1932

Abstract

The idea that species interactions are more ecologically and evolutionarily important toward lower latitudes underpins seminal theories in ecology and evolution. Recent global studies have found the predicted latitudinal gradients in interactions, particularly predation. However, latitudinal patterns alone do not reveal why interactions vary geographically and so do not provide strong predictions in space (e.g., for specific ecosystems) or time (e.g., forecasting responses to global change). Here, I review theory to identify a clearer, mechanistic, and testable framework for predicting geographic variation in the importance of species interactions. I review competing metrics of importance, proximate mechanisms that can increase interaction importance, and environmental gradients that could generate predictable geographic patterns (climate extremes and stability, warmer temperatures, productivity, and biodiversity). Strong empirical tests are accumulating thanks to the rise of global experiments and datasets; renewed focus on testing why interactions vary spatially will help move the field from identifying latitudinal patterns to understanding broader mechanisms.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-110421-102810
2024-11-04
2025-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/55/1/annurev-ecolsys-110421-102810.html?itemId=/content/journals/10.1146/annurev-ecolsys-110421-102810&mimeType=html&fmt=ahah

Literature Cited

  1. Abrams PA. 1993.. Effect of increased productivity on the abundances of trophic levels. . Am. Nat. 141::35171
    [Crossref] [Google Scholar]
  2. Aizen MA, Harder LD. 2007.. Expanding the limits of the pollen-limitation concept: effects of pollen quantity and quality. . Ecology 88::27181
    [Crossref] [Google Scholar]
  3. Albrecht M, Schmid B, Hautier Y, Müller CB. 2012.. Diverse pollinator communities enhance plant reproductive success. . Proc. R. Soc. B 279::484552
    [Crossref] [Google Scholar]
  4. Alexander JM, Atwater DZ, Colautti RI, Hargreaves AL. 2022.. Effects of species interactions on the potential for evolution at species’ range limits. . Philos. Trans. R. Soc. B 377::20210020
    [Crossref] [Google Scholar]
  5. Alexander JM, Diez JM, Levine JM. 2015.. Novel competitors shape species’ responses to climate change. . Nature 525::51518
    [Crossref] [Google Scholar]
  6. Anstett DN, Nunes KA, Baskett C, Kotanen PM. 2016.. Sources of controversy surrounding latitudinal patterns in herbivory and defense. . Trends Ecol. Evol. 31::789802
    [Crossref] [Google Scholar]
  7. Armbruster WS. 2017.. The specialization continuum in pollination systems: diversity of concepts and implications for ecology, evolution and conservation. . Funct. Ecol. 31::88100
    [Crossref] [Google Scholar]
  8. Aschehoug ET, Callaway RM. 2015.. Diversity increases indirect interactions, attenuates the intensity of competition, and promotes coexistence. . Am. Nat. 186::45259
    [Crossref] [Google Scholar]
  9. Ashton GV, Freestone AL, Duffy JE, Torchin ME, Sewall BJ, et al. 2022.. Predator control of marine communities increases with temperature across 115 degrees of latitude. . Science 376::121519 One of few studies to assess both interaction rates and fitness effects.
    [Crossref] [Google Scholar]
  10. Bagchi R, Gallery RE, Gripenberg S, Gurr SJ, Narayan L, et al. 2014.. Pathogens and insect herbivores drive rainforest plant diversity and composition. . Nature 506::8588 Manipulative experiment testing components of the Janzen–Connell hypothesis that could be replicated across latitudes.
