1932

Abstract

Evolutionary conflict occurs when two parties can each affect a joint phenotype, but they gain from pushing it in opposite directions. Conflicts occur across many biological levels and domains but share many features. They are a major source of biological maladaptation. They affect biological diversity, often increasing it, at almost every level. Because opponents create selection that can be strong, persistent, and malevolent, conflict often leads to accelerated evolution and arms races. Conflicts might even drive the majority of adaptation, with pathogens leading the way as selective forces. The evolution of conflicts is complex, with outcomes determined partly by the relative evolvability of each party and partly by the kinds of power that each evolves. Power is a central issue in biology. In addition to physical strength and weapons, it includes strength from numbers and complexity; abilities to bind and block; advantageous timing; and abilities to acquire, use, and distort information.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-110617-062527
2018-11-02
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/es/49/1/annurev-ecolsys-110617-062527.html?itemId=/content/journals/10.1146/annurev-ecolsys-110617-062527&mimeType=html&fmt=ahah

Literature Cited

  1. Abrams PA. 2000. The evolution of predator-prey interactions: theory and evidence. Annu. Rev. Ecol. Syst. 31:79–105
    [Google Scholar]
  2. Aktipis C, Nesse RM 2013. Evolutionary foundations for cancer biology. Evol. Appl. 6:144–59
    [Google Scholar]
  3. Alexander RD. 1974. The evolution of social behavior. Annu. Rev. Ecol. Syst. 5:325–83
    [Google Scholar]
  4. Althoff DM, Segraves KA, Johnson MT 2014. Testing for coevolutionary diversification: linking pattern with process. Trends Ecol. Evol. 29:82–89
    [Google Scholar]
  5. Andrés AM, Hubisz MJ, Indap A, Torgerson DG, Degenhardt JD et al. 2009. Targets of balancing selection in the human genome. Mol. Biol. Evol. 26:2755–64
    [Google Scholar]
  6. Arnqvist G, Rowe L 2002. Antagonistic coevolution between the sexes in a group of insects. Nature 415:787–89
    [Google Scholar]
  7. Arnqvist G, Rowe L 2005. Sexual Conflict Princeton, NJ: Princeton Univ. Press
  8. Beekman M, Ratnieks FLW 2003. Power over reproduction in social Hymenoptera. Philos. Trans. R. Soc. B 358:1741–53
    [Google Scholar]
  9. Bérénos C, Schmid-Hempel P, Wegner KM 2012. Antagonistic coevolution accelerates the evolution of reproductive isolation in Tribolium castaneum. Am. Nat 180:520–28
    [Google Scholar]
  10. Bergsten J, Miller KB 2007. Phylogeny of diving beetles reveals a coevolutionary arms race between the sexes. PLOS ONE 2:e522
    [Google Scholar]
  11. Bergstrom CT, Lachmann M 2003. The Red King effect: when the slowest runner wins the coevolutionary race. PNAS 100:593–98
    [Google Scholar]
  12. Blatrix R, Sermage C 2005. Role of early experience in ant enslavement: a comparative analysis of a host and a non-host species. Front. Zool. 2:13
    [Google Scholar]
  13. Borevitz JO, Hazen SP, Michael TP, Morris GP, Baxter IR et al. 2007. Genome-wide patterns of single-feature polymorphism in Arabidopsis thaliana. PNAS 104:12057–62
    [Google Scholar]
  14. Bourke AFG. 2011. Principles of Social Evolution Oxford, UK: Oxford Univ. Press
  15. Bradbury JW, Vehrencamp SL 1998. Principles of Animal Communication Sunderland, MA: Sinauer
  16. Brockhurst MA, Chapman T, King KC, Mank JE, Paterson S, Hurst GD 2014. Running with the Red Queen: the role of biotic conflicts in evolution. Proc. R. Soc. B 281:20141382
    [Google Scholar]
  17. Brockhurst MA, Koskella B 2013. Experimental coevolution of species interactions. Trends Ecol. Evol. 28:367–75
    [Google Scholar]
  18. Bronstein J, Alarcón R, Geber M 2006. The evolution of plant–insect mutualisms. New Phytol 172:412–28
