Mediterranean-type ecosystems (MTEs) are located today in southwestern Australia, the Cape Region of South Africa, the Mediterranean Basin, California, and central Chile. These MTEs possess the highest levels of plant species richness in the world outside of the wet tropics. These ecosystems include a variety of vegetation structures that range from the iconic mediterranean-type shrublands to deciduous and evergreen woodlands, evergreen forests, and herblands and grasslands. Sclerophyll vegetation similar to today's mediterranean-type shrublands was already present on oligotrophic soils in the wet and humid climate of the Cretaceous, with fire-adapted Paleogene lineages in southwestern Australia and the Cape Region. The novel mediterranean-type climate (MTC) seasonality present since the middle Miocene has allowed colonization of MTEs from a regional species pool with associated diversification. Fire persistence has been a primary driving factor for speciation in four of the five regions. Understanding the regional patterns of plant species diversity among the MTEs involves complex interactions of geologic and climatic histories for each region as well as ecological factors that have promoted diversification in the Neogene and Quaternary. A critical element of species richness for many MTE lineages has been their ability to speciate and persist at fine spatial scales, with low rates of extinction.

[Erratum, Closure]

An erratum has been published for this article:
Mediterranean Biomes: Evolution of Their Vegetation, Floras, and Climate

Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Ackerly D. 2009. Conservatism and diversification of plant functional traits: evolutionary rates versus phylogenetic signal. PNAS 106:19699–706 [Google Scholar]
  2. Anacker BL, Whittall JB, Goldberg EE, Harrison SP. 2011. Origins and consequences of serpentine endemism in the California flora. Evolution 65:365–76 [Google Scholar]
  3. Armesto JJ, Arroyo MTK, Hinojosa FL. 2007. The Mediterranean environment of central PM Chile. The Physical Geography of South America TT Veblen, KR Young, AR Orme, pp. 184–99 Oxford, UK: Oxford Univ. Press [Google Scholar]
  4. Arroyo J, Marañón T. 1990. Community ecology and distributional spectra of Mediterranean shrublands and heathlands in southern Spain. J. Biogeogr 17:163–76 [Google Scholar]
  5. Arroyo MTK, Cavieres L, Marticorena C, Muñoz-Schick M. 1995. Convergence in the mediterranean floras in Central Chile and California: insights from comparative biogeography. Ecology and Biogeography of Mediterranean Ecosystems in Chile, California, and Australia MTK Arroyo, PH Zedler, MD Fox 43–88 New York: Springer-Verlag [Google Scholar]
  6. Arroyo MTK, Marticorena C, Matthei O, Muñoz M, Pliskoff P. 2002. Analysis of the contribution and efficiency of the Santuario de la Naturaleza Yerba Loca, 33°S in protecting the vascular plant flora (Metropolitan and Fifth regions of Chile). Rev. Chil. Hist. Nat. 75:767–92 [Google Scholar]
  7. Axelrod DI. 1975. Evolution and biogeography of Madrean-Tethyan sclerophyll vegetation. Ann. Mo. Bot. Gard. 62:280–334 [Google Scholar]
  8. Axelrod DI. 1980. History of the Maritime Closed-Cone Pines, Alta and Baja California 120 Berkeley: Univ. Calif. Press [Google Scholar]
  9. Axelrod DI. 1989. Age and origin of chaparral. The California Chaparral: Paradigms Reexamined SC Keeley 7–19 Los Angeles, CA: Nat. Hist. Mus. Los Angeles Cty. [Google Scholar]
  10. Axelrod DI, Schorn HE. 1994. The 15 Ma floristic crisis at Gillam Spring, Washoe County, northwestern Nevada. PaleoBios 16:1–10 [Google Scholar]
  11. Baldwin BG. 2014. Origins of plant diversity in the California Floristic Province. Annu. Rev. Ecol. Evol. Syst. 45:347–369 [Google Scholar]
