To put marine disease impacts in context requires a broad perspective on the roles infectious agents have in the ocean. Parasites infect most marine vertebrate and invertebrate species, and parasites and predators can have comparable biomass density, suggesting they play comparable parts as consumers in marine food webs. Although some parasites might increase with disturbance, most probably decline as food webs unravel. There are several ways to adapt epidemiological theory to the marine environment. In particular, because the ocean represents a three-dimensional moving habitat for hosts and parasites, models should open up the spatial scales at which infective stages and host larvae travel. In addition to open recruitment and dimensionality, marine parasites are subject to fishing, filter feeders, dose-dependent infection, environmental forcing, and death-based transmission. Adding such considerations to marine disease models will make it easier to predict which infectious diseases will increase or decrease in a changing ocean.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Aguirre-Macedo ML, Vidal-Martínez VM, Lafferty KD. 2011. Trematode communities in snails can indicate impact and recovery from hurricanes in a tropical coastal lagoon. Int. J. Parasitol. 41:1403–8 [Google Scholar]
  2. Altstatt JM, Ambrose RF, Engle JM, Haaker PL, Lafferty KD, Raimondi PT. 1996. Recent declines of black abalone Haliotis cracherodii on the mainland coast of central California. Mar. Ecol. Prog. Ser. 142:185–92 [Google Scholar]
  3. Alvarez-Filip L, Dulvy NK, Gill JA, Cote IM, Watkinson AR. 2009. Flattening of Caribbean coral reefs: region-wide declines in architectural complexity. Proc. R. Soc. B 276:3019–25 [Google Scholar]
  4. Bates AE, Hilton BJ, Harley CDG. 2009. Effects of temperature, season and locality on wasting disease in the keystone predatory sea star Pisaster ochraceus. Dis. Aquat. Org. 86:245–51 [Google Scholar]
  5. Behrens MD, Lafferty KD. 2004. Effects of marine reserves and urchin disease on southern California rocky reef communities. Mar. Ecol. Prog. Ser. 279:129–39 [Google Scholar]
  6. Behringer DC, Silliman BR, Lafferty KD. , eds. 2018. Marine Disease Ecology London: Oxford Univ. Press. In press
  7. Ben-Horin T, Bidegain G, Huey L, Narvaez D, Bushek D. 2015. Parasite transmission through suspension feeding. J. Invertebr. Pathol. 131:155–76 [Google Scholar]
  8. Ben-Horin T, Lafferty KD, Bidegain G, Lenihan HS. 2016. Fishing diseased abalone to promote yield and conservation. Philos. Trans. R. Soc. B 371:20150211 [Google Scholar]
  9. Ben-Horin T, Lenihan HS, Lafferty KD. 2013. Variable intertidal temperature explains why disease endangers black abalone. Ecology 94:161–68 [Google Scholar]
  10. Bertness MD, Bruno JF, Silliman BR, Stachowicz JJ. 2014. Marine Community Ecology and Conservation Sunderland, MA: Sinauer
  11. Bidegain G, Powell EN, Klinck JM, Ben-Horin T, Hofmann EE. 2016a. Marine infectious disease dynamics and outbreak thresholds: contact transmission, pandemic infection, and the potential role of filter feeders. Ecosphere 7:e01286 [Google Scholar]
  12. Bidegain G, Powell EN, Klinck JM, Ben-Horin T, Hofmann EE. 2016b. Microparasitic disease dynamics in benthic suspension feeders: infective dose, non-focal hosts, and particle diffusion. Ecol. Model. 328:44–61 [Google Scholar]
