1932

Abstract

The rate of evolution of population mean fitness informs how selection acting in contemporary populations can counteract environmental change and genetic degradation (mutation, gene flow, drift, recombination). This rate influences population increases (e.g., range expansion), population stability (e.g., cryptic eco-evolutionary dynamics), and population recovery (i.e., evolutionary rescue). We review approaches for estimating such rates, especially in wild populations. We then review empirical estimates derived from two approaches: mutation accumulation (MA) and additive genetic variance in fitness (I). MA studies inform how selection counters genetic degradation arising from deleterious mutations, typically generating estimates of <1% per generation. I studies provide an integrated prediction of proportional change per generation, nearly always generating estimates of <20% and, more typically, <10%. Overall, considerable, but not unlimited, evolutionary potential exists in populations facing detrimental environmental or genetic change. However, further studies with diverse methods and species are required for more robust and general insights.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-110617-062358
2018-11-02
2024-04-17
Loading full text...

Full text loading...

/deliver/fulltext/es/49/1/annurev-ecolsys-110617-062358.html?itemId=/content/journals/10.1146/annurev-ecolsys-110617-062358&mimeType=html&fmt=ahah

Literature Cited

  1. Arnold SJ, Wade MJ 1984. On the measurement of natural and sexual selection: applications. Evolution 38:720–34
    [Google Scholar]
  2. Arnqvist G, Kirkpatrick M 2005. The evolution of infidelity in socially monogamous passerines: the strength of direct and indirect selection on extrapair copulation behaviour in females. Am. Nat. 165:S26–37
    [Google Scholar]
  3. Barton N, Partridge L 2000. Limits to natural selection. BioEssays 22:1075–84
    [Google Scholar]
  4. Becks L, Agrawal A 2011. The effect of sex on the mean and variance of fitness in facultatively sexual rotifers. J. Evol. Biol. 24:656–64
    [Google Scholar]
  5. Bell G. 2017. Evolutionary rescue. Annu. Rev. Ecol. Evol. Syst. 48:605–27
    [Google Scholar]
  6. Bell G, Gonzalez A 2011. Adaptation and evolutionary rescue in metapopulations experiencing environmental deterioration. Science 332:1327–30
    [Google Scholar]
  7. Bérénos C, Ellis PA, Pilkington JG, Pemberton JM 2014. Estimating quantitative genetic parameters in wild populations: a comparison of pedigree and genomic approaches. Mol. Ecol. 23:3434–51
    [Google Scholar]
  8. Bonduriansky R, Chenoweth SF 2009. Intralocus sexual conflict. Trends Ecol. Evol. 24:280–88
    [Google Scholar]
  9. Both C, Bouwhuis S, Lessells CM, Visser ME 2006. Climate change and population declines in a long-distance migratory bird. Nature 441:81–83
    [Google Scholar]
  10. Brommer JE. 2000. The evolution of fitness in life-history theory. Biol. Rev. 75:377–404
    [Google Scholar]
  11. Brommer JE, Kirkpatrick M, Qvarnström A, Gustafsson L 2007. The intersexual genetic correlation for lifetime fitness in the wild and its implications for sexual selection. PLOS ONE 2:e744
    [Google Scholar]
  12. Brommer JE, Merilä J, Kokko H 2002. Reproductive timing and individual fitness. Ecol. Lett. 5:802–10
    [Google Scholar]
  13. Bryant EH, Reed DH 1999. Fitness decline under relaxed selection in captive populations. Conserv. Biol. 13:665–69
    [Google Scholar]
  14. Burt A. 1995. The evolution of fitness. Evolution 49:1–8
    [Google Scholar]
  15. Carlson SM, Cunningham CJ, Westley PAH 2014. Evolutionary rescue in a changing world. Trends Ecol. Evol. 29:521–30
    [Google Scholar]
  16. Carroll SP. 2007. Brave New World: the epistatic foundations of natives adapting to invaders. Genetica 129:193–204
    [Google Scholar]