    [Google Scholar]
  19. Burt A, Trivers R 2006. Genes in Conflict: The Biology of Selfish Genetic Elements Cambridge, MA: Belknap Press
  20. Buss LW. 1987. The Evolution of Individuality Princeton, NJ: Princeton Univ. Press
  21. Carmona D, Fitzpatrick CR, Johnson MT 2015. Fifty years of co‐evolution and beyond: integrating co‐evolution from molecules to species. Mol. Ecol. 24:5315–29
    [Google Scholar]
  22. Cascales E, Buchanan SK, Duche D, Kleanthous C, Lloubes R et al. 2007. Colicin biology. Microbiol. Mol. Biol. Rev. 71:158–229
    [Google Scholar]
  23. Castillo-Davis CI, Kondrashov FA, Hartl DL, Kulathinal RJ 2004. The functional genomic distribution of protein divergence in two animal phyla: coevolution, genomic conflict, and constraint. Genome Res 802:802–11
    [Google Scholar]
  24. Chuong EB, Tong W, Hoekstra HE 2010. Maternal–fetal conflict: rapidly evolving proteins in the rodent placenta. Mol. Biol. Evol. 27:1221–25
    [Google Scholar]
  25. Crespi B. 2008. Genomic imprinting in the development and evolution of psychotic spectrum conditions. Biol. Rev. 83:441–93
    [Google Scholar]
  26. Crespi B. 2010. The origins and evolution of genetic disease risk in modern humans. Ann. N.Y. Acad. Sci. 1206:80–109
    [Google Scholar]
  27. Crespi B, Nosil P 2013. Conflictual speciation: species formation via genomic conflict. Trends Ecol. Evol. 28:48–57
    [Google Scholar]
  28. Crespi B, Summers K 2005. Evolutionary biology of cancer. Trends Ecol. Evol. 20:545–52
    [Google Scholar]
  29. Darst CR, Menéndez-Guerrero PA, Coloma LA, Cannatella DC 2004. Evolution of dietary specialization and chemical defense in poison frogs (Dendrobatidae): a comparative analysis. Am. Nat. 165:56–69
    [Google Scholar]
  30. Davies NB. 2000. Cuckoos, Cowbirds and Other Cheats London: A&C Black
  31. Davies NB, Krebs JR, West SA 2012. An Introduction to Behavioural Ecology Chichester, UK: Wiley-Blackwell
  32. Dawkins R. 1982. The Extended Phenotype Oxford, UK: Freeman
  33. Dawkins R, Krebs JR 1978. Animal signals: information or manipulation. Behavioural Ecology: An Evolutionary Approach J Krebs, N Davies 282–309 Sunderland, MA: Sinauer
    [Google Scholar]
  34. Dawkins R, Krebs JR 1979. Arms races between and within species. Proc. R. Soc. B 205:489–511
    [Google Scholar]
  35. De Kievit TR, Iglewski BH 2000. Bacterial quorum sensing in pathogenic relationships. Infect. Immun. 68:4839–49
    [Google Scholar]
  36. Decaestecker E, Gaba S, Raeymaekers JA, Stoks R, Van Kerckhoven L et al. 2007. Host–parasite ‘Red Queen’ dynamics archived in pond sediment. Nature 450:870
    [Google Scholar]
  37. DeCasien AR, Williams SA, Higham JP 2017. Primate brain size is predicted by diet but not sociality. Nat. Ecol. Evol. 1:0112
    [Google Scholar]
  38. Dodd D. 1989. Reproductive isolation as a consequence of adaptive divergence in Drosophila pseudoobscura. Evolution 43:1308–11
    [Google Scholar]
  39. Dunbar RIM. 1998. The social brain hypothesis. Evolutionary Anthropology 6:178–90
    [Google Scholar]
  40. Dunbar RIM, Shultz S 2007. Evolution in the social brain. Science 317:1344–47
    [Google Scholar]
  41. Ebel ER, Telis N, Venkataram S, Petrov DA, Enard D 2017. High rate of adaptation of mammalian proteins that interact with Plasmodium and related parasites. PLOS Genet 13:e1007023
    [Google Scholar]
  42. Eberhard WG. 1985. Sexual Selection and Animal Genitalia Cambridge, MA: Harvard Univ. Press
  43. Ehrlich PR, Raven PH 1964. Butterflies and plants: a study in coevolution. Evolution 18:586–608
    [Google Scholar]
  44. Elde NC, Malik HS 2009. The evolutionary conundrum of pathogen mimicry. Nat. Rev. Microbiol. 7:787
    [Google Scholar]
  45. Emlen DJ. 2014. Animal Weapons: The Evolution of Battle New York: Henry Holt
  46. Enard D, Cai L, Gwennap C, Petrov DA 2016. Viruses are a dominant driver of protein adaptation in mammals. eLife 5:e12469