  13. Bidegain G, Powell EN, Klinck JM, Hofmann EE, Ben-Horin T. et al. 2017. Modeling the transmission of Perkinsus marinus in the Eastern oyster Crassostrea virginica. Fish. Res. 186:82–93 [Google Scholar]
  14. Brandt ME, McManus JW. 2009. Disease incidence is related to bleaching extent in reef-building corals. Ecology 90:2859–67 [Google Scholar]
  15. Brussaard CP. 2004. Viral control of phytoplankton populations—a review. J. Eukaryot. Microbiol. 51:125–38 [Google Scholar]
  16. Buck JC, Hechinger RF, Wood AC, Stewart TE, Kuris AM, Lafferty KD. 2017. Host density increases parasite recruitment but decreases host risk in a snail–trematode system. Ecology 98:2029–38 [Google Scholar]
  17. Burge CA, Closek CJ, Friedman CS, Groner ML, Jenkins CM. et al. 2016. The use of filter-feeders to manage disease in a changing world. Integr. Comp. Biol. 56:573–87 [Google Scholar]
  18. Burgess T, Tinker MT, Johnson C, MacCormick H, Melli A, Conrad P. 2013. Epidemiological analysis of protozoal infections in sea otters at Big Sur and Monterey. Sea Otter Population Biology at Big Sur and Monterey California: Investigating the Consequences of Resource Abundance and Anthropogenic Stressors for Sea Otter Recovery MT Tinker 197–206 DRAFT Final Report to California Coastal Conservancy and U.S. Fish and Wildlife Service, Univ. Calif., Santa Cruz, CA [Google Scholar]
  19. Bushek D, Ford SE, Burt I. 2012. Long-term patterns of an estuarine pathogen along a salinity gradient. J. Mar. Res. 70:225–51 [Google Scholar]
  20. Bushek D, Ford SE, Chintala MM. 2002. Comparison of in vitro-cultured and wild-type Perkinsus marinus. III. Fecal elimination and its role in transmission. Dis. Aquat. Org. 51:217–25 [Google Scholar]
  21. Chu FLE, Volety AK. 1997. Disease processes of the parasite Perkinsus marinus in eastern oyster Crassostrea virginica: minimum dose for infection initiation, and interaction of temperature, salinity and infective cell dose. Dis. Aquat. Org. 28:61–68 [Google Scholar]
  22. Cruz-Flores R, Caceres-Martinez J, Munoz-Flores M, Vasquez-Yeomans R, Rodriguez MH. et al. 2016. Hyperparasitism by the bacteriophage (Caudovirales) infecting Candidatus Xenohaliotis californiensis (Rickettsiales-like prokaryote) parasite of wild abalone Haliotis fulgens and Haliotis corrugata from the Peninsula of Baja California, Mexico. J. Invertebr. Pathol. 140:58–67 [Google Scholar]
  23. Culver CS, Kuris AM. 2000. The apparent eradication of a locally established introduced marine pest. Biol. Invasions 2:245–53 [Google Scholar]
  24. Culver CS, Kuris AM. 2004. Susceptibility of California gastropods to an introduced South African sabellid polychaete. Terebrasabella heterouncinata. Invertebr. Biol. 123:316–23 [Google Scholar]
  25. Dann P. 2013. Little penguin (Eudyptula minor) In Penguins: Natural History and Conservation,. PG Borboroglu, PD Boersma 305–20 Seattle, WA: Univ. Wash. Press
  26. Dobson AP, May RM. 1987. The effects of parasites on fish populations—theoretical aspects. Int. J. Parasitol. 17:363–70 [Google Scholar]
  27. Dougherty ER, Carlson CJ, Bueno VM, Burgio KR, Cizauskas CA. et al. 2016. Paradigms for parasite conservation. Conserv. Biol. 30:724–33 [Google Scholar]
  28. Duchene L. 2016. Chem-free fixes emerging in sea lice saga. Glob. Aquac. Alliance March 28. https://www.aquaculturealliance.org/advocate/chem-free-fixes-emerging-in-sea-lice-saga/