  17. Charlesworth B, Barton N 1996. Recombination load associated with selection for increased recombination. Genet. Res. 67:27–41
    [Google Scholar]
  18. Charlesworth D, Willis JH 2009. The genetics of inbreeding depression. Nat. Rev. Genet. 10:783–96
    [Google Scholar]
  19. Charmantier A, Garant D, Kruuk LEB 2014. Quantitative Genetics in the Wild Oxford, UK: Oxford Univ. Press
  20. Chevin L-M, Gallet R, Gomulkiewicz R, Holt RD, Fellous S 2013. Phenotypic plasticity in evolutionary rescue experiments. Philos. Trans. R. Soc. B 368:20120089
    [Google Scholar]
  21. Chippindale AK, Gibson JR, Rice WR 2001. Negative genetic correlation for adult fitness between sexes reveals ontogenetic conflict in Drosophila. PNAS 98:1671–75
    [Google Scholar]
  22. Clutton-Brock T, Sheldon BC 2010. Individuals and populations: the role of long-term, individual-based studies of animals in ecology and evolutionary biology. Trends Ecol. Evol. 25:562–73
    [Google Scholar]
  23. Crnokrak P, Barrett SCH 2002. Purging the genetic load: a review of the experimental evidence. Evolution 56:2347–58
    [Google Scholar]
  24. Decaestecker E, Gaba S, Raeymaekers JAM, Stoks R, Van Kerckhoven L et al. 2007. Host–parasite “Red Queen” dynamics archived in pond sediment. Nature 450:870–73
    [Google Scholar]
  25. Elena SF, Lenski RE 2003. Evolution experiments with microorganisms: the dynamics and genetic basis of adaptation. Nat. Rev. Gen. 4:457–69
    [Google Scholar]
  26. Ellegren H, Sheldon BC 2008. Genetic basis of fitness differences in natural populations. Nature 452:169–75
    [Google Scholar]
  27. Ellstrand NC, Elam DR 1993. Population genetic consequences of small population size: implications for plant conservation. Annu. Rev. Ecol. Syst. 24:217–42
    [Google Scholar]
  28. Etterson JR, Franks SJ, Mazer SJ, Shaw RG, Soper Gorden NL et al. 2016. Project baseline: an unprecedented resource to study plant evolution across space and time. Am. J. Bot. 103:164–73
    [Google Scholar]
  29. Ewens WJ. 2004. Mathematical Population Genetics, Vol. 1: Theoretical Introduction. 2nd edition New York: Springer, 2nd ed..
    [Google Scholar]
  30. Farkas TE, Mononen T, Comeault AA, Hanski I, Nosil P 2013. Evolution of camouflage drives rapid ecological change in an insect community. Curr. Biol. 23:1835–43
    [Google Scholar]
  31. Farkas TE, Mononen T, Comeault AA, Nosil P 2016. Observational evidence that maladaptive gene flow reduces patch occupancy in a wild insect metapopulation. Evolution 70:2879–88
    [Google Scholar]
  32. Fisher RA. 1930. The Genetical Theory of Natural Selection Oxford, UK: Clarendon Press
  33. Fisher RA. 1958. The Genetical Theory of Natural Selection New York: Dover, 2nd ed..
  34. Fitzpatrick SW, Gererich JC, Angeloni LM, Bailey LL, Broder ED et al. 2016. Gene flow from an adaptive divergent source causes rescue through genetic and demographic factors in two wild populations of Trinidadian guppies. Evol. Appl. 9:879–91
    [Google Scholar]
  35. Frankham R. 2015. Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow. Mol. Ecol. 24:2610–18
    [Google Scholar]
  36. Franks SJ, Hamann E, Weis AE 2017. Using the resurrection approach to understand contemporary evolution in changing environments. Evol. Appl. 1:17–28
    [Google Scholar]
  37. Franks SJ, Sim S, Weis AE 2007. Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. PNAS 104:1278–82
    [Google Scholar]
  38. Garant D, Forde SE, Hendry AP 2007. The multifarious effects of dispersal and gene flow on contemporary adaptation. Funct. Ecol. 21:434–43
    [Google Scholar]
  39. Gomulkiewicz R, Holt RD 1995. Why does evolution by natural selection prevent extinction. Evolution 49:201–7
    [Google Scholar]
  40. Gomulkiewicz R, Shaw RG 2013. Evolutionary rescue beyond the models. Philos. Trans. R. Soc. B 368:20120093
    [Google Scholar]