    [Crossref] [Google Scholar]
  11. Benkman CW. 2013.. Biotic interaction strength and the intensity of selection. . Ecol. Lett. 16::105460
    [Crossref] [Google Scholar]
  12. Berlow EL, Navarrete SA, Briggs CJ, Power ME, Menge BA. 1999.. Quantifying variation in the strengths of species interactions. . Ecology 80::220624
    [Crossref] [Google Scholar]
  13. Bingham RA, Orthner AR. 1998.. Efficient pollination of alpine plants. . Nature 391::23839
    [Crossref] [Google Scholar]
  14. Briscoe Runquist RD, Gorton AJ, Yoder JB, Deacon NJ, Grossman JJ, et al. 2020.. Context dependence of local adaptation to abiotic and biotic environments: a quantitative and qualitative synthesis. . Am. Nat. 195::41231
    [Crossref] [Google Scholar]
  15. Brodie JF, Mannion PD. 2023.. The hierarchy of factors predicting the latitudinal diversity gradient. . Trends Ecol. Evol. 38::1523
    [Crossref] [Google Scholar]
  16. Brown JH. 2014.. Why are there so many species in the tropics?. J. Biogeogr. 41::822
    [Crossref] [Google Scholar]
  17. Brown JH, Gillooly JF, Allen AP, Savage VM, West GB. 2004.. Toward a metabolic theory of ecology. . Ecology 85::177189
    [Crossref] [Google Scholar]
  18. Brown JH, Stevens GC, Kaufman DM. 1996.. The geographic range: size, shape, boundaries, and internal structure. . Annu. Rev. Ecol. Syst. 27::597623
    [Crossref] [Google Scholar]
  19. Callaway RM, Brooker RW, Choler P, Kikvidze Z, Lortie CJ, et al. 2002.. Positive interactions among alpine plants increase with stress. . Nature 417::84448
    [Crossref] [Google Scholar]
  20. Camacho LF, Avilés L. 2019.. Decreasing predator density and activity explains declining predation of insect prey along elevational gradients. . Am. Nat. 194::33443
    [Crossref] [Google Scholar]
  21. Capitani L, Roos N, Longo GO, Angelini R, Schenone L. 2021.. Resource-to-consumer ratio determines the functional response of an herbivorous fish in a field experiment. . Oikos 130::210010
    [Crossref] [Google Scholar]
  22. Connell JH. 1971.. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. . In Dynamics of Populations, ed. PJ den Boer, GR Gradwell , pp. 298312. Wageningen, Neth:.: Cent. Agric. Publ. Doc.
    [Google Scholar]
  23. Correa SB, Costa-Pereira R, Fleming T, Goulding M, Anderson JT. 2015.. Neotropical fish–fruit interactions: eco-evolutionary dynamics and conservation. . Biol. Rev. 90::126378
    [Crossref] [Google Scholar]
  24. Costanzo JP. 2019.. Overwintering adaptations and extreme freeze tolerance in a subarctic population of the wood frog, Rana sylvatica. . J. Comp. Physiol. B 189::115
    [Crossref] [Google Scholar]
  25. Dalsgaard B, Schleuning M, Maruyama PK, Dehling DM, Sonne J, et al. 2017.. Opposed latitudinal patterns of network-derived and dietary specialization in avian plant–frugivore interaction systems. . Ecography 40::1395401
    [Crossref] [Google Scholar]
  26. Darwin C. 1859.. On the Origin of Species by Means of Natural Selection. London:: J. Murray
    [Google Scholar]
  27. Detto M, Visser MD, Wright SJ, Pacala SW. 2019.. Bias in the detection of negative density dependence in plant communities. . Ecol. Lett. 22::192339
    [Crossref] [Google Scholar]
  28. Diamond JM. 1973.. Distributional ecology of New Guinea birds: Recent ecological and biogeographical theories can be tested on the bird communities of New Guinea. . Science 179::75969
    [Crossref] [Google Scholar]
  29. Díaz M, Møller AP, Flensted-Jensen E, Grim T, Ibáñez-Álamo JD, et al. 2013.. The geography of fear: a latitudinal gradient in anti-predator escape distances of birds across Europe. . PLOS ONE 8::e64634
    [Crossref] [Google Scholar]
  30. Dobzhansky T. 1950.. Evolution in the tropics. . Am. Sci. 38::20921
    [Google Scholar]
  31. Dyer LA, Forister ML. 2019.. Challenges and advances in the study of latitudinal gradients in multitrophic interactions, with a focus on consumer specialization. . Curr. Opin. Insect. Sci. 32::6876
    [Crossref] [Google Scholar]
  32. Dyer LA, Singer MS, Lill JT, Stireman JO, Gentry GL, et al. 2007.. Host specificity of Lepidoptera in tropical and temperate forests. . Nature 448::69699
    [Crossref] [Google Scholar]
  33. Fine PV. 2015.. Ecological and evolutionary drivers of geographic variation in species diversity. . Annu. Rev. Ecol. Evol. Syst. 46::36992
    [Crossref] [Google Scholar]
  34. Finke DL, Snyder WE. 2008.. Niche partitioning increases resource exploitation by diverse communities. . Science 321::148890
    [Crossref] [Google Scholar]
  35. Fischer AG. 1960.. Latitudinal variations in organic diversity. . Evolution 14::6481
    [Crossref] [Google Scholar]
  36. Frederickson ME. 2017.. Mutualisms are not on the verge of breakdown. . Trends Ecol. Evol. 32::72734
    [Crossref] [Google Scholar]
  37. Freeman BG, Scholer MN, Boehm MMA, Heavyside J, Schluter D. 2020.. Adaptation and latitudinal gradients in species interactions: nest predation in birds. . Am. Nat. 196::E16066 Meta-analysis found longer nesting periods in tropics offset higher daily predation rates.