  29. Dunne JA, Lafferty KD, Dobson AP, Hechinger RF, Kuris AM. et al. 2013. Parasites affect food web structure primarily through increased diversity and complexity. PLOS Biol 11:e1001579 [Google Scholar]
  30. Eisenlord ME, Groner ML, Yoshioka RM, Elliott J, Maynard J. et al. 2016. Ochre star mortality during the 2014 wasting disease epizootic: role of population size structure and temperature. Philos. Trans. R. Soc. B 371:20150212 [Google Scholar]
  31. Estes JA, Duggins DO. 1995. Sea otters and kelp forests in Alaska: generality and variation in a community ecology paradigm. Ecol. Monogr. 65:75–100 [Google Scholar]
  32. Ford SE, Xu Z, Debrosse G. 2001. Use of particle filtration and UV irradiation to prevent infection by Haplosporidium nelsoni (MSX) and Perkinsus marinus (Dermo) in hatchery-reared larval and juvenile oysters. Aquaculture 194:37–49 [Google Scholar]
  33. Friedman CS, Biggs W, Shields JD, Hedrick RP. 2002. Transmission of withering syndrome in black abalone, Haliotis cracherodii leach. J. Shellfish Res. 21:817–24 [Google Scholar]
  34. Friedman CS, Crosson LM. 2012. Putative phage hyperparasite in the rickettsial pathogen of abalone, “Candidatus Xenohaliotis californiensis.” Microb. Ecol 64:1064–72 [Google Scholar]
  35. Friedman CS, Wight N, Crosson LM, VanBlaricom GR, Lafferty KD. 2014a. Reduced disease in black abalone following mass mortality: phage therapy and natural selection. Front. Microbiol. 5:78 [Google Scholar]
  36. Friedman CS, Wight N, Crosson LM, White SJ, Strenge RM. 2014b. Validation of a quantitative PCR assay for detection and quantification of ‘Candidatus Xenohaliotis californiensis.’ Dis. Aquat. Org. 108:251–59 [Google Scholar]
  37. Gaines SD, Lafferty KD. 1995. Modeling the dynamics of marine species: the importance of incorporating larval dispersal. Ecology of Marine Invertebrate Larvae L McEdward 389–412 Boca Raton, FL: CRC [Google Scholar]
  38. Greig DJ, Gulland FMD, Kreuder C. 2005. A decade of live California sea lion (Zalophus californianus) strandings along the central California coast: causes and trends, 1991–2000. Aquat. Mamm. 31:11–22 [Google Scholar]
  39. Gulland FMD, Haulena M, Fauquier D, Langlois G, Lander ME. et al. 2002. Domoic acid toxicity in Californian sea lions (Zalophus californianus): clinical signs, treatment and survival. Vet. Rec. 150:475–80 [Google Scholar]
  40. Harvell CD, Kim K, Burkholder JM, Colwell RR, Epstein PR. et al. 1999. Emerging marine diseases—climate links and anthropogenic factors. Science 285:1505–10 [Google Scholar]
  41. Haskin HH, Stauber LA, Mackin JA. 1966. Minchinia nelsoni n. sp. (Haplosporida, Haplosporidiidae): causative agent of the Delaware Bay oyster epizootic. Science 153:1414–16 [Google Scholar]
  42. Hechinger RF, Lafferty KD. 2005. Host diversity begets parasite diversity: bird final hosts and trematodes in snail intermediate hosts. Proc. R. Soc. B 272:1059–66 [Google Scholar]
  43. Hechinger RF, Lafferty KD, Dobson AP, Brown JH, Kuris AM. 2011. A common scaling rule for abundance, energetics, and production of parasitic and free-living species. Science 333:445–48 [Google Scholar]
  44. Heide-Jorgensen MP, Harkonen T. 1992. Epizootiology of the seal disease in the Eastern North Sea. J. Appl. Ecol. 29:99–107 [Google Scholar]
  45. Heisler J, Glibert PM, Burkholder JM, Anderson DM, Cochlan W. et al. 2008. Eutrophication and harmful algal blooms: a scientific consensus. Harmful Algae 8:3–13 [Google Scholar]
