1932

Abstract

Dinosaurs were large-bodied land animals of the Mesozoic that gave rise to birds. They played a fundamental role in structuring Jurassic–Cretaceous ecosystems and had physiology, growth, and reproductive biology unlike those of extant animals. These features have made them targets of theoretical macroecology. Dinosaurs achieved substantial structural diversity, and their fossil record documents the evolutionary assembly of the avian body plan. Phylogeny-based research has allowed new insights into dinosaur macroevolution, including the adaptive landscape of their body size evolution, patterns of species diversification, and the origins of birds and bird-like traits. Nevertheless, much remains unknown due to incompleteness of the fossil record at both local and global scales. This presents major challenges at the frontier of paleobiological research regarding tests of macroecological hypotheses and the effects of dinosaur biology, ecology, and life history on their macroevolution.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-110617-062231
2018-11-02
2024-10-10
Loading full text...

Full text loading...

/deliver/fulltext/es/49/1/annurev-ecolsys-110617-062231.html?itemId=/content/journals/10.1146/annurev-ecolsys-110617-062231&mimeType=html&fmt=ahah

Literature Cited

  1. Alexander M. 1998. All-time giants: the largest animals and their problems. Palaeontology 41:1231–45
    [Google Scholar]
  2. Alroy J. 1998. Cope's rule and the dynamics of body mass evolution in North American fossil mammals. Science 280:731–34
    [Google Scholar]
  3. Alroy J. 2000. Global climate change and North American mammalian evolution. Paleobiology 26:259–88
    [Google Scholar]
  4. Alroy J. 2010. Geographical, environmental and intrinsic biotic controls on Phanerozoic marine diversification. Palaeontology 53:1211–35
    [Google Scholar]
  5. Alvarez LW. 1983. Experimental evidence that an asteroid impact led to the extinction of many species 65 million years ago. PNAS 80:627–42
    [Google Scholar]
  6. Archibald JD, Clemens WA, Padian K, Rowe T, Macleod N et al. 2010. Cretaceous extinctions: multiple causes. Science 328:973
    [Google Scholar]
  7. Bakker RT. 1971. Ecology of the brontosaurs. Nature 299:172–74
    [Google Scholar]
  8. Bakker RT. 1972. Anatomical and ecological evidence or endothermy in dinosaurs. Nature 238:81–85
    [Google Scholar]
  9. Bakker RT, Galton PM 1974. Dinosaur monophyly and a new class of vertebrates. Nature 248:168–72
    [Google Scholar]
  10. Balanoff AM, Bever GS, Rowe TB, Norell MA 2013. Evolutionary origins of the avian brain. Nature 501:93–96
    [Google Scholar]
  11. Bapst DW. 2014. Preparing paleontological datasets for phylogenetic comparative methods. Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology L Garamszegi 515–44 Berlin: Springer-Verlag
    [Google Scholar]
  12. Baron MG. 2018. Pisanosaurus mertii and the Triassic ornithischian crisis: Could phylogeny offer a solution?. Hist. Biol. press https://doi.org/10.1080/08912963.2017.1410705
    [Crossref] [Google Scholar]
  13. Barrett PM. 2000. Prosauropod dinosaurs and iguanas: speculations on the diets of extinct reptiles. Evolution of Herbivory in Terrestrial Vertebrates, Perspectives from the Fossil Record H-D Sues 42–78 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  14. Barrett PM. 2014. Paleobiology of herbivorous dinosaurs. Annu. Rev. Earth Plant. Sci. 42:207–30
    [Google Scholar]
  15. Barrett PM, Butler RJ, Nesbitt SJ 2011. The roles of herbivory and omnivory in early dinosaur evolution. Earth Environ. Sci. Trans. R. Soc. Edinb. 101:383–96
    [Google Scholar]
  16. Barrett PM, Evans DC, Campione NE 2015. Evolution of dinosaur epidermal structures. Biol. Lett. 11:20150229