  41. Gordon SP, Reznick DN, Kinnison MT, Bryant MJ, Weese DJ et al. 2009. Adaptive changes in life history and survival following a new guppy introduction. Am. Nat. 174:34–45
    [Google Scholar]
  42. Hadfield JD. 2008. Estimating evolutionary parameters when viability selection is operating. Proc. R. Soc. B 275:723–34
    [Google Scholar]
  43. Haller BC, Hendry AP 2014. Solving the paradox of stasis: squashed stabilizing selection and the limits of detection. Evolution 68:483–500
    [Google Scholar]
  44. Hansen TF, Carter AJR, Pélabon C 2006. On adaptive accuracy and precision in natural populations. Am. Nat. 168:168–81
    [Google Scholar]
  45. Hansen TF, Pélabon C, Houle D 2011. Heritability is not evolvability. Evol. Biol. 38:258–77
    [Google Scholar]
  46. Heilbron K, Toll-Riera M, Kojadinovic M, MacLean RC 2014. Fitness is strongly influenced by rare mutations of large effect in a microbial mutation accumulation experiment. Genetics 197:981–90
    [Google Scholar]
  47. Hendry AP. 2004. Selection against migrants contributes to the rapid evolution of ecologically dependent reproductive isolation. Evol. Ecol. Res. 6:1219–36
    [Google Scholar]
  48. Hendry AP. 2017. Eco-Evolutionary Dynamics Princeton, NJ: Princeton Univ. Press
  49. Hendry AP, Farrugia TJ, Kinnison MT 2008. Human influences on rates of phenotypic change in wild animal populations. Mol. Ecol. 17:20–29
    [Google Scholar]
  50. Hendry AP, Gonzalez A 2008. Whither adaptation. Biol. Philos. 23:673–99
    [Google Scholar]
  51. Hendry AP, Kinnison MT 1999. The pace of modern life: measuring rates of contemporary microevolution. Evolution 53:1637–53
    [Google Scholar]
  52. Houle D. 1992. Comparing evolvability and variability of quantitative traits. Genetics 130:195–204
    [Google Scholar]
  53. Jensen HR, Dreiseitl A, Sadiki M, Schoen DJ 2012. The Red Queen and the seed bank: pathogen resistance of ex situ and in situ conserved barley. Evol. Appl. 5:353–67
    [Google Scholar]
  54. Kassen R. 2014. Experimental Evolution and the Nature of Biodiversity Denver, CO: Roberts & Company
  55. Kawecki TJ, Lenski RE, Ebert D, Hollis B, Olivieri I, Whitlock MC 2012. Experimental evolution. Trends Ecol. Evol. 27:547–60
    [Google Scholar]
  56. Keller LF, Waller DM 2002. Inbreeding effects in wild populations. Trends Ecol. Evol. 17:230–41
    [Google Scholar]
  57. Kingsolver JG, Diamond SE 2011. Phenotypic selection in natural populations: What limits directional selection. Am. Nat. 177:346–57
    [Google Scholar]
  58. Kinnison MT, Hairston NG Jr 2007. Eco-evolutionary conservation biology: contemporary evolution and the dynamics of persistence. Funct. Ecol. 21:444–54
    [Google Scholar]
  59. Kinnison MT, Hairston NG Jr., Hendry AP 2015. Cryptic eco-evolutionary dynamics. Ann. N.Y. Acad. Sci. 1360:120–44
    [Google Scholar]
  60. Kinnison MT, Unwin MJ, Quinn TP 2008. Eco-evolutionary versus habitat contributions to invasion in salmon: experimental evaluation in the wild. Mol. Ecol. 17:405–14
    [Google Scholar]
  61. Kirkpatrick M. 2009. Patterns of quantitative genetic variation in multiple dimensions. Genetica 136:271–84
    [Google Scholar]
  62. Kirkpatrick M, Barton NH 1997a. Evolution of a species’ range. Am. Nat. 150:1–23
    [Google Scholar]
  63. Kirkpatrick M, Barton NH 1997b. The strength of indirect selection on female mating preferences. PNAS 94:1282–86
    [Google Scholar]
  64. Kirkpatrick M, Hall DW 2004. Sexual selection and sex linkage. Evolution 58:683–91
    [Google Scholar]
  65. Kovach-Orr C, Fussmann GF 2013. Evolutionary and plastic rescue in multitrophic model communities. Philos. Trans. R. Soc. B 368:20120084
    [Google Scholar]
  66. Kruuk LEB. 2004. Estimating genetic parameters in natural populations using the “animal model. Philos. Trans. R. Soc. B 359:873–90
    [Google Scholar]