  46. Hewson I, Button JB, Gudenkauf BM, Miner B, Newton AL. et al. 2014. Densovirus associated with sea-star wasting disease and mass mortality. PNAS 111:17278–83 [Google Scholar]
  47. Hooper C, Hardy-Smith P, Handlinger J. 2007. Ganglioneuritis causing high mortalities in farmed Australian abalone (Haliotis laevigata and Haliotis rubra). Aust. Vet. J. 85:188–93 [Google Scholar]
  48. Hughes JE, Deegan LA, Wyda JC, Weaver MJ, Wright A. 2002. The effects of eelgrass habitat loss on estuarine fish communities of southern New England. Estuaries 25:235–49 [Google Scholar]
  49. Hughes TP. 1994. Catastrophes, phase shifts, and large scale degradation of a Caribbean coral reef. Science 265:1547–51 [Google Scholar]
  50. Huspeni TC, Lafferty KD. 2004. Using larval trematodes that parasitize snails to evaluate a salt-marsh restoration project. Ecol. Appl. 14:795–804 [Google Scholar]
  51. Jessup D, Miller M, Ames J, Harris M, Kreuder C. et al. 2004. Southern sea otters as a sentinel for marine ecosystem health. EcoHealth 1:239–45 [Google Scholar]
  52. Johnson MB, Lafferty KD, van Oosterhout C, Cable J. 2011. Parasite transmission in social interacting hosts: monogenean epidemics in guppies. PLOS ONE 6:e22634 [Google Scholar]
  53. Kuris AM, Culver CS. 1999. An introduced sabellid polychaete pest infesting cultured abalones and its potential spread to other California gastropods. Invertebr. Biol. 118:391–403 [Google Scholar]
  54. Kuris AM, Hechinger RF, Shaw JC, Whitney KL, Aguirre-Macedo L. et al. 2008. Ecosystem energetic implications of parasite and free-living biomass in three estuaries. Nature 454:515–18 [Google Scholar]
  55. Kuris AM, Lafferty KD. 1992. Modelling crustacean fisheries: effects of parasites on management strategies. Can. J. Fish. Aquat. Sci. 49:327–36 [Google Scholar]
  56. Lafferty KD. 1992. Foraging on prey that are modified by parasites. Am. Nat. 140:854–67 [Google Scholar]
  57. Lafferty KD. 1997. Environmental parasitology: What can parasites tell us about human impacts on the environment?. Parasitol. Today 13:251–55 [Google Scholar]
  58. Lafferty KD. 2004. Fishing for lobsters indirectly increases epidemics in sea urchins. Ecol. Appl. 14:1566–73 [Google Scholar]
  59. Lafferty KD. 2015. Sea otter health: challenging a pet hypothesis. Int. J. Parasitol. 4:291–94 [Google Scholar]
  60. Lafferty KD, Ben-Horin T. 2013. Abalone farm discharges the withering syndrome pathogen into the wild. Front. Microbiol. 4:373 [Google Scholar]
  61. Lafferty KD, DeLeo G, Briggs CJ, Dobson AP, Gross T, Kuris AM. 2015a. A general consumer–resource population model. Science 349:854–57 [Google Scholar]
  62. Lafferty KD, Dobson AP, Kuris AM. 2006. Parasites dominate food web links. PNAS 103:11211–16 [Google Scholar]
  63. Lafferty KD, Gerber LR. 2002. Good medicine for conservation biology: the intersection of epidemiology and conservation theory. Conserv. Biol. 16:593–604 [Google Scholar]
  64. Lafferty KD, Harvell CD. 2014. The role of infectious diseases in marine communities. Marine Community Ecology and Conservation MD Bertness, JF Bruno, BR Silliman, JJ Stachowicz 85–108 Sunderland, MA: Sinauer [Google Scholar]
  65. Lafferty KD, Harvell CD, Conrad JM, Friedman CS, Kent ML. et al. 2015b. Infectious diseases affect marine fisheries and aquaculture economics. Annu. Rev. Mar. Sci. 7:471–96 [Google Scholar]