    [Google Scholar]
  17. Barrett PM, Maidment SCR 2017. The evolution of ornithischian quadrupedality. J. Iberian Geol. 43:363–77
    [Google Scholar]
  18. Barrett PM, McGowan AJ, Page V 2009. Dinosaur diversity and the rock record. Proc. R. Soc. B 276:2667–74
    [Google Scholar]
  19. Barrett PM, Willis KJ 2001. Did dinosaurs invent flowers? Dinosaur-angiosperm coevolution revisited. Biol. Rev. 76:411–47
    [Google Scholar]
  20. Behrensmeyer AK, Western D, Dechant Boaz DE 1979. New perspectives in vertebrate paleoecology from a recent bone analysis. Paleobiology 5:12–21
    [Google Scholar]
  21. Benson RBJ, Butler RJ, Alroy J, Mannion PD, Carrano MT et al. 2016. Near-stasis in the long-term diversification of Mesozoic tetrapods. PLOS Biol 14:e1002359
    [Google Scholar]
  22. Benson RBJ, Butler RJ, Carrano MT, O'Connor PM 2012. Air-filled postcranial bones in theropod dinosaurs: physiological implications and the ‘reptile’-bird transition. Biol. Rev. 87:168–93
    [Google Scholar]
  23. Benson RBJ, Campione NE, Carrano MT, Mannion PD, Sullivan C et al. 2014a. Rates of dinosaur body mass evolution indicate 170 million years of sustained ecological innovation on the avian stem lineage. PLOS Biol 12:e1001853
    [Google Scholar]
  24. Benson RBJ, Choiniere JN 2013. Rates of dinosaur limb evolution provide evidence for exceptional radiation in Mesozoic birds. Proc. R. Soc. B 280:20131780
    [Google Scholar]
  25. Benson RBJ, Frigot RA, Goswami A, Andres B, Butler RJ 2014b. Competition and constraint drove Cope's rule in the evolution of giant flying reptiles. Nat. Comm. 5:3567
    [Google Scholar]
  26. Benson RBJ, Hunt G, Carrano MT, Campione N 2017. Cope's rule and the adaptive landscape of dinosaur body size evolution. Palaeontology 61:13–48
    [Google Scholar]
  27. Benton MJ. 1983. Dinosaur success in the Triassic; a noncompetitive ecological model. Q. Rev. Biol. 58:29–55
    [Google Scholar]
  28. Benton MJ. 1995. Diversification and extinction in the history of life. Science 268:52–58
    [Google Scholar]
  29. Benton MJ, Clark JM 1988. Archosaur phylogeny and the relationships of the Crocodylia. The Phylogeny and Classification of the Tetrapods 1 Amphibians, Reptiles, Birds; Systematics Association Spec. Vol. 35A, ed. MJ Benton 295–338 Oxford, UK: Clarendon
    [Google Scholar]
  30. Bhullar B-AS, Hanson M, Fabbri M, Pritchard A, Bever GS et al. 2016. How to make a bird skull: major transitions in the evolution of the avian cranium, paedomorphosis, and the beak as a surrogate hand. Integr. Comp. Biol. 56:389–403
    [Google Scholar]
  31. Bhullar B-AS, Marugán-Lobón J, Racimo F, Bever GS, Rowe TB et al. 2012. Birds have paedomorphic dinosaur skulls. Nature 223:223–26
    [Google Scholar]
  32. Bonaparte JF. 1982. Faunal replacement in the Triassic of South America. J. Vertebr. Paleontol. 2:362–71
    [Google Scholar]
  33. Brown CM, Evans DC, Campione NE, O'Brien LJ, Eberth DA 2013. Evidence for taphonomic size bias in the Dinosaur Park Formation (Campanian, Alberta), a model Mesozoic terrestrial alluvial-paralic system. Palaeogeogr. Palaeoclimatol. Palaeoecol. 372:108–22
    [Google Scholar]
  34. Brown JH, Marquet PA, Taper ML 1993. Evolution of body size: consequences of an energetic definition of fitness. Am. Nat. 142:573–84
    [Google Scholar]
  35. Brown JH, Maurer BA 1986. Body size, ecological dominance and Cope's rule. Nature 324:248–50
    [Google Scholar]
  36. Brown JH, Nicoletto PF 1991. Spatial scaling of species composition: body masses of North American land mammals. Am. Nat. 138:1478–512
    [Google Scholar]
  37. Brusatte SL, Benton MJ, Ruta M, Lloyd GT 2008. Superiority, competition, and opportunism in the evolutionary radiation of dinosaurs. Science 321:1485–88