    [Crossref] [Google Scholar]
  38. Freeman BG, Strimas-Mackey M, Miller ET. 2022a.. Interspecific competition limits bird species’ ranges in tropical mountains. . Science 377::41620
    [Crossref] [Google Scholar]
  39. Freeman BG, Tobias JA, Schluter D. 2019.. Behavior influences range limits and patterns of coexistence across an elevational gradient in tropical birds. . Ecography 42::183240
    [Crossref] [Google Scholar]
  40. Freeman BG, Weeks T, Schluter D, Tobias JA. 2022b.. The latitudinal gradient in rates of evolution for bird beaks, a species interaction trait. . Ecol. Lett. 25::63546
    [Crossref] [Google Scholar]
  41. Freestone AL, Torchin ME, Jurgens LJ, Bonfim M, López DP, et al. 2021.. Stronger predation intensity and impact on prey communities in the tropics. . Ecology 102::e03428
    [Crossref] [Google Scholar]
  42. Fussmann GF, Weithoff G, Yoshida T. 2005.. A direct, experimental test of resource versus consumer dependence. . Ecology 86::292430 Elegant experiments measuring predation rates and per capita effects at various predator densities.
    [Crossref] [Google Scholar]
  43. Godsoe W, Jankowski J, Holt RD, Gravel D. 2017.. Integrating biogeography with contemporary niche theory. . Trends Ecol. Evol. 32::48899
    [Crossref] [Google Scholar]
  44. Griffin JN, Silliman BR. 2011.. Predator diversity stabilizes and strengthens trophic control of a keystone grazer. . Biol. Lett. 7::7982
    [Crossref] [Google Scholar]
  45. Griffith J. 2024.. Urbanization dampens the latitudinal diversity gradient in birds. MSc Thesis , McGill Univ., Montreal, Canada:
    [Google Scholar]
  46. Gutow L, Petersen I, Bartl K, Huenerlage K. 2016.. Marine meso-herbivore consumption scales faster with temperature than seaweed primary production. . J. Exp. Mar. Biol. Ecol. 477::8085
    [Crossref] [Google Scholar]
  47. Harder LD, Aizen MA. 2010.. Floral adaptation and diversification under pollen limitation. . Philos. Trans. R. Soc. B 365::52943
    [Crossref] [Google Scholar]
  48. Hargreaves AL, Ensing J, Rahn OJ, Oliveira FM, Burkiewicz J, et al. 2024.. Latitudinal gradients in seed predation persist in urbanized environments. . Nat. Ecol. Evol. In press
    [Google Scholar]
  49. Hargreaves AL, Germain RM, Bontrager M, Persi J, Angert AL. 2020.. Local adaptation to biotic interactions: a meta-analysis across latitudes. . Am. Nat. 195::395411
    [Crossref] [Google Scholar]
  50. Hargreaves AL, Suárez E, Mehltreter K, Myers-Smith I, Vanderplank SE, et al. 2019.. Seed predation increases from the Arctic to the Equator and from high to low elevations. . Sci. Adv. 5::eaau4403
    [Crossref] [Google Scholar]
  51. Harvey MG, Bravo GA, Claramunt S, Cuervo AM, Derryberry GE, et al. 2020.. The evolution of a tropical biodiversity hotspot. . Science 370::134348
    [Crossref] [Google Scholar]
  52. Hillebrand H. 2004.. On the generality of the latitudinal diversity gradient. . Am. Nat. 163::192211
    [Crossref] [Google Scholar]
  53. HilleRisLambers J, Clark JS, Beckage B. 2002.. Density-dependent mortality and the latitudinal gradient in species diversity. . Nature 417::73235 First broad attempt to test the latitudinal prediction of the Janzen–Connell hypothesis.