    [Google Scholar]
  47. Fisher RA. 1930. The Genetical Theory of Natural Selection Oxford, UK: Oxford Univ. Press
  48. Fordyce JA. 2010. Host shifts and evolutionary radiations of butterflies. Proc. R. Soc. B 277:3735–43
    [Google Scholar]
  49. Frank SA. 2012. Natural selection. IV. The Price equation. J. Evol. Biol. 25:1002–19
    [Google Scholar]
  50. Frank SA, Crespi BJ 2011. Pathology from evolutionary conflict, with a theory of X chromosome versus autosome conflict over sexually antagonistic traits. PNAS 108:10886–93
    [Google Scholar]
  51. Fritts TH, Rodda GH 1998. The role of introduced species in the degradation of island ecosystems: a case history of Guam. Annu. Rev. Ecol. Syst. 29:113–40
    [Google Scholar]
  52. Gaba S, Ebert D 2009. Time-shift experiments as a tool to study antagonistic coevolution. Trends Ecol. Evol. 24:226–32
    [Google Scholar]
  53. Galbraith DA, Kocher SD, Glenn T, Albert I, Hunt GJ et al. 2016. Testing the kinship theory of intragenomic conflict in honey bees (Apis mellifera). PNAS 113:1020–25
    [Google Scholar]
  54. Garneau JE, Dupuis M-È, Villion M, Romero DA, Barrangou R et al. 2010. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468:67
    [Google Scholar]
  55. Gavrilets S. 2014. Is sexual conflict an “engine of speciation”. Cold Spring Harb. Perspect. Biol. 6:a017723
    [Google Scholar]
  56. Gavrilets S, Arnqvist G, Friberg U 2001. The evolution of female mate choice by sexual conflict. Proc. R. Soc. B 268:531–39
    [Google Scholar]
  57. Gilman RT, Nuismer SL, Jhwueng D-C 2012. Coevolution in multidimensional trait space favours escape from parasites and pathogens. Nature 483:328
    [Google Scholar]
  58. Greaves M, Maley CC 2012. Clonal evolution in cancer. Nature 481:306
    [Google Scholar]
  59. Haig D. 1993. Genetic conflicts in human pregnancy. Q. Rev. Biol. 68:495–532
    [Google Scholar]
  60. Hamilton WD. 1980. Sex versus non-sex versus parasite. Oikos 35:282–90
    [Google Scholar]
  61. Hanifin CT, Brodie ED Jr., Brodie EDIII. 2008. Phenotypic mismatches reveal escape from arms-race coevolution. PLOS Biol 6:e60
    [Google Scholar]
  62. Heil M. 2016. Host manipulation by parasites: cases, patterns, and remaining doubts. Front. Ecol. Evol. 4:80
    [Google Scholar]
  63. Hori M. 1993. Frequency-dependent natural selection in the handedness of scale-eating cichlid fish. Science 260:216–19
    [Google Scholar]
  64. Huntingford FA, Turner AK 1987. Animal Conflict New York: Chapman and Hall
  65. Janz N. 2011. Ehrlich and Raven revisited: mechanisms underlying codiversification of plants and enemies. Annu. Rev. Ecol. Evol. Syst. 42:71–89
    [Google Scholar]
  66. Kerstes NA, Bérénos C, Schmid-Hempel P, Wegner KM 2012. Antagonistic experimental coevolution with a parasite increases host recombination frequency. BMC Evol. Biol. 12:18
    [Google Scholar]
  67. Kokko H, Jennions MD 2014. The relationship between sexual selection and sexual conflict. Cold Spring Harb. Perspect. Biol. 6:a017517
    [Google Scholar]
  68. Kopp M, Gavrilets S 2006. Multilocus genetics and the coevolution of quantitative traits. Evolution 60:1321–36
    [Google Scholar]
  69. Kuijt J. 1977. Haustoria of phanerogamic parasites. Annu. Rev. Phytopathol. 17:91–118
    [Google Scholar]
  70. Kuzdzal-Fick JJ, Queller DC, Strassmann JE 2010. An invitation to die: Initiators of sociality in a social amoeba become selfish spores. Biol. Lett. 6:800–2
    [Google Scholar]
  71. Leigh EG. 1977. How does selection reconcile individual advantage with the good of the group. PNAS 74:4542–46
    [Google Scholar]
  72. Lively CM. 2010. A review of Red Queen models for the persistence of obligate sexual reproduction. J. Hered. 101:S13–20
    [Google Scholar]