  67. Kruuk LEB, Charmantier A, Garant D 2014. The study of quantitative genetics in wild populations. Quantitative Genetics in the Wild A Charmantier, D Garant, LEB Kruuk 1–15 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  68. Kruuk LEB, Hadfield JD 2007. How to separate genetic and environmental causes of similarity between relatives. J. Evol. Biol. 20:1890–1903
    [Google Scholar]
  69. Kruuk LEB, Slate J, Wilson AJ 2008. New answers for old questions: the evolutionary quantitative genetics of wild animal populations. Annu. Rev. Ecol. Evol. Syst. 39:525–48
    [Google Scholar]
  70. Lenormand T. 2002. Gene flow and the limits to natural selection. Trends Ecol. Evol. 17:183–89
    [Google Scholar]
  71. Lynch M, Gabriel W 1990. Mutation load and the survival of small populations. Evolution 44:1725–37
    [Google Scholar]
  72. Lynch M, Lande R 1993. Evolution and extinction in response to environmental change. Biotic Interactions and Global Change J Kingsolver, R Huey 234–50 Sunderland, MA: Sinauer
    [Google Scholar]
  73. Lynch M, Walsh B 1998. Genetics and Analysis of Quantitative Traits Sunderland, MA: Sinauer
  74. McFarlane SE, Gorrell JC, Coltman DW, Humphries MM, Boutin S, McAdam AG 2014. Very low levels of direct additive genetic variance in fitness and fitness components in a red squirrel population. Ecol. Evol. 4:1729–38
    [Google Scholar]
  75. Milot E, Mayer FM, Nussey DH, Boisvert M, Pelletier F et al. 2011. Evidence for evolution in response to natural selection in a contemporary human population. PNAS 108:17040–45
    [Google Scholar]
  76. Møller AP, Rubolini D, Lehikoinen E 2008. Populations of migratory bird species that did not show a phenological response to climate change are declining. PNAS 105:16195–200
    [Google Scholar]
  77. Moorad JA. 2014. Individual fitness and phenotypic selection in age-structured populations with constant growth rates. Ecology 95:1087–95
    [Google Scholar]
  78. Nosil P. 2009. Adaptive population divergence in cryptic color-pattern following a reduction in gene flow. Evolution 63:1902–12
    [Google Scholar]
  79. Nosil P, Villoutreix R, de Carvalho CF, Farkas TE, Soria-Carrasco V et al. 2018. Natural selection and the predictability of evolution in Timema stick insects. Science 359:765–70
    [Google Scholar]
  80. Nosil P, Vines TH, Funk DJ 2005. Reproductive isolation caused by natural selection against immigrants from divergent habitats. Evolution 59:705–19
    [Google Scholar]
  81. Orsini L, Schwenk K, De Meester L, Colbourne JK, Pfrender ME et al. 2013. The evolutionary time machine: using dormant propagules to forecast how populations can adapt to changing environments. Trends Ecol. Evol. 28:274–82
    [Google Scholar]
  82. Orr HA. 2009. Fitness and its role in evolutionary genetics. Nat. Rev. Genet. 10:531–39
    [Google Scholar]
  83. Otto SP, Lenormand T 2002. Resolving the paradox of sex and recombination. Nat. Rev. Genet. 3:252–61
    [Google Scholar]
  84. Poissant J, Wilson AJ, Coltman DW 2010. Sex-specific genetic variance and the evolution of sexual dimorphism: a systematic review of cross-sex genetic correlations. Evolution 64:97–107
    [Google Scholar]
  85. Pörtner HO, Knust R 2007. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315:95–97
    [Google Scholar]
  86. Postma E. 2014. Four decades of estimating heritabilities in wild vertebrate populations: improved methods, more data, better estimates?. Quantitative Genetics in the Wild A Charmantier, D Garant, LEB Kruuk 16–33 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  87. Rankin DJ, López-Sepulcre A 2006. Can adaptation lead to extinction. Oikos 111:616–19
    [Google Scholar]
  88. Reed DH, Frankham R 2003. Correlation between fitness and genetic diversity. Conserv. Biol. 17:230–37
    [Google Scholar]
  89. Reznick DN, Ghalambor CK 2005. Selection in nature: experimental manipulations of natural populations. Integr. Comp. Biol. 45:456–65