    [Google Scholar]
  38. Brusatte SL, Butler RJ, Barrett MP, Carrano MT, Evans DC et al. 2015. The extinction of the dinosaurs. Biol. Rev. 90:628–42
    [Google Scholar]
  39. Brusatte SL, Butler RJ, Prieto-Márquez A, Norell MA 2012. Dinosaur morphological diversity and the end-Cretaceous extinction. Nat. Comm. 3:804
    [Google Scholar]
  40. Brusatte SL, Lloyd GT, Wang SC, Norell MA 2014. Gradual assembly of avian body plan culminated in rapid rates of evolution across the dinosaur-bird transition. Curr. Biol. 24:2386–92
    [Google Scholar]
  41. Butler MA, King AA 2004. Phylogenetic comparative analysis: a modeling approach for adaptive evolution. Am. Nat. 164:683–95
    [Google Scholar]
  42. Butler RJ, Barrett PM, Kenrick P, Penn MG 2009a. Testing co-evolutionary hypotheses over geological timescales: interactions between Mesozoic non-avian dinosaurs and cycads. Biol. Rev. 84:73–89
    [Google Scholar]
  43. Butler RJ, Galton PM, Porro LB, Chiappe LM, Henderson DM, Erickson GM 2009b. Lower limits of ornithischian dinosaur body size inferred from a new Upper Jurassic heterodontosaurid from North America. Proc. R. Soc. B 277:375–81
    [Google Scholar]
  44. Campione NE, Evans DC, Brown CM, Carrano MT 2014. Body mass estimation in non-avian bipeds using a theoretical conversion to quadrupedal stylopodial proportions. Methods Ecol. Evol. 5:913–23
    [Google Scholar]
  45. Carballido JL, Pol D, Otero A, Cerda IA, Salgado L et al. 2017. A new giant titanosaur sheds light on body mass evolution among sauropod dinosaurs. Proc. R. Soc. B 284:20171219
    [Google Scholar]
  46. Carrano MT. 2006. Body-size evolution in the Dinosauria. Amniote Paleobiology MT Carrano, TJ Gaudin, RW Blob, JR Wible 225–68 Chicago: Univ. Chicago Press
    [Google Scholar]
  47. Chan NR. 2017. Morphospaces of functionally analogous traits show ecological separation between birds and pterosaurs. Proc. R. Soc. B 284:20171556
    [Google Scholar]
  48. Chao A, Jost L 2012. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93:2533–47
    [Google Scholar]
  49. Clapham ME, Karr JA 2012. Environmental and biotic controls on the evolutionary history of insect body size. PNAS 109:10927–30
    [Google Scholar]
  50. Clarke JA, Tambussi CP, Norlega JI, Erickson GM, Ketcham RA 2005. Definitive fossil evidence for the extant avian radiation in the Cretaceous. Nature 433:305–8
    [Google Scholar]
  51. Close RA, Benson RBJ, Upchurch P, Butler RJ 2017. Controlling for the species-area effect supports constrained long-term Mesozoic terrestrial diversification. Nat. Comm. 8:15381
    [Google Scholar]
  52. Close RA, Evers SW, Alroy J, Butler RJ 2018. How should we estimate diversity in the fossil record? Testing richness estimators using sampling-standardised discovery curve. Methods Ecol. Evol. 9:1386–1400
    [Google Scholar]
  53. Close RA, Friedman M, Lloyd GT, Benson RBJ 2015. Evidence for a mid-Jurassic adaptive radiation in mammals. Curr. Biol. 25:2137–42
    [Google Scholar]
  54. Codron D, Carbone C, Müller DWH, Clauss M 2012. Ontogenetic niche shifts in dinosaurs influenced size, diversity and extinction in terrestrial vertebrates. Biol. Lett. 8:620–23
    [Google Scholar]
  55. de Ricqlès AJ. 1974. Evolution of endothermy: histological evidence. Evol. Theory 1:51–80
    [Google Scholar]
  56. Deccechi TA, Larsson HCE 2013. Body and limb size dissociation at the origin of birds: uncoupling allometric constrains across a macroevolutionary transition. Evolution 67:2741–52
    [Google Scholar]
  57. Delair JB, Serjeant WAS 2002. The earliest discoveries of dinosaurs: the records re-examined. Proc. Geol. Assoc. 113:185–97
    [Google Scholar]