  73. Louthan AM, Kay KM 2011. Comparing the adaptive landscape across trait types: larger QTL effect size in traits under biotic selection. BMC Evol. Biol. 11:60
    [Google Scholar]
  74. Martin OY, Hosken DJ 2003. The evolution of reproductive isolation through sexual conflict. Nature 423:979
    [Google Scholar]
  75. Martincorena I, Raine KM, Gerstung M, Dawson KJ, Haase K et al. 2017. Universal patterns of selection in cancer and somatic tissues. Cell 171:1029–41.e21
    [Google Scholar]
  76. Maynard Smith J, Harper D 2003. Animal Signals Oxford, UK: Oxford Univ. Press
  77. Maynard Smith J, Szathmáry E 1995. The Major Transitions in Evolution Oxford, UK: Freeman
  78. Mock D, Parker GA 1997. The Evolution of Sibling Rivalry Oxford, UK: Oxford Univ. Press
  79. Moore J. 2002. Parasites and the Behavior of Animals Oxford, UK: Oxford Univ. Press
  80. Moore T, Haig D 1991. Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet 7:45–49
    [Google Scholar]
  81. Morran LT, Schmidt OG, Gelarden IA, Parrish RC, Lively CM 2011. Running with the Red Queen: host-parasite coevolution selects for biparental sex. Science 333:216–18
    [Google Scholar]
  82. Noë R, Hammerstein P 1995. Biological markets. Trends Ecol. Evol. 10:336–39
    [Google Scholar]
  83. Noh S, Geist KS, Tian X, Strassmann JE, Queller DC 2018. Genetic signatures of microbial altruism and cheating in social amoebas in the wild. PNAS 115:3096–101
    [Google Scholar]
  84. Nonacs P, Carlin N 1990. When can ants discriminate the sex of brood? A new aspect of queen-worker conflict. PNAS 87:9670–73
    [Google Scholar]
  85. Nuismer SL. 2017. Introduction to Coevolutionary Theory New York: Freeman
  86. O'Gara BW. 1969. Unique aspects of reproduction in the female pronghorn (Antilocapra americana Ord). Dev. Dyn. 125:217–31
    [Google Scholar]
  87. Ostrowski EA, Shen Y, Tian X, Sucgang R, Jiang H et al. 2015. Genomic signatures of cooperation and conflict in the social amoeba. Curr. Biol. 25:1661–65
    [Google Scholar]
  88. Pal C, Maciá MD, Oliver A, Schachar I, Buckling A 2007. Coevolution with viruses drives the evolution of bacterial mutation rates. Nature 450:1079–81
    [Google Scholar]
  89. Paterson S, Vogwill T, Buckling A, Benmayor R, Spiers AJ et al. 2010. Antagonistic coevolution accelerates molecular evolution. Nature 464:275–78
    [Google Scholar]
  90. Petschenka G, Agrawal AA 2016. How herbivores coopt plant defenses: natural selection, specialization, and sequestration. Curr. Opin. Insect Sci. 14:17–24
    [Google Scholar]
  91. Presgraves DC. 2010. The molecular evolutionary basis of species formation. Nat. Rev. Genet. 11:175–80
    [Google Scholar]
  92. Queller DC. 1983. Kin selection and conflict in seed maturation. J. Theor. Biol. 100:153–72
    [Google Scholar]
  93. Queller DC. 2014. Joint phenotypes, evolutionary conflict and the fundamental theorem of natural selection. Philos. Trans. R. Soc. B 369:20130423
    [Google Scholar]
  94. Queller DC, Strassmann JE 2009. Beyond society: the evolution of organismality. Philos. Trans. R. Soc. B 364:3143–55
    [Google Scholar]
  95. Ratnieks FLW, Foster KR, Wenseleers T 2006. Conflict resolution in insect societies. Annu. Rev. Entomol. 51:581–608
    [Google Scholar]
  96. Ratnieks FLW, Reeve HK 1992. Conflict in single-queen hymenopteran societies: the structure of conflict and processes that reduce conflict in advanced eusocial species. J. Theor. Biol. 158:33–65
    [Google Scholar]
  97. Reznick DN, Ghalambor CK 2001. The population ecology of contemporary adaptations: what empirical studies reveal about the conditions that promote adaptive evolution. Microevolution: Rate, Pattern, Process183–98 Dordrecht, Neth.: Springer
    [Google Scholar]
  98. Rönn J, Katvala M, Arnqvist G. 2007. Coevolution between harmful male genitalia and female resistance in seed beetles. PNAS 10410921–25
    [Google Scholar]