  12. Barker NP, Weston PH, Rutschmann F, Sauquet H. 2007. Molecular dating of the ‘Gondwanan’ plant family Proteaceae is only partially congruent with the timing of the break-up of Gondwana. J. Biogeogr. 34:2012–27 [Google Scholar]
  13. Barrón E, Rivas-Carballo R, Postigo-Mijarra JM, Alcalde-Olivares C, Vieira M. et al. 2010. The Cenozoic vegetation of the Iberian Peninsula: a synthesis. Rev. Palaeobot. Palynol. 162:382–402 [Google Scholar]
  14. Beard JS. 1977. Tertiary evolution of the Australian flora in the light of latitudinal movements of the continent. J. Biogeogr. 4:111–18 [Google Scholar]
  15. Beerling D, Woodward FI. 2001. Vegetation and the Terrestrial Carbon Cycle: The First 400 Million Years Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  16. Bergh NG, Verboom GA, Rouget M, Cowling RM. 2014. Vegetation types of the Greater Cape Floristic Region. Fynbos: Ecology, Evolution, and Conservation of a Megadiverse Region N Allsopp, JF Colville, GA Verboom 26–46 Oxford, UK: Oxford University Press [Google Scholar]
  17. Bond WJ. 2015. Fires in the Cenozoic: a late flowering of flammable ecosystems. Front. Plant Sci. 5:1–11 [Google Scholar]
  18. Bond WJ, Scott AC. 2010. Fire and the spread of flowering plants in the Cretaceous. New Phytol 188:1137–50 [Google Scholar]
  19. Bradford JC, Barnes RW. 2001. Phylogenetics and classification of Cunoniaceae (Oxalidales) using chloroplast DNA sequences and morphology. Syst. Bot. 26:354–85 [Google Scholar]
  20. Byrne M, Hopper SD. 2008. Granite outcrops as ancient islands in old landscapes: evidence from the phylogeography and population genetics of Eucalyptus caesia (Myrtaceae) in Western Australia. Biol. J. Linn. Soc. 93:177–88 [Google Scholar]
  21. Byrne M, Steane D, Joseph L, Yeates DK, Jordan GJ. et al. 2011. Decline of a biome: evolution, contraction, fragmentation, extinction and invasion of the Australian mesic zone biota. J. Biogeogr. 38:1635–56 [Google Scholar]
  22. Bytebier B, Antonelli A, Bellstedt DU, Linder HP. 2011. Estimating the age of fire in the Cape flora of South Africa from an orchid phylogeny. Proc. R. Soc. B 278:188–95 [Google Scholar]
  23. Carpenter RJ, Macphail MK, Jordan GL, Hill RS. 2015. Fossil evidence for open, Proteaceae-dominated heathlands and fire in the Late Cretaceous of Australia. Am. J. Bot. 102:1–16 [Google Scholar]
  24. Causley CL, Fowler WM, Lamont BB, He T. 2016. Fitness benefits of serotiny in fire- and drought-prone environments. Plant Ecol 217:773–79 [Google Scholar]
  25. Chacón J, de Assis MC, Meerow AW, Renner SS. 2012. From east Gondwana to central America: historical biogeography of the Alstroemeriaceae. J. Biogeogr. 39:1806–18 [Google Scholar]
  26. Cornell HV, Lawton JH. 1992. Species interactions, local and regional processes, and limits to the richness of ecological communities: a theoretical perspective. J. Anim. Ecol. 61:1–12 [Google Scholar]
  27. Cowling RM, Ojeda F, Lamont BB, Rundel PW, Lechmere-Oertel R. 2005. Rainfall reliability, a neglected factor in explaining convergence and divergence of plant traits in fire-prone Mediterranean-climate ecosystems. Glob. Ecol. Biogeogr 14:509–19 [Google Scholar]
  28. Cowling RM, Potts AJ, Bradshaw P, Colville J, Arianoutsou M. et al. 2015. Variation in plant diversity in Mediterranean climate ecosystems: the role of climatic and topographical stability. J. Biogeogr. 42:552–64 [Google Scholar]
  29. Cowling RM, Procheş Ş, Partridge TC. 2009. Explaining the uniqueness of the Cape flora: incorporating geomorphic evolution as a factor for explaining its diversification. Mol. Phylogenetics Evol. 51:64–74 [Google Scholar]