  58. Dunning JB Jr 2007. CRC Handbook of Avian Body Masses Boca Raton, FL: CRC Press, 2nd ed..
    [Google Scholar]
  59. Erickson GM. 2014. On dinosaur growth. Annu. Rev. Earth Planet. Sci. 42:675–97
    [Google Scholar]
  60. Erickson GM, Rauhut OWM, Zhou Z, Turner AH, Inouye BD et al. 2009. Was dinosaurian physiology inherited by birds? Reconciling slow growth in Archaeopteryx. PLOS ONE 4:e7390
    [Google Scholar]
  61. Erickson GM, Zelenitsky DK, Kay DI, Norell MA 2017. Dinosaur incubation periods directly determined from growth-line counts in embryonic teeth show reptilian-grade development. PNAS 114:540–45
    [Google Scholar]
  62. Evans DC, Schott RK, Larson DW, Brown CM, Ryan MJ 2013. The oldest North American pachycephalosaurid and the hidden diversity of small-bodied ornithischian dinosaurs. Nat. Comm. 4:1828
    [Google Scholar]
  63. Farlow JO, Coroian ID, Foster JR 2010. Giants on the landscape: modelling the abundance of megaherbivorous dinosaurs of the Morrison Formation (Late Jurassic, western USA). Hist. Biol. 22:403–29
    [Google Scholar]
  64. Farlow JO, Dodson P, Chinsamy A 1995. Dinosaur biology. Annu. Rev. Ecol. Syst. 26:445–71
    [Google Scholar]
  65. Felice RN, Goswami A 2018. Developmental origins of mosaic evolution in the avian cranium. PNAS 115:555–60
    [Google Scholar]
  66. Foote M. 1997. The evolution of morphological diversity. Annu. Rev. Ecol. Syst. 28:129–52
    [Google Scholar]
  67. Fritz SA, Schnitzler J, Eronen JT, Hof C, Böhning-Gaese K et al. 2013. Diversity in time and space: wanted dead and alive. Trends Ecol. Evol. 28:509–16
    [Google Scholar]
  68. Gates TA, Prieto-Márquez A, Zanno LE 2012. Mountain building triggered Late Cretaceous North American megaherbivore dinosaur radiation. PLOS ONE 7:e42135
    [Google Scholar]
  69. Gatesy SM, Dial KP 1996. Locomotor modules and the evolution of avian flight. Evolution 50:331–40
    [Google Scholar]
  70. Godefroit P, Sinitse SM, Dhouailly D, Bolotsky YL, Sizov AV et al. 2014. A Jurassic ornithischian dinosaur from Siberia with both feathers and scales. Science 345:451–55
    [Google Scholar]
  71. Grady JM, Enquist BJ, Dettweiller-Robinson E, Wright N, Smith FA 2014. Evidence for mesothermy in dinosaurs. Science 344:1268–72
    [Google Scholar]
  72. Griffin CT, Nesbitt SJ 2016. Anomalously high variation in postnatal development is ancestral for dinosaurs but lost in birds. PNAS 113:14757–62
    [Google Scholar]
  73. Hannisdal B, Haaga KA, Reitan T, Diego D, Liow L-H 2017. Common species link global ecosystems to climate change: dynamical evidence in the planktonic fossil record. Proc. R. Soc. B 284:20170722
    [Google Scholar]
  74. Hansen TF. 1997. Stabilizing selection and the comparative analysis of adaptation. Evolution 51:1341–51
    [Google Scholar]
  75. Hansen TF. 2013. Adaptive landscapes and macroevolutionary dynamics. The Adaptive Landscape in Evolutionary Biology EI Svensson, R Calsbeek 205–26 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  76. Harmon LJ, Losos JB, Davies TJ, Gillespie RG, Gittleman JL et al. 2010. Early bursts of body size and shape evolution are rare in comparative data. Evolution 64:2385–96
    [Google Scholar]
  77. Heath TA, Huelsenbeck JP, Stadler T 2014. The fossilized birth-death process for coherent calibration of divergence-time estimates. PNAS 111:E2957–66
    [Google Scholar]
  78. Hotton N III 1980. An alternative to dinosaur endothermy, the happy wanderers. A Cold Look at Warm-Blooded Dinosaurs RDK Thomas, EC Olsen311–50 Boulder, CO: Westview