  66. Lafferty KD, Holt RD. 2003. How should environmental stress affect the population dynamics of disease. Ecol. Lett. 6:797–802 [Google Scholar]
  67. Lafferty KD, Kuris AM. 1993. Mass mortality of abalone Haliotis cracherodii on the California Channel Islands: tests of epidemiological hypotheses. Mar. Ecol. Prog. Ser. 96:239–48 [Google Scholar]
  68. Lafferty KD, Morris AK. 1996. Altered behavior of parasitized killifish increases susceptibility to predation by bird final hosts. Ecology 77:1390–97 [Google Scholar]
  69. Lafferty KD, Porter JW, Ford SE. 2004. Are diseases increasing in the ocean. Annu. Rev. Ecol. Evol. Syst. 35:31–54 [Google Scholar]
  70. Lafferty KD, Suchanek TH. 2016. Revisiting Paine's 1966 sea star removal experiment, the most-cited empirical article in the American Naturalist. Am. Nat. 188:365–78 [Google Scholar]
  71. Lafferty KD, Tinker MT. 2014. Sea otters are recolonizing southern California in fits and starts. Ecosphere 5:1–11 [Google Scholar]
  72. Lamb JB, True JD, Piromvaragorn S, Willis BL. 2014. Scuba diving damage and intensity of tourist activities increases coral disease prevalence. Biol. Conserv. 178:88–96 [Google Scholar]
  73. Lamb JB, van de Water JAJM, Bourne D, Altier C, Hein MY. et al. 2017. Seagrass ecosystems reduce exposure to bacterial pathogens of humans, fishes and invertebrates. Science 355:731–33 [Google Scholar]
  74. Lamb JB, Wenger AS, Devlin MJ, Ceccarelli DM, Williamson DH, Willis BL. 2016. Reserves as tools for alleviating impacts of marine disease. Philos. Trans. R. Soc. B 371:20150210 [Google Scholar]
  75. Lamb JB, Williamson DH, Russ GR, Willis BL. 2015. Protected areas mitigate diseases of reef-building corals by reducing damage from fishing. Ecology 96:2555–67 [Google Scholar]
  76. Lauzon-Guay JS, Scheibling RE. 2010. Spatial dynamics, ecological thresholds and phase shifts: modelling grazer aggregation and gap formation in kelp beds. Mar. Ecol. Prog. Ser. 403:29–41 [Google Scholar]
  77. Lessios HA, Robertson DR, Cubit JD. 1984. Spread of Diadema mass mortality through the Caribbean. Science 226:335–37 [Google Scholar]
  78. Levine MM, Nalin DR, Rennels MB, Hornick RB, Sotman S. et al. 1979. Genetic susceptibility to cholera. Ann. Hum. Biol. 6:369–74 [Google Scholar]
  79. Lindsay DS, Collins MV, Mitchell SM, Wetch CN, Rosypal AC. et al. 2004. Survival of Toxoplasma gondii oocysts Eastern oysters (Crassostrea virginica). J. Parasitol. 90:1054–57 [Google Scholar]
  80. Lloyd-Smith JO, Greig DJ, Hietala S, Ghneim GS, Palmer L. et al. 2007. Cyclical changes in seroprevalence of leptospirosis in California sea lions: endemic and epidemic disease in one host species. BMC Infect. Dis. 7:125 [Google Scholar]
  81. Loker ES. 1994. On being a parasite in an invertebrate host: a short survival course. J. Parasitol. 80:728–47 [Google Scholar]
  82. Mackin JG, Owen HM, Collier A. 1950. Preliminary note on the occurrence of a new protistan parasite, Dermocystidiummarinum n. sp. in Crassostrea virginica (Gmelin). Science 111:328–29 [Google Scholar]
  83. Marcogliese DJ, Cone DK. 1997. Food webs: a plea for parasites. Trends Ecol. Evol. 12:320–25 [Google Scholar]
  84. Maynard J, van Hooidonk R, Eakin CM, Puotinen M, Garren M. et al. 2015. Projections of climate conditions that increase coral disease susceptibility and pathogen abundance and virulence. Nat. Clim. Change 5:688–94 [Google Scholar]