  30. Cowling RM, Rundel PW, Lamont BB, Arroyo MTK, Arianoutsou M. 1996. Plant diversity in Mediterranean-climate regions. Trends Ecol. Evol. 11:362–66 [Google Scholar]
  31. Crayn DM, Rossetto M, Maynard DJ. 2006. Molecular phylogeny and dating reveals an Oligo-Miocene radiation of dry-adapted shrubs (former Tremandraceae) from rainforest tree progenitors (Elaeocarpaceae) in Australia. Am. J. Bot. 93:1328–42 [Google Scholar]
  32. Crisp MD, Burrows GE, Cook LG, Thornhill AH, Bowman DM. 2011. Flammable biomes dominated by eucalypts originated at the Cretaceous-Palaeogene boundary. Nat. Commun. 2:1931–8 [Google Scholar]
  33. Crisp MD, Cook LG. 2013. How was the Australian flora assembled over the last 65 million years? A molecular phylogenetic perspective. Annu. Rev. Ecol. Evol. Syst. 44:303–24 [Google Scholar]
  34. Crisp MD, Cook LG, Steane D. 2004. Radiation of the Australian flora: What can comparisons of molecular phylogenies across multiple taxa tell us about the evolution of diversity in present-day communities. Philos. Trans. R. Soc. B 359:1551–71 [Google Scholar]
  35. Dodson JR, Macphail MK. 2004. Palynological evidence for aridity events and vegetation change during the Middle Pliocene. Glob. Planet. Change 41:285–307 [Google Scholar]
  36. Donoghue MJ. 2008. A phylogenetic perspective on the distribution of plant diversity. PNAS 105:11549–55 [Google Scholar]
  37. Duggen S, Hoernle K, Van Den Bogaard P, Rüpke L, Morgan JP. 2003. Deep roots of the Messinian salinity crisis. Nature 422:602–6 [Google Scholar]
  38. Edwards EJ, Osborne CP, Strömberg CAE, Smith SA. C4 Grasses Consortium 2010. The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science 328:587–91 [Google Scholar]
  39. Ellis AG, Verboom GA, van der Niet T, Johnson SD, Linder HP. 2014. Speciation and extinction in the greater Cape Floristic Region. Fynbos: Ecology, Evolution, and Conservation of a Megadiverse Region N. Allsopp, JF Colville, GA Verboom 119–41 Oxford, UK: Oxford Univ. Press [Google Scholar]
  40. Fisher EC, Bar-Matthews M, Jerardino A, Marean CW. 2010. Middle and Late Pleistocene paleoscape modeling along the southern coast of South Africa. Quat. Sci. Rev 29:1382–98 [Google Scholar]
  41. Fiz-Palacios O, Valcárcel V. 2013. From Messinian crisis to Mediterranean climate: a temporal gap of diversification recovered from multiple plant phylogenies. Perspect. Plant Ecol. Evol. Syst. 15:130–37 [Google Scholar]
  42. Frakes LA. 1999. Evolution of Australian environments. Flora of Australia 1 AE Orchard 163–203 Canberra, Aust.: ABRS/CSIRO, 2nd ed.. [Google Scholar]
  43. Goldblatt P, Savolainen V, Porteous O, Sostaric I, Powell M. et al. 2002. Radiation in the Cape flora and the phylogeny of peacock irises Moraea (Iridaceae) based on four plastid DNA regions. Mol. Phylogenetics Evol. 25:341–60 [Google Scholar]
  44. Gregory-Wodzicki KM. 2000. Uplift history of the Central and Northern Andes: a review. Geol. Soc. Am. Bull. 112:1091–105 [Google Scholar]
  45. Grivet D, Climent J, Zabal-Aguirre M, Neale DB, Vendramin GG, González-Martínez SC. 2013. Adaptive evolution of Mediterranean pines. Mol. Phylogenetics Evol. 68:555–66 [Google Scholar]
  46. Groeneveld J, Enright NJ, Lamont BB, Reineking B, Frank K, Perry GLW. 2013. Species-specific traits plus stabilizing processes best explain coexistence in biodiverse fire-prone plant communities. PLOS ONE 8:e65084 doi:10.1371/journal.pone.0065084 [Google Scholar]
  47. Groom PG, Lamont BB. 2015. Plant Life of Southwestern Australia: Adaptations for Survival Warsaw, Pol: De Gruyter Open [Google Scholar]
  48. Guzmán B, Lledó D, Vargas P. 2009. Adaptive radiation in Mediterranean Cistus (Cistaceae). PLOS ONE 4:e6362 [Google Scholar]
