 2023.. Experimental downed woody debris-created microsites enhance tree survival and growth in extreme summer heat. . Front. For. Glob. Change 6::1224624
    [Crossref] [Google Scholar]
  101. Swift MJ, Heal OW, Anderson JM. 1979.. Decomposition in Terrestrial Ecosystems. Berkeley:: Univ. Calif. Press
    [Google Scholar]
  102. ten Have R, Teunissen PJM. 2001.. Oxidative mechanisms involved in lignin degradation by white-rot fungi. . Chem. Rev. 101:(11):3397414
    [Crossref] [Google Scholar]
  103. Thornton PE, Rosenbloom NA. 2005.. Ecosystem model spin-up: estimating steady state conditions in a coupled terrestrial carbon and nitrogen cycle model. . Ecol. Model. 189:(1):2548
    [Crossref] [Google Scholar]
  104. Thorpe HC, Thomas SC, Caspersen JP. 2008.. Tree mortality following partial harvests is determined by skidding proximity. . Ecol. Appl. 18:(7):165263
    [Crossref] [Google Scholar]
  105. Todd-Brown KEO, Randerson JT, Post WM, Hoffman FM, Tarnocai C, et al. 2013.. Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations. . Biogeosciences 10:(3):171736
    [Crossref] [Google Scholar]
  106. Trenberth KE, Dai A, van der Schrier G, Jones PD, Barichivich J, et al. 2014.. Global warming and changes in drought. . Nat. Clim. Change 4:(1):1722
    [Crossref] [Google Scholar]
  107. Ulyshen MD. 2016.. Wood decomposition as influenced by invertebrates. . Biol. Rev. 91:(1):7085
    [Crossref] [Google Scholar]
  108. Ulyshen MD, Diehl SV, Jeremic D. 2016.. Termites and flooding affect microbial communities in decomposing wood. . Int. Biodeterior. Biodegrad. 115::8389
    [Crossref] [Google Scholar]
  109. Umemiya C, White MK. 2024.. National GHG inventory capacity in developing countries – a global assessment of progress. . Clim. Policy 24:(2):16476
    [Crossref] [Google Scholar]
  110. USDA Forest Service. 2022.. Confronting the wildfire crisis: a strategy for protecting communities and improving resilience in America's forests. FS-1187a , US Dep. Agric. For. Serv., Washington, DC:. https://www.fs.usda.gov/sites/default/files/Confronting-Wildfire-Crisis.pdf
    [Google Scholar]
  111. van Mantgem PJ, Stephenson NL, Byrne JC, Daniels LD, Franklin JF, et al. 2009.. Widespread increase of tree mortality rates in the western United States. . Science 323:(5913):52124
    [Crossref] [Google Scholar]
  112. Viana-Junior AB, Côrtes MO, Cornelissen TG, de Siqueira Neves F. 2018.. Interactions between wood-inhabiting fungi and termites: a meta-analytical review. . Arthropod-Plant Interact. 12:(2):22935
    [Crossref] [Google Scholar]
  113. Volkova L, Weiss Aparicio AG, Weston CJ. 2019.. Fire intensity effects on post-fire fuel recovery in Eucalyptus open forests of south-eastern Australia. . Sci. Total Environ. 670::32836
    [Crossref] [Google Scholar]
  114. Wijas B, Atkinson J. 2021.. Termites in restoration: the forgotten insect?. Restor. Ecol. 29:(8):e13511
    [Crossref] [Google Scholar]
  115. Woodall CW, Fraver S, Oswalt SN, Goeking SA, Domke GM, Russell MB. 2021.. Decadal dead wood biomass dynamics of coterminous US forests. . Environ. Res. Lett. 16:(10):104034
    [Crossref] [Google Scholar]
  116. Woodall CW, Monleon VJ, Fraver S, Russell MB, Hatfield MH, et al. 2019.. The downed and dead wood inventory of forests in the United States. . Sci. Data 6:(1):180303
    [Crossref] [Google Scholar]
  117. Woodall CW, Rondeux J, Verkerk PJ, Ståhl G. 2009.. Estimating dead wood during national forest inventories: a review of inventory methodologies and suggestions for harmonization. . Environ. Manag. 44:(4):62431
    [Crossref] [Google Scholar]
  118. Wu C, Zhang Z, Wang H, Li C, Mo Q, Liu Y. 2018.. Photodegradation accelerates coarse woody debris decomposition in subtropical Chinese forests. . For. Ecol. Manag. 409::22532
    [Crossref] [Google Scholar]
  119. Yatsko AR, Wijas B, Calvert J, Cheesman AW, Cook K, et al. 2024.. Why are trees hollow? Termites, microbes, and tree internal stem damage in a tropical savanna. . EcoEvoRxiv X2WG75. https://doi.org/10.32942/X2WG75
  120. Yin X. 1999.. The decay of forest woody debris: numerical modeling and implications based on some 300 data cases from North America. . Oecologia 121:(1):8198
    [Crossref] [Google Scholar]
  121. Zanne AE, Flores-Moreno H, Powell JR, Cornwell WK, Dalling JW, et al. 2022.. Termite sensitivity to temperature affects global wood decay rates. . Science 377:(6613):144044
    [Crossref] [Google Scholar]
  122. Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, et al. 2014.. Three keys to the radiation of angiosperms into freezing environments. . Nature 506:(7486):8992
    [Crossref] [Google Scholar]
  123. Zeng H, Chambers JQ, Negrón-Juárez RI, Hurtt GC, Baker DB, Powell MD. 2009.. Impacts of tropical cyclones on U.S. forest tree mortality and carbon flux from 1851 to. 2000.. PNAS 106:(19):788892
    [Crossref] [Google Scholar]
  124. Zhao W, van Logtestijn RSP, van der Werf GR, van Hal JR, Cornelissen JHC. 2018.. Disentangling effects of key coarse woody debris fuel properties on its combustion, consumption and carbon gas emissions during experimental laboratory fire. . For. Ecol. Manag. 427::27588
    [Crossref] [Google Scholar]
  125. Zhu Q, Riley WJ, Iversen CM, Kattge J. 2020.. Assessing impacts of plant stoichiometric traits on terrestrial ecosystem carbon accumulation using the E3SM land model. . J. Adv. Model. Earth Syst. 12:(4):e2019MS001841
    [Crossref] [Google Scholar]
  126. Zuleta D, Arellano G, McMahon SM, Aguilar S, Bunyavejchewin S, et al. 2023.. Damage to living trees contributes to almost half of the biomass losses in tropical forests. . Glob. Change Biol. 29:(12):340920
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-110421-102327
Loading
/content/journals/10.1146/annurev-ecolsys-110421-102327
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error