  85. McCallum HI, Gerber L, Jani A. 2005. Does infectious disease influence the efficacy of marine protected areas? A theoretical framework. J. Appl. Ecol. 42:688–98 [Google Scholar]
  86. McCallum HI, Kuris AM, Harvell CD, Lafferty KD, Smith GW, Porter J. 2004. Does terrestrial epidemiology apply to marine systems. Trends Ecol. Evol. 19:585–91 [Google Scholar]
  87. Menge BA, Cerny-Chipman EB, Johnson A, Sullivan J, Gravem S, Chan F. 2016. Sea star wasting disease in the keystone predator Pisaster ochraceus in Oregon: insights into differential population impacts, recovery, predation rate, and temperature effects from long-term research. PLOS ONE 11:e0153994 [Google Scholar]
  88. Miller MA, Dodd E, Berberich E, Batac F, Henkel L. et al. 2013. Preliminary findings from necropsy of tagged sea otters from the Monterey‐-Big Sur Study. Sea Otter Population Biology at Big Sur and Monterey California: Investigating the Consequences of Resource Abundance and Anthropogenic Stressors for Sea Otter Recovery MT Tinker 207–35 DRAFT Final Report to California Coastal Conservancy and U.S. Fish and Wildlife Service, Univ. Calif., Santa Cruz, CA [Google Scholar]
  89. Miller MA, Gardner IA, Kreuder C, Paradies DM, Worcester KR. et al. 2002. Coastal freshwater runoff is a risk factor for Toxoplasma gondii infection of southern sea otters (Enhydra lutris nereis). Int. J. Parasitol. 32:997–1006 [Google Scholar]
  90. Miner CM, Altstatt JM, Raimondi PT, Minchinton TE. 2006. Recruitment failure and shifts in community structure following mass mortality limit recovery prospects of black abalone. Mar. Ecol. Prog. Ser. 327:107–17 [Google Scholar]
  91. Molloy SD, Pietrak MR, Bouchard DA, Bricknell I. 2011. Ingestion of Lepeophtheirus salmonis by the blue mussel Mytilus edulis. Aquaculture 311:61–64 [Google Scholar]
  92. Mordecai EA, Paaijmans KP, Johnson LR, Balzer C, Ben-Horin T. et al. 2013. Optimal temperature for malaria transmission is dramatically lower than previously predicted. Ecol. Lett. 16:22–30 [Google Scholar]
  93. Morgan O. 2004. Infectious disease risks from dead bodies following natural disasters. Rev. Panam. Salud Publica 15:307–12 [Google Scholar]
  94. Nowakowski AJ, Whitfield SM, Eskew EA, Thompson ME, Rose JP. et al. 2016. Infection risk decreases with increasing mismatch in host and pathogen environmental tolerances. Ecol. Lett. 19:1051–61 [Google Scholar]
  95. Paine RT. 1966. Food web complexity and species diversity. Am. Nat. 100:65–75 [Google Scholar]
  96. Pollock FJ, Lamb JB, Field SN, Heron SF, Schaffelke B. et al. 2014. Sediment and turbidity associated with offshore dredging increase coral disease prevalence on nearby reefs. PLOS ONE 9:e102498 [Google Scholar]
  97. Powell EN, Klinck JM, Ashton-Alcox K, Hofmann EE, Morson J. 2012. The rise and fall of Crassostrea virginica oyster reefs: the role of disease and fishing in their demise and a vignette on their management. J. Mar. Res. 70:505–58 [Google Scholar]
  98. Prager KC, Greig DJ, Alt DP, Galloway RL, Hornsby RL. et al. 2013. Asymptomatic and chronic carriage of Leptospira interrogans serovar Pomona in California sea lions (Zalophus californianus). Vet. Microbiol. 164:177–83 [Google Scholar]
  99. Prescott J, Bushmaker T, Fischer R, Miazgowicz K, Judson S, Munster VJ. 2015. Postmortem stability of Ebola virus. Emerg. Infect. Dis. 21:856–59 [Google Scholar]