  49. Harrison S, Safford HD, Grace JB, Viers JH, Davies KF. 2006. Regional and local species richness in an insular environment: serpentine plants in California. Ecol. Monogr. 76:41–56 [Google Scholar]
  50. He T, Lamont BB, Downes KS. 2011. Banksia born to burn. New Phytol 191:184–96 [Google Scholar]
  51. Heinrich S, Zonneveld KAF, Bickert T, Willems H. 2011. The Benguela upwelling related to the Miocene cooling events and the development of the Antarctic Circumpolar Current: evidence from calcareous dinoflagellate cysts. Paleoceanography 26:PA3209 [Google Scholar]
  52. Hershkovitz MA. 2006. Ribosomal and chloroplast DNA evidence for diversification of western American Portulacaceae in the Andean region. Gayana Bot 63:13–74 [Google Scholar]
  53. Hershkovitz MA, Arroyo MTK, Bell C, Hinojosa LF. 2006. Phylogeny of Chaetanthera (Asteraceae: Mutisieae) reveals both ancient and recent origins of high elevation lineages. Mol. Phylogenetics Evol. 41:594–605 [Google Scholar]
  54. Hinojosa LF. 2005. Cambios climáticos y vegetacionales inferidos a partir de paleofloras cenozoicas del sur de Sudamérica. Rev. Geol. Chile 32:95–115 [Google Scholar]
  55. Hinojosa LF, Armesto JJ, Villagrán C. 2006. Are Chilean coastal forests pre-Pleistocene relicts? Evidence from foliar physiognomy, paleoclimate, and paleobiogeography. J. Biogeogr 33331–41 [Google Scholar]
  56. Hinojosa LF, Villagrán C. 2005. Did South American mixed paleofloras evolve under thermal equability or in the absence of an effective Andean barrier during the Cenozoic?. Palaeogeogr. Palaeoclimatol. Palaeoecol. 217:1–23 [Google Scholar]
  57. Hoffmann V, Verboom GA, Cotterill FP. 2015. Dated plant phylogenies resolve Neogene climate and landscape evolution in the Cape floristic region. PLOS ONE 10:e0137847 [Google Scholar]
  58. Hopper SD. 2009. OCBIL theory: towards an integrated understanding of the evolution, ecology and conservation of biodiversity on old, climatically buffered, infertile landscapes. Plant Soil 322:49–86 [Google Scholar]
  59. Hopper SD, Gioia P. 2004. The southwest Australian floristic region: evolution and conservation of a global hot spot of biodiversity. Annu. Rev. Ecol. Evol. Syst 35:623–50 [Google Scholar]
  60. Hopper SD, Silveira FAO, Fiedler PL. 2015. Biodiversity hotspots and OCBIL theory. Plant Soil 403:167–216 [Google Scholar]
  61. Hubbell SP. 2001. The Unified Neutral Theory of Biodiversity and Biogeography Princeton, NJ: Princeton Univ. Press [Google Scholar]
  62. Itzstein-Davey F. 2004. A spatial and temporal Eocene palaeoenvironmental study, focusing on the Proteaceae family, from Kambalda, Western Australia. Rev. Palaeobot. Palynol 131:159–80 [Google Scholar]
  63. Jabaily SR, Sytsma KJ. 2010. Phylogenetics of Puya (Bromeliaceae): placement, major lineages, and evolution of Chilean species. Am. J. Bot. 97:337–56 [Google Scholar]
  64. Jacobs DK, Haney TA, Louie KD. 2004. Genes, diversity and geologic process on the Pacific Coast. Annu. Rev. Earth Planet. Sci 32:601–52 [Google Scholar]
  65. Jara-Arancio P, Arroyo MTK, Guerrero PC, Hinojosa LF, Arancio G, Méndez MA. 2014. Phylogenetic perspectives on biome shifts in Leucocoryne (Alliaceae) in relation to climatic niche evolution in western South America. J. Biogeogr 41:328–38 [Google Scholar]
  66. Jiménez-Moreno G, Fauquette S, Suc JP. 2010. Miocene to Pliocene vegetation reconstruction and climate estimates in the Iberian Peninsula from pollen data. Rev. Palaeobot. Palynol. 162:403–15 [Google Scholar]
  67. Jiménez-Moreno G, Pérez-Asensio JN, Larrasoaña JC, Aguirre J, Civis J. et al. 2013. Vegetation, sea-level, and climate changes during the Messinian salinity crisis. Geol. Soc. Am. Bull. 125:432–44 [Google Scholar]