    [Google Scholar]
  90. Riechert SE. 1993. Investigation of potential gene flow limitation of behavioral adaptation in an aridlands spider. Behav. Ecol. Sociobiol. 32:355–63
    [Google Scholar]
  91. Roff DA. 1992. The Evolution of Life Histories New York: Chapman & Hall
  92. Roff DA, Emerson K 2006. Epistasis and dominance: evidence for differential effects in life-history versus morphological traits. Evolution 60:1981–90
    [Google Scholar]
  93. Roles AJ, Rutter MT, Dworkin I, Fenster CB, Conner JK 2016. Field measurements of genotype by environment interaction for fitness caused by spontaneous mutations in Arabidopsis thaliana. Evolution 70:1039–50
    [Google Scholar]
  94. Rutter MT, Shaw FH, Fenster CB 2010. Spontaneous mutation parameters for Arabidopsis thaliana measured in the wild. Evolution 64:1825–35
    [Google Scholar]
  95. Saccheri I, Hanski I 2006. Natural selection and population dynamics. Trends Ecol. Evol. 21:341–47
    [Google Scholar]
  96. Sæther B-E, Engen S 2015. The concept of fitness in fluctuating environments. Trends Ecol. Evol. 30:273–81
    [Google Scholar]
  97. Santos M. 2009. Recombination load in a chromosomal inversion polymorphism of Drosophila subobscura. Genetics 181:803–9
    [Google Scholar]
  98. Schluter D, Price TD, Rowe L 1991. Conflicting selection pressures and life history trade-offs. Proc. R. Soc. B 246:11–17
    [Google Scholar]
  99. Sharp NP, Agrawal AF 2012. Evidence for elevated mutation rates in low-quality genotypes. PNAS 109:6142–46
    [Google Scholar]
  100. Shaw RG. 1987. Maximum-likelihood approaches applied to quantitative genetics of natural populations. Evolution 41:812–26
    [Google Scholar]
  101. Shaw RG, Shaw FH 2014. Quantitative genetic study of the adaptive process. Heredity 112:13–20
    [Google Scholar]
  102. Simons AM. 2002. The continuity of microevolution and macroevolution. J. Evol. Biol. 15:688–701
    [Google Scholar]
  103. Snyder RE, Ellner SP 2018. Pluck or luck: Does trait variation or chance drive variation in lifetime reproductive success. Am. Nat. 191:E90–107
    [Google Scholar]
  104. Tallmon DA, Luikart G, Waples RS 2004. The alluring simplicity and complex reality of genetic rescue. Trends Ecol. Evol. 19:489–96
    [Google Scholar]
  105. van Buskirk J, Willi Y 2007. The change in quantitative genetic variation with inbreeding. Evolution 60:2428–34
    [Google Scholar]
  106. Vander Wal E, Garant D, Festa-Bianchet M, Pelletier F 2013. Evolutionary rescue in vertebrates: evidence, applications and uncertainty. Philos. Trans. R. Soc. B 368:20120090
    [Google Scholar]
  107. Whiteley AR, Fitzpatrick SW, Funk WC, Tallmon DA 2015. Genetic rescue to the rescue. Trends Ecol. Evol. 30:42–49
    [Google Scholar]
  108. Willis CG, Ruhfel B, Primack RB, Miller-Rushing AJ, Davis CC 2008. Phylogenetic patterns of species loss in Thoreau's woods are driven by climate change. PNAS 105:17029–33
    [Google Scholar]
  109. Wolak ME, Arcese P, Keller LF, Nietlisbach P, Reid JM 2018. Sex-specific additive genetic variances and correlations for fitness in a song sparrow (Melospiza melodia) population subject to natural immigration and inbreeding. Evolution. In press. https://doi.org/10.1111/evo.13575
    [Crossref]
  110. Wolak ME, Reid JM 2016. Is pairing with a relative heritable? Estimating female and male genetic contributions to the degree of biparental inbreeding in song sparrows (Melospiza melodia). Am. Nat. 187:736–52
    [Google Scholar]
  111. Wolak ME, Reid JM 2017. Accounting for genetic differences among unknown parents in microevolutionary studies: how to include genetic groups in quantitative genetic animal models. J. Anim. Ecol. 86:7–20
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-110617-062358
Loading
/content/journals/10.1146/annurev-ecolsys-110617-062358
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error