    [Google Scholar]
  79. Hummel J, Clauss M 2008. Megaherbivores as pacemakers of carnivore diversity and biomass: distributing or sinking trophic energy. Evol. Ecol. Res. 10:925–30
    [Google Scholar]
  80. Hutchinson GE, MacArthur RH 1959. A theoretical ecological model of size distributions among species of animals. Am. Nat. 93:117–25
    [Google Scholar]
  81. Irmis RB. 2011. Evaluating hypotheses for the early diversification of dinosaurs. Earth Environ. Sci. Trans. R. Soc. Edinb. 101:397–426
    [Google Scholar]
  82. Janis CM, Carrano MT 1992. Scaling of reproductive turnover in archosaurs and mammals: Why are large terrestrial mammals so rare?. Ann. Zool. Fenn. 28:201–16
    [Google Scholar]
  83. Ksepka DT, Stidham TA, Williamson TE 2017. Early Paleocene landbird supports rapid phylogenetic and morphological diversification of crown birds after the K–Pg mass extinction. PNAS 114:8047–52
    [Google Scholar]
  84. Langer MC, Ezcurra MD, Bittencourt JS, Novas FE 2010. The origin and early evolution of dinosaurs. Biol. Rev. 85:55–110
    [Google Scholar]
  85. Larson DW, Brown CM, Evans DC 2016. Dental disparity and ecological stability in bird-like dinosaurs prior to the end-Cretaceous mass extinction. Curr. Biol. 26:1325–33
    [Google Scholar]
  86. Le Loeuff J. 2012. Paleobiogeography and biodiversity of Late Maastrichtian dinosaurs: How many dinosaur species went extinction at the Cretaceous-Tertiary boundary?. Bull. Soc. Géol. France 183:547–59
    [Google Scholar]
  87. Lee MSY, Cau A, Naish D, Dyke GJ 2014. Sustained miniaturization and anatomical innovation in the dinosaurian ancestors of birds. Science 345:562–66
    [Google Scholar]
  88. Lloyd GT. 2012. A refined modelling approach to assess the influence of sampling on palaeobiodiversity curves: new support for declining Cretaceous dinosaur richness. Biol. Lett. 8:123–26
    [Google Scholar]
  89. Lloyd GT, Bapst DW, Friedman M, Davis KE 2017. Probabilistic divergence time estimation without branch lengths: dating the origins of dinosaurs, avian flight and crown birds. Biol. Lett. 12:20160609
    [Google Scholar]
  90. Lloyd GT, Davis KE, Pisani D, Tarver JE, Ruta M et al. 2008. Dinosaurs and the Cretaceous terrestrial revolution. Proc. R. Soc. B 275:2483–90
    [Google Scholar]
  91. Longrich NR, Currie PJ 2011. A microraptorine (Dinosauria-Dromaeosauridae) from the Late Cretaceous of North America. PNAS 106:5002–7
    [Google Scholar]
  92. Longrich NR, Tokaryk T, Field DJ 2011. Mass extinction of birds at the Cretaceous-Paleogene (K–Pg) boundary. PNAS 108:15253–57
    [Google Scholar]
  93. MacLaren JA, Anderson PSL, Barrett PM, Rayfield EJ 2017. Herbivorous dinosaur jaw disparity and its relationship to extrinsic evolutionary drivers. Paleobiology 43:15–33
    [Google Scholar]
  94. Mahler DL, Ingram T 2014. Phylogenetic comparative methods for studying clade-wide convergence. Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology LZ Garamszegi 425–50 Berlin: Springer-Verlag
    [Google Scholar]
  95. McNab BK. 2009. Resources and energetics determined dinosaur maximal size. PNAS 106:12184–88
    [Google Scholar]
  96. McPhee BW, Benson RBJ, Botha-Brink J, Bordy EM, Choiniere JN 2018. A giant dinosaur from the earliest Jurassic of South Africa and the transition to quadrupedality in early sauropodomorphs. Curr. Biol. press
    [Google Scholar]