    [Crossref] [Google Scholar]
  54. Hillyer R, Silman MR. 2010.. Changes in species interactions across a 2.5 km elevation gradient: effects on plant migration in response to climate change. . Global Change Biol. 16::320514
    [Crossref] [Google Scholar]
  55. Holdridge EM, Cuellar-Gempeler C, terHorst CP. 2016.. A shift from exploitation to interference competition with increasing density affects population and community dynamics. . Ecol. Evol. 6::533341
    [Crossref] [Google Scholar]
  56. Hülsmann L, Chisholm RA, Hartig F. 2021.. Is variation in conspecific negative density dependence driving tree diversity patterns at large scales?. Trends Ecol. Evol. 36::15163
    [Crossref] [Google Scholar]
  57. Jablonski D, Roy K, Valentine JW. 2006.. Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. . Science 314::1026
    [Crossref] [Google Scholar]
  58. Janzen DH. 1970.. Herbivores and the number of tree species in tropical forests. . Am. Nat. 104::50128
    [Crossref] [Google Scholar]
  59. Jeanne RL. 1979.. A latitudinal gradient in rates of ant predation. . Ecology 60::121124 First standardized predation experiment; found a strong decline in ant predation from tropical to temperate latitudes.
    [Crossref] [Google Scholar]
  60. Jonsson M, Kaartinen R, Straub CS. 2017.. Relationships between natural enemy diversity and biological control. . Curr. Opin. Insect. Sci. 20::16
    [Crossref] [Google Scholar]
  61. Kaspari M, Alonso L, O'Donnell S. 2000.. Three energy variables predict ant abundance at a geographical scale. . Proc. R. Soc. B 267::48589
    [Crossref] [Google Scholar]
  62. Kaspari M, Weiser MD. 2012.. Energy, taxonomic aggregation, and the geography of ant abundance. . Ecography 35::6572
    [Crossref] [Google Scholar]
  63. Keeling HC, Phillips OL. 2007.. The global relationship between forest productivity and biomass. . Global Ecol. Biogeogr. 16::61831
    [Crossref] [Google Scholar]
  64. Kinlock NL, Prowant L, Herstoff EM, Foley CM, Akin-Fajiye M, et al. 2018.. Explaining global variation in the latitudinal diversity gradient: Meta-analysis confirms known patterns and uncovers new ones. . Global Ecol. Biogeogr. 27::12541
    [Crossref] [Google Scholar]
  65. Liu OR, Gaines SD. 2022.. Environmental context dependency in species interactions. . PNAS 119::e2118539119
    [Crossref] [Google Scholar]
  66. Louthan AM, Doak DF, Angert AL. 2015.. Where and when do species interactions set range limits?. Trends Ecol. Evol. 30::78092
    [Crossref] [Google Scholar]
  67. Lyu S, Alexander JM. 2022.. Competition contributes to both warm and cool range edges. . Nat. Comm. 13::2502
    [Crossref] [Google Scholar]
  68. MacArthur RH. 1972.. Geographical Ecology: Patterns in the Distributions of Species. Princeton, NJ:: Princeton Univ. Press
    [Google Scholar]
  69. MacArthur RH, Pianka ER. 1966.. On optimal use of a patchy environment. . Am. Nat. 100::6039
    [Crossref] [Google Scholar]
  70. Martin E, Hargreaves AL. 2023.. Gradients in the time seeds take to germinate could alter global patterns in predation strength. . J. Biogeogr. 50::88496
    [Crossref] [Google Scholar]
  71. Matysioková B, Remeš V. 2022.. Stronger negative species interactions in the tropics supported by a global analysis of nest predation in songbirds. . J. Biogeogr. 49::51122
    [Crossref] [Google Scholar]
  72. Mauro AA, Torres-Dowdall J, Marshall CA, Ghalambor CK. 2021.. A genetically based ecological trade-off contributes to setting a geographic range limit. . Ecol. Lett. 24::273949
    [Crossref] [Google Scholar]
  73. McCain CM. 2009.. Vertebrate range sizes indicate that mountains may be ‘higher’ in the tropics. . Ecol. Lett. 12::55060
    [Crossref] [Google Scholar]
  74. McKinnon L, Smith P, Nol E, Martin J, Doyle F, et al. 2010.. Lower predation risk for migratory birds at high latitudes. . Science 327::32627
    [Crossref] [Google Scholar]
  75. Michalet R, Delerue F, Liancourt P. 2023.. Disentangling the effects of biomass and productivity in plant competition. . Ecology 104::e3851
    [Crossref] [Google Scholar]
  76. Micheneau C, Johnson SD, Fay MF. 2009.. Orchid pollination: from Darwin to the present day. . Bot. J. Linn. Soc. 161::119
    [Crossref] [Google Scholar]
  77. Mittelbach GG, Schemske DW, Cornell HV, Allen AP, Brown JM, et al. 2007.. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. . Ecol. Lett. 10::31531
    [Crossref] [Google Scholar]
  78. Moles AT, Ollerton J. 2016.. Is the notion that species interactions are stronger and more specialized in the tropics a zombie idea?. Biotropica 48::14145 Rebuttal to Schemske et al. (2009) review that helped stimulate important debate about how to quantify latitudinal gradients in species interactions.