  100. Richardson LL. 2004. Black band disease. Coral Health and Disease E Rosenberg, Y Loya 325–36 Berlin: Springer-Verlag [Google Scholar]
  101. Rudolf V, Lafferty KD. 2011. Stage structure alters how complexity affects stability of ecological networks. Ecol. Lett. 14:75–79 [Google Scholar]
  102. Schikorski D, Renault T, Saulnier D, Faury N, Moreau P, Pepin JF. 2011. Experimental infection of Pacific oyster Crassostrea gigas spat by ostreid herpesvirus 1: demonstration of oyster spat susceptibility. Vet. Res. 42:27 [Google Scholar]
  103. Smith NF. 2007. Associations between shorebird abundance and parasites in the sand crab, Emerita analoga, along the California coast. J. Parasitol. 93:265–73 [Google Scholar]
  104. Sokolow SH, Foley P, Foley JE, Hastings A, Richardson LL. 2009. Editor's choice: Disease dynamics in marine metapopulations: modelling infectious diseases on coral reefs. J. Appl. Ecol. 46:621–31 [Google Scholar]
  105. Sonnenholzner JI, Lafferty KD, Ladah LB. 2011. Food webs and fishing affect parasitism of the sea urchin Eucidaris galapagensis in the Galápagos. Ecology 92:2276–84 [Google Scholar]
  106. Soto MA, Lotz JM. 2001. Epidemiological parameters of White Spot Syndrome virus infections in Litopenaeus vannamei and L. setiferus. J. Invertebr. Pathol. 78:9–15 [Google Scholar]
  107. Strona G, Lafferty KD. 2016. Environmental change makes robust ecological networks fragile. Nat. Commun. 7:12462 [Google Scholar]
  108. Swinton J, Harwood J, Grenfell BT, Gilligan CA. 1998. Persistence thresholds for phocine distemper virus infection in harbour seal Phoca vitulina metapopulations. J. Anim. Ecol. 67:54–68 [Google Scholar]
  109. Tegner MJ. 1989. The California abalone fishery: production, ecological interactions, and prospects for the future. Marine Invertebrate Fisheries: Their Assessment and Management JF Caddy 401–20 New York: Wiley [Google Scholar]
  110. Thomas NJ, Cole RA. 1996. The risk of disease and threats to the wild population. Endanger. Species Updat. 13:24–28 [Google Scholar]
  111. Tinker MT. 2013. Sea Otter Population Biology at Big Sur and Monterey California: Investigating the Consequences of Resource Abundance and Anthropogenic Stressors for Sea Otter Recovery DRAFT Final Report to California Coastal Conservancy and U.S. Fish and Wildlife Service, Univ. Calif., Santa Cruz, CA
  112. Tinker MT, Estes JA, Bentall G. 2008. Food limitation leads to behavioral diversification and dietary specialization in sea otters. PNAS 105:560–65 [Google Scholar]
  113. Turner WC, Kausrud KL, Krishnappa YS, Cromsigt J, Ganz HH. et al. 2014. Fatal attraction: vegetation responses to nutrient inputs attract herbivores to infectious anthrax carcass sites. Proc. R. Soc. B 281:20141785 [Google Scholar]
  114. Vågsholm I, Djupvik HO, Willumsen FV, Tveit AM, Tangen K. 1994. Infectious salmon anaemia (ISA) epidemiology in Norway. Prev. Vet. Med. 19:277–90 [Google Scholar]
  115. van Hooidonk R, Huber M. 2009. Quantifying the quality of coral bleaching predictions. Coral Reefs 28:579–87 [Google Scholar]
  116. Ward JR, Lafferty KD. 2004. The elusive baseline of marine disease: Are diseases in ocean ecosystems increasing?. PLOS Biol 2:e120 [Google Scholar]
  117. Wood CL, Lafferty KD. 2015. How have fisheries affected parasite communities. Parasitology 142:134–44 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error