  97. McPhee BW, Yates AM, Choiniere JN, Abdala F 2014. The complete anatomy and phylogenetic relationships of Antetonitrus ingenipes (Sauropodiformes, Dinosauria): implications for the origins of Sauropoda. Zool. J. Linn. Soc. 171:151–205
    [Google Scholar]
  98. McShea DW. 1994. Mechanisms of large-scale evolutionary trends. Evolution 48:1747–63
    [Google Scholar]
  99. Middleton KM, Gatesy SM 2000. Theropod forelimb design and evolution. Zool. J. Linn. Soc. 128:149–87
    [Google Scholar]
  100. Milner AC, Walsh SA 2009. Avian brain evolution: new data from Palaeogene birds (Lower Eocene) from England. Zool. J. Linn. Soc. 155:198–219
    [Google Scholar]
  101. Mitchell JS, Roopnarine PD, Angielczyk. 2012. Late Cretaceous restructuring of terrestrial communities facilitated the end-Cretaceous mass extinction in North America. PNAS 109:18857–61
    [Google Scholar]
  102. NCEAS (Natl. Cent. Ecol. Anal. Synth.), Smith F. 2004. Macroecological database of mammalian body mass Knowl. Netw. Biocomplexity, Albuquerque, NM, updated November 15, 2017. https://knb.ecoinformatics.org/#view/doi:10.5063/AA/nceas.196.3
    [Google Scholar]
  103. Nesbitt S, Butler RJ, Ezcurra MD, Barrett PM, Stocker MR et al. 2017. The earliest bird-line archosaurs and the assembly of the dinosaur body plan. Nature 544:484–87
    [Google Scholar]
  104. Norman DB, Weishampel DB 1991. Feeding mechanisms in some small herbivorous dinosaurs: process and patterns. Biomechanics and Evolution JMV Rayner, RJ Wooton 161–81 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  105. O'Connor J. 2018. The trophic habits of early birds. Palaeogeogr. Palaeoclimatol. Palaeoecol. press. https://doi.org/10.1016/j.palaeo.2018.03.006
    [Crossref] [Google Scholar]
  106. O'Connor J, Chiappe LM, Bell A 2011. Pre-modern birds: avian divergences in the Mesozoic. Living Dinosaurs: The Evolutionary History of Modern Birds G Dyke, G Kaiser 39–116 Oxford, UK: Wiley-Blackwell
    [Google Scholar]
  107. O'Connor PM, Claessens LPAM 2005. Basic avian pulmonary design and flow-through ventilation in non-avian theropod dinosaurs. Nature 436:253–56
    [Google Scholar]
  108. O'Gorman EJ, Hone DWE 2012. Body size distribution of the dinosaurs. PLOS ONE 7:e51925
    [Google Scholar]
  109. O'Leary MA, Bloch JI, Flynn JJ, Gaudin TJ, Giallombardo A et al. 2013. The placental mammal ancestor and the post-K-Pg radiation of placentals. Science 339:662–67
    [Google Scholar]
  110. Olsen PE, Kent DV, Sues H-D, Koeberl C, Huber H et al. 2002. Ascent of dinosaurs linked to an iridium anomaly at the Triassic-Jurassic boundary. Science 296:1305–7
    [Google Scholar]
  111. Owen R. 1842. Report on British fossil reptiles, Part II. Rep. Br. Assoc. Adv. Sci. 11th Meet 1841.60–204
    [Google Scholar]
  112. Padian K, Chiappe LM 1998. The origin and early evolution of birds. Biol. Rev. 73:1–42
    [Google Scholar]
  113. Padian K, de Ricqlès AJ, Horner JR 2001. Dinosaurian growth rates and bird origins. Nature 412:405–8
    [Google Scholar]
  114. Padian K, Horner JR, de Ricqlès AJ 2004. Growth in small dinosaurs and pterosaurs: the evolution of archosaurian growth strategies. J. Vertebr. Paleontol. 24:555–71
    [Google Scholar]
  115. Pennell MW, Harmon LJ 2013. An integrative view of phylogenetic comparative methods: connections to population genetics, community ecology and paleobiology. Ann. N.Y. Acad. Sci. 1289:90–105
    [Google Scholar]
  116. Prum RO, Berv JS, Dornburg A, Field DJ, Townsend JP et al. 2015. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526:569–73
    [Google Scholar]