    [Crossref] [Google Scholar]
  79. Moore N, Morales-Castilla I, Hargreaves A, Olalla-Tárraga M, Villalobos F, et al. 2023.. Global patterns of thermal niche filling in ectotherms. . Nat. Ecol. Evol. 7::19932003
    [Crossref] [Google Scholar]
  80. Morales-Castilla I, Matias MG, Gravel D, Araújo MB. 2015.. Inferring biotic interactions from proxies. . Trends Ecol. Evol. 30::34756
    [Crossref] [Google Scholar]
  81. Muchula K, Xie G, Gurr GM. 2019.. Ambient temperature affects the utility of plasticine caterpillar models as a tool to measure activity of predators across latitudinal and elevational gradients. . Biol. Control. 129::1217
    [Crossref] [Google Scholar]
  82. Nacif ME, Kitzberger T, Garibaldi LA. 2020.. Positive outcomes between herbivore diversity and tree survival: responses to management intensity in a Patagonian forest. . For. Ecol. Manag. 458::117738
    [Crossref] [Google Scholar]
  83. O'Brien EK, Higgie M, Jeffs CT, Hoffmann AA, Hrček J, et al. 2020.. Fitness effects of competition within and between species change across species’ ranges, and reveal limited local adaptation in rainforest Drosophila. . bioRxiv 395624. https://doi.org/10.1101/395624
  84. O'Connor MI. 2009.. Warming strengthens an herbivore–plant interaction. . Ecology 90::38898
    [Crossref] [Google Scholar]
  85. Oliveira BF, Scheffers BR. 2019.. Vertical stratification influences global patterns of biodiversity. . Ecography 42::24958
    [Crossref] [Google Scholar]
  86. Ollerton J. 2012.. Biogeography: Are tropical species less specialised?. Curr. Biol. 22::R91415
    [Crossref] [Google Scholar]
  87. Ollerton J. 2017.. Pollinator diversity: distribution, ecological function, and conservation. . Annu. Rev. Ecol. Evol. Syst. 48::35376
    [Crossref] [Google Scholar]
  88. Olsen J, Singh Gill G, Haugen R, Matzner SL, Alsdurf J, Siemens DH. 2019.. Evolutionary constraint on low elevation range expansion: defense-abiotic stress-tolerance trade-off in crosses of the ecological model Boechera stricta. . Ecol. Evol. 9::1153244
    [Crossref] [Google Scholar]
  89. Orrock JL, Borer ET, Brudvig LA, Firn J, MacDougall AS, et al. 2015.. A continent-wide study reveals clear relationships between regional abiotic conditions and post-dispersal seed predation. . J. Biogeogr. 42::66270
    [Crossref] [Google Scholar]
  90. Paquette A, Hargreaves AL. 2021.. Biotic interactions are more often important at species’ warm versus cool range edges. . Ecol. Lett. 24::242738 Review finds interactions play a greater ecological role toward low-latitude and -elevation range limits but not toward low latitudes in general.