  99. Schluter D. 2000. The Ecology of Adaptive Radiation Oxford, UK: Oxford Univ. Press
  100. Schwartzman JA, Ruby EG 2016. A conserved chemical dialog of mutualism: lessons from squid and vibrio. Microbes Infect 1:1–10
    [Google Scholar]
  101. Searcy WA, Nowicki S 2005. The Evolution of Animal Communication: Reliability and Deception in Signaling Systems Princeton, NJ: Princeton Univ. Press
  102. Servedio MR, Boughman JW 2017. The role of sexual selection in local adaptation and speciation. Annu. Rev. Ecol. Evol. Syst. 48:85–109
    [Google Scholar]
  103. Sinervo B, Lively CM 1996. The rock–paper–scissors game and the evolution of alternative male strategies. Nature 380:240
    [Google Scholar]
  104. Smith JW, Benkman CW 2007. A coevolutionary arms race causes ecological speciation in crossbills. Am. Nat. 169:455–65
    [Google Scholar]
  105. Strassmann JE, Queller DC 2007. Insect societies as divided organisms: the complexities of purpose and cross-purpose. PNAS 104:8619–26
    [Google Scholar]
  106. Strassmann JE, Queller DC 2010. The social organism: congresses, parties, and committees. Evolution 64:605–16
    [Google Scholar]
  107. Strassmann JE, Queller DC 2011. Evolution of cooperation and control of cheating in a social microbe. PNAS 108:10855–62
    [Google Scholar]
  108. Tenaillon O. 2014. The utility of Fisher's geometric model in evolutionary genetics. Annu. Rev. Ecol. Evol. Syst. 45:179–201
    [Google Scholar]
  109. Thompson JN. 1985. Constraints on arms races in coevolution. Trends Ecol. Evol. 1:105–7
    [Google Scholar]
  110. Thompson JN. 1997. The Coevolutionary Process Chicago: Univ. Chicago Press
  111. Thompson JN. 2005. The Geographic Mosaic of Coevolution Chicago: Univ. Chicago Press
  112. Thrall PH, Laine AL, Ravensdale M, Nemri A, Dodds PN et al. 2012. Rapid genetic change underpins antagonistic coevolution in a natural host‐pathogen metapopulation. Ecol. Lett. 15:425–35
    [Google Scholar]
  113. Trivers RL. 1974. Parent-offspring conflict. Am. Zool. 14:249–64
    [Google Scholar]
  114. Vacquier VD, Swanson WJ 2011. Selection in the rapid evolution of gamete recognition proteins in marine invertebrates. Cold Spring Harb. Perspect. Biol. 3:a002931
    [Google Scholar]
  115. Van Cleve J, Akçay E 2014. Pathways to social evolution: reciprocity, relatedness, and synergy. Evolution 68:2245–58
    [Google Scholar]
  116. Van Valen L 1973. A new evolutionary law. Evol. Theory 1:1–30
    [Google Scholar]
  117. Vermeij GJ. 1987. Evolution and Escalation: An Ecological History of Life Princeton, NJ: Princeton Univ. Press
  118. Wagner GP, Pavlicev M, Cheverud JM 2007. The road to modularity. Nat. Rev. Genet. 8:921
    [Google Scholar]
  119. West-Eberhard MJ. 1979. Sexual selection, social competition, and evolution. Proc. Am. Philos. Soc. 123:222–34
    [Google Scholar]
  120. Wilson AM, Hubel TY, Wilshin SD, Lowe JC, Lorenc M et al. 2018. Biomechanics of predator–prey arms race in lion, zebra, cheetah and impala. Nature 554:183–88
    [Google Scholar]
  121. Wolf J, Oakey R, Feil R 2014. Imprinted gene expression in hybrids: perturbed mechanisms and evolutionary implications. Heredity 113:167
    [Google Scholar]
  122. Zaman L, Meyer JR, Devangam S, Bryson DM, Lenski RE, Ofria C 2014. Coevolution drives the emergence of complex traits and promotes evolvability. PLOS Biol 12:e1002023
    [Google Scholar]
  123. Zeh DW, Zeh JA 2000. Reproductive mode and speciation: the viviparity‐driven conflict hypothesis. Bioessays 22:938–46
    [Google Scholar]
  124. Zuk M. 2007. Riddled with Life: Friendly Worms, Ladybug Sex, and the Parasites That Make Us Who We Are San Diego: Harcourt
/content/journals/10.1146/annurev-ecolsys-110617-062527
Loading
/content/journals/10.1146/annurev-ecolsys-110617-062527
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error