  117. Puttick MN, Thomas GH, Benton MJ 2014. High rates of evolution preceded the origin of birds. Evolution 68:1497–510
    [Google Scholar]
  118. Russell DA. 1995. China and the lost worlds of the dinosaurian era. Hist. Biol. 10:3–12
    [Google Scholar]
  119. Sakamoto M, Benton MJ, Venditti C 2016a. Dinosaurs in decline tens of millions of years before their final extinction. PNAS 113:5036–40
    [Google Scholar]
  120. Sakamoto M, Venditti C, Benton MJ 2016b. ‘Residual diversity estimates’ do not correct for sampling bias in palaeodiversity data. Methods. Ecol. Evol 8:453–59
    [Google Scholar]
  121. Sander PM. 2013. An evolutionary cascade model for sauropod dinosaur gigantism—overview, update and tests. PLOS ONE 8:e78573
    [Google Scholar]
  122. Sander PM, Christian A, Clauss M, Fechner R, Gee CT et al. 2010. Biology of the sauropod dinosaurs: the evolution of gigantism. Biol. Rev. 86:117–55
    [Google Scholar]
  123. Sander PM, Clauss M 2008. Sauropod gigantism. Science 322:200–1
    [Google Scholar]
  124. Sander PM, Klein N 2005. Developmental plasticity in the life history of a prosauropod dinosaur. Science 310:1800–2
    [Google Scholar]
  125. Sander PM, Klein N, Stein K, Wings K 2011. Sauropod bone histology and its implications for sauropod biology. Biology of the Sauropod Dinosaurs: The Evolution of Gigantism N Klein, K Remes, PM Sander 276–302 Bloomington: Indiana Univ. Press
    [Google Scholar]
  126. Sandom C, Faurby S, Sandel B, Svenning J-C 2014. Global late Quarternary megafauna extinctions linked to humans, not climate change. Proc. R. Soc. B 281:20133254
    [Google Scholar]
  127. Schachner ER, Cieri RL, Butler JP, Farmer CG 2014. Unidirectional pulmonary airflow patterns in the savannah monitor lizard. Nature 506:367–70
    [Google Scholar]
  128. Seebacher F. 2003. Dinosaur body temperatures: the occurrence of endothermy and ectothermy. Paleobiology 29:105–22
    [Google Scholar]
  129. Sepkoski JJ Jr 1984. A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions. Paleobiology 10:246–67
    [Google Scholar]
  130. Sereno PC. 1997. The origin and evolution of dinosaurs. Annu. Rev. Earth Planet. Sci. 25:435–89
    [Google Scholar]
  131. Sereno PC. 1999. The evolution of dinosaurs. Science 284:2137–47
    [Google Scholar]
  132. Sereno PC, Arcucci AB 1994. Dinosaurian precursors from the Middle Triassic of Argentina: Marasuchus lilloensis, gen. nov. J. Vertebr. Paleontol. 14:53–73
    [Google Scholar]
  133. Sharov AG. 1971. [New flying reptiles from the Mesozoic beds of Central Asia]. Bull. Moscow Soc. Study Nat. Hist. Biol. Sect. 61:145–46 In Russian
    [Google Scholar]
  134. Simpson GG. 1954. The Major Features of Evolution New York: Columbia Univ. Press
    [Google Scholar]
  135. Slack KE, Jones CM, Ando T, Harrison GLA, Fordyce RE et al. 2006. Early penguin fossils, plus mitochondrial genomes, calibrate avian evolution. Mol. Biol. Evol. 23:1144–55
    [Google Scholar]
  136. Slater GJ. 2013. Phylogenetic evidence for a shift in the mode of mammalian body size evolution at the Cretaceous-Palaeogene boundary. Methods Ecol. Evol. 4:734–44
    [Google Scholar]
  137. Slater GJ, Goldbogen JA, Pyenson ND 2017. Independent evolution of baleen whale gigantism linked to Plio-Pleistocene ocean dynamics. Proc. R. Soc. B 284:20170546
    [Google Scholar]
  138. Smith FA, Boyer AG, Brown JH, Costa DP, Dayan T et al. 2010. The evolution of maximum body size of terrestrial mammals. Science 330:1216–19
    [Google Scholar]
  139. Stanley SM. 1973. An explanation for Cope's rule. Evolution 27:1–26