    [Crossref] [Google Scholar]
  91. Peco B, Laffan SW, Moles AT. 2014.. Global patterns in post-dispersal seed removal by invertebrates and vertebrates. . PLOS ONE 9::e91256
    [Crossref] [Google Scholar]
  92. Pellissier L, Albouy C, Bascompte J, Farwig N, Graham C, et al. 2018a.. Comparing species interaction networks along environmental gradients. . Biol. Rev. 93::785800
    [Crossref] [Google Scholar]
  93. Pellissier V, Barnagaud JY, Kissling WD, Şekercioğlu Ç, Svenning JC. 2018b.. Niche packing and expansion account for species richness–productivity relationships in global bird assemblages. . Global Ecol. Biogeogr. 27::60415
    [Crossref] [Google Scholar]
  94. Pennings SC, Silliman BR. 2005.. Linking biogeography and community ecology: latitudinal variation in plant–herbivore interaction strength. . Ecology 86::231019
    [Crossref] [Google Scholar]
  95. Perez A, Chick L, Menke S, Lessard JP, Sanders N, et al. 2022.. Urbanisation dampens the latitude-diversity cline in ants. . Insect Conserv. Divers. 15::76371
    [Crossref] [Google Scholar]
  96. Pianka ER. 1966.. Latitudinal gradients in species diversity: a review of concepts. . Am. Nat. 100::3346
    [Crossref] [Google Scholar]
  97. Rall BC, Brose U, Hartvig M, Kalinkat G, Schwarzmüller F, et al. 2012.. Universal temperature and body-mass scaling of feeding rates. . Phil. Trans. R. Soc. B 367::292334
    [Crossref] [Google Scholar]
  98. Rasmann S, Agrawal AA. 2011.. Latitudinal patterns in plant defense: evolution of cardenolides, their toxicity and induction following herbivory. . Ecol. Lett. 14::47683
    [Crossref] [Google Scholar]
  99. Reynolds PL, Stachowicz JJ, Hovel K, Boström C, Boyer K, et al. 2018.. Latitude, temperature and habitat complexity predict predation pressure in eelgrass beds across the Northern Hemisphere. . Ecology 99::2935
    [Crossref] [Google Scholar]
  100. Robinson SK, Terborgh J. 1995.. Interspecific aggression and habitat selection by Amazonian birds. . J. Anim. Ecol. 64::111
    [Crossref] [Google Scholar]
  101. Rodriguez-Campbell A, Rahn O, Chiuffo MC, Hargreaves AL. 2024.. Clay larvae do not accurately measure biogeographic patterns in predation. . J. Biogeogr. 51::100413
    [Crossref] [Google Scholar]
  102. Rodriguez-Campbell A. 2023.. What drives the intensity of species interactions? A distributed experiment from the Arctic to Patagonia. MSc Thesis , McGill Univ., Montreal, Canada:. https://www.proquest.com/docview/2890696932
    [Google Scholar]
  103. Roesti M, Anstett DN, Freeman BG, Lee-Yaw JA, Schluter D, et al. 2020.. Pelagic fish predation is stronger at temperate latitudes than near the equator. . Nat. Comm. 11::1527
    [Crossref] [Google Scholar]
  104. Rohde K. 1992.. Latitudinal gradients in species diversity: the search for the primary cause. . Oikos 65::51427
    [Crossref] [Google Scholar]
  105. Sakarchi J, Germain RM. 2023.. The evolution of competitive ability. . Am. Nat. 201::115
    [Crossref] [Google Scholar]
  106. Schemske D. 2009.. Biotic interactions and speciation in the tropics. . In Speciation and Patterns of Diversity, ed. KJ Feeley , pp. 21939. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  107. Schemske DW, Mittelbach GG, Cornell HV, Sobel JM, Roy K. 2009.. Is there a latitudinal gradient in the importance of biotic interactions?. Annu. Rev. Ecol. Evol. Syst. 40::24569 Seminal review that reinvigorated interest in geographic gradients in the importance of species interactions.
    [Crossref] [Google Scholar]
  108. Schleuning M, Blüthgen N, Flörchinger M, Braun J, Schaefer HM, Böhning-Gaese K. 2011.. Specialization and interaction strength in a tropical plant–frugivore network differ among forest strata. . Ecology 92::2636
    [Crossref] [Google Scholar]
  109. Schultheiss P, Nooten SS, Wang R, Wong MK, Brassard F, Guénard B. 2022.. The abundance, biomass, and distribution of ants on Earth. . PNAS 119::e2201550119
    [Crossref] [Google Scholar]
  110. Sedio BE, Ostling AM. 2013.. How specialised must natural enemies be to facilitate coexistence among plants?. Ecol. Lett. 16::9951003
    [Crossref] [Google Scholar]
  111. Skeels A, Bach W, Hagen O, Jetz W, Pellissier L. 2023.. Temperature-dependent evolutionary speed shapes the evolution of biodiversity patterns across tetrapod radiations. . Syst. Biol. 72::34156
    [Crossref] [Google Scholar]
  112. Sletvold N, Ågren J. 2016.. Experimental reduction in interaction intensity strongly affects biotic selection. . Ecology 97::309198 Strength of pollinator-mediated selection varied strongly with interaction strength (i.e., pollen limitation).