    [Google Scholar]
  140. Starrfelt J, Liow LH 2017. How many dinosaur species were there? Fossil bias and true richness estimated using a Poisson sampling model. Philos. Trans. R. Soc. B 371:20150219
    [Google Scholar]
  141. Turner AH, Pol D, Clarke JA, Erickson GM, Norell MA 2007. A basal dromaeosaurid and size evolution preceding avian flight. Science 317:1378–81
    [Google Scholar]
  142. Upchurch P, Mannion PD, Benson RBJ, Butler RJ, Carrano MT 2011. Geological and anthropogenic controls on sampling of the terrestrial fossil record: a case study from the Dinosauria. Comparing the Geological and Fossil Records: Implications for Biodiversity Studies, Geol. Soc. Spec. Publ 358 A McGowan, AB Smith 209–40 Bath, UK: Geol. Soc
    [Google Scholar]
  143. Varrichio DJ. 2011. A distinct dinosaur life history?. Hist. Biol. 23:91–107
    [Google Scholar]
  144. Vavrek MJ. 2016. The fragmentation of Pangaea and Mesozoic terrestrial vertebrate biodiversity. Biol. Lett. 12:20160528
    [Google Scholar]
  145. Venditti C, Meade A, Pagel M 2011. Multiple routes to mammalian diversity. Nature 479:393–96
    [Google Scholar]
  146. Wang SC, Dodson P 2006. Estimating the diversity of dinosaurs. PNAS 103:13601–5
    [Google Scholar]
  147. Weishampel DB, Norman DB 1989. Vertebrate herbivory in the Mesozoic; jaws, plants, and evolutionary metrics. Spec. Pap. Geol. Soc. Am. 238:87–100
    [Google Scholar]
  148. Wills MA, Briggs DEG, Fortey RA 1994. Disparity as an evolutionary index: a comparison of Cambrian and recent arthropods. Paleobiology 20:93–130
    [Google Scholar]
  149. Wilson GP. 2013. Mammals across the K/Pg boundary in northeastern Montana, U.S.A.: dental morphology and body-size patterns reveal extinction selectivity and immigrant-fueled ecospace filling. Paleobiology 39:429–69
    [Google Scholar]
  150. Xu X, Choiniere J, Tan Q, Benson RBJ, Clark J et al. 2018. Two Early Cretaceous fossils document transitional stages in alvarezsaurian dinosaur evolution. Curr. Biol. press
    [Google Scholar]
  151. Xu X, Zheng X, Sullivan C, Wang X, Xing L et al. 2015. A bizarre Jurassic maniraptoran theropod with preserved evidence of membranous wings. Nature 521:70–73
    [Google Scholar]
  152. Xu X, Zhou Z, Dudley R, Mackem S, Chuong C-M et al. 2014. An integrative approach to understanding bird origins. Science 346:1253293
    [Google Scholar]
  153. Xu X, Zhou Z, Wang X, Kuang X, Zhang F et al. 2003. Four-winged dinosaurs from China. Nature 421:335–40
    [Google Scholar]
  154. Zanno LE, Makovicky PJ 2011. Herbivorous ecomorphology and specialization patterns in theropod dinosaur evolution. PNAS 108:232–37
    [Google Scholar]
  155. Zanno LE, Makovicky PJ 2013. No evidence for directional evolution of body mass in herbivorous theropod dinosaurs. Proc. R. Soc. B 280:20122526
    [Google Scholar]
  156. Zardoya R, Meyer A 1998. Complete mitochondrial genome suggests diapsid affinities of turtles. PNAS 95:14226–31
    [Google Scholar]
  157. Zheng X-T, You H-L, Xu X, Dong Z-M 2009. An Early Cretaceous heterodontosaurid dinosaur with filamentous integumentary structures. Nature 458:333–36
    [Google Scholar]
  158. Zhou Z-H, Wang Y 2014. The Jehol Biota, an Early Cretaceous terrestrial Lagerstätte: new discoveries and implications. Natl. Sci. Rev. 1:543–59
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-110617-062231
Loading
/content/journals/10.1146/annurev-ecolsys-110617-062231
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error