    [Crossref] [Google Scholar]
  113. Song X, Lim JY, Yang J, Luskin MS. 2021.. When do Janzen–Connell effects matter? A phylogenetic meta-analysis of conspecific negative distance and density dependence experiments. . Ecol. Lett. 24::60820
    [Crossref] [Google Scholar]
  114. Srivastava DS, Lawton JH. 1998.. Why more productive sites have more species: an experimental test of theory using tree-hole communities. . Am. Nat. 152::51029
    [Crossref] [Google Scholar]
  115. Stireman JO, Dyer LA, Janzen DH, Singer M, Lill J, et al. 2005.. Climatic unpredictability and parasitism of caterpillars: implications of global warming. . PNAS 102::1738487
    [Crossref] [Google Scholar]
  116. Storch D, Bohdalková E, Okie J. 2018.. The more-individuals hypothesis revisited: the role of community abundance in species richness regulation and the productivity–diversity relationship. . Ecol. Lett. 21::92037
    [Crossref] [Google Scholar]
  117. Strickler K. 1979.. Specialization and foraging efficiency of solitary bees. . Ecology 60::9981009
    [Crossref] [Google Scholar]
  118. Terborgh J. 2012.. Enemies maintain hyperdiverse tropical forests. . Am. Nat. 179::30314
    [Crossref] [Google Scholar]
  119. Terborgh J, Weske JS. 1975.. The role of competition in the distribution of Andean birds. . Ecology 56::56276
    [Crossref] [Google Scholar]
  120. Terraube J, Arroyo B, Madders M, Mougeot F. 2011.. Diet specialisation and foraging efficiency under fluctuating vole abundance: a comparison between generalist and specialist avian predators. . Oikos 120::23444
    [Crossref] [Google Scholar]
  121. Thein MM, Wu LM, Corlett RT, Quan RC, Wang B. 2021.. Changes in seed predation along a 2300-m elevational gradient on a tropical mountain in Myanmar: a standardized test with 32 non-native plant species. . Ecography 44::60211
    [Crossref] [Google Scholar]
  122. Thuiller W, Calderón-Sanou I, Chalmandrier L, Gaüzère P, O'Connor LM, et al. 2023.. Navigating the integration of biotic interactions in biogeography. . J. Biogeogr. 51::55059
    [Crossref] [Google Scholar]
  123. Wallace AR. 1878.. Tropical Nature and Other Essays. New York:: Macmillan
    [Google Scholar]
  124. Whalen MA, Whippo RD, Stachowicz JJ, York PH, Aiello E, et al. 2020.. Climate drives the geography of marine consumption by changing predator communities. . PNAS 117::2816066
    [Crossref] [Google Scholar]
  125. Wilby A, Villareal S, Lan L, Heong K, Thomas MB. 2005.. Functional benefits of predator species diversity depend on prey identity. . Ecol. Entomol. 30::497501
    [Crossref] [Google Scholar]
  126. Wilson EO. 1961.. The nature of the taxon cycle in the Melanesian ant fauna. . Am. Nat. 95::16993
    [Crossref] [Google Scholar]
  127. Wootton JT, Emmerson M. 2005.. Measurement of interaction strength in nature. . Annu. Rev. Ecol. Evol. Syst. 36::41944
    [Crossref] [Google Scholar]
  128. Yang X, Gómez-Aparicio L, Lortie CJ, Verdú M, Cavieres LA, et al. 2022.. Net plant interactions are highly variable and weakly dependent on climate at the global scale. . Ecol. Lett. 25::158093
    [Crossref] [Google Scholar]
  129. Yee DA, Juliano SA. 2007.. Abundance matters: a field experiment testing the more individuals hypothesis for richness–productivity relationships. . Oecologia 153::15362
    [Crossref] [Google Scholar]
  130. Zvereva EL, Zverev V, Kozlov MV. 2020.. Predation and parasitism on herbivorous insects change in opposite directions in a latitudinal gradient crossing a boreal forest zone. . J. Anim. Ecol. 89::294657
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-110421-102810
Loading
/content/journals/10.1146/annurev-ecolsys-110421-102810
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error