  68. Keeley JE, Bond WJ, Bradstock RA, Pausas JG, Rundel PW. 2012. Fire in Mediterranean Ecosystems: Ecology, Evolution and Management Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  69. Klak C, Reeves G, Hedderson T. 2004. Unmatched tempo of evolution in Southern African semi-desert ice plants. Nature 427:63–65 [Google Scholar]
  70. Kovar-Eder J, Jechorek H, Kvaček Z, Parashiv V. 2008. The integrated plant record: an essential tool for reconstructing Neogene zonal vegetation in Europe. Palaios 23:97–111 [Google Scholar]
  71. Kovar-Eder J, Kvaček Z, Martinetto E, Roiron P. 2006. Late Miocene to Early Pliocene vegetation of southern Europe (7–4 Ma) as reflected in the megafossil plant record. Palaeogeogr. Palaeoclimatol. Palaeoecol. 238:321–39 [Google Scholar]
  72. Kreft H, Jetz W. 2007. Global patterns and determinants of vascular plant diversity. PNAS 104:5925–30 [Google Scholar]
  73. Lamont BB, Downes KS. 2011. Fire-stimulated flowering among resprouters and geophytes in Australia and South Africa. Plant Ecol 212:2111–25 [Google Scholar]
  74. Lamont BB, Enright NJ, He T. 2011. Fitness and evolution of resprouters in relation to fire. Plant Ecol 212:1945–57 [Google Scholar]
  75. Lamont BB, He T. 2012. Fire-adapted Gondwanan angiosperm floras evolved in the Cretaceous. BMC Evol. Biol 12:223 [Google Scholar]
  76. Lamont BB, He T, Downes KS. 2013. Adaptive responses to directional trait selection in the Miocene enabled Cape proteas to colonize the savanna grasslands. Evol. Ecol. 27:1099–115 [Google Scholar]
  77. Lamont BB, He T, Lim SL. 2016. Hakea, the world's most sclerophyllous genus, arose in southwestern Australian heathland and diversified throughout Australia over the last 12 million years. Aust. J. Bot. 64:77–88 [Google Scholar]
  78. Lancaster LT, Kay KM. 2013. Origin and diversification of the California flora: re-examining classic hypotheses with molecular phylogenies. Evolution 67:1041–54 [Google Scholar]
  79. Latham RE, Ricklefs RE. 1993. Global patterns of tree species richness in moist forests: Energy-diversity theory does not account for variation in species richness. Oikos 67:325–33 [Google Scholar]
  80. Le Maitre DC, Midgley JJ. 1992. Plant reproductive ecology. The Ecology of Fynbos: Nutrients, Fire and Diversity R Cowling 135–74 Oxford, UK: Oxford Univ. Press [Google Scholar]
  81. Linder HP. 2003. The radiation of the Cape flora, southern Africa. Biol. Rev. 78:597–638 [Google Scholar]
  82. Linder HP. 2008. Plant species radiations: Where, when, why?. Philos. Trans. R. Soc. B 363:3097–105 [Google Scholar]
  83. Liu Z, Pagani M, Zinniker D, DeConto R, Huber M. et al. 2009. Global cooling during the Eocene-Oligocene climate transition. Science 323:1187–90 [Google Scholar]
  84. Mack CL, Milne LA. 2015. Eocene palynology of the Mulga Rocks deposits, southern Gunbarrel Basin, Western Australia. Alcheringa 39:444–58 [Google Scholar]
  85. Macphail MK. 2007. Australian palaeoclimates: Cretaceous to Tertiary: a review of palaeobotanical and related evidence to the year 2000 Cooperative Res. Cent. Landsc. Environ. Miner. Explor. Open File Rep. 151, Bentley, Aust. [Google Scholar]
  86. Macphail MK, Stone MS. 2004. Age and palaeoenvironmental constraints on the genesis of the Yandi channel iron deposits, Marillana Formation, Pilbara, northwestern Australia. Aust. J. Earth Sci. 51:497–520 [Google Scholar]
  87. Madriñán S, Cortés AJ, Richardson JE. 2013. Páramo is the world's fastest evolving and coolest biodiversity hotspot. Front. Genet. 4:1–7 [Google Scholar]
  88. McLoughlin S, McNamara K. 2001. Ancient Floras of Western Australia Perth, Aust: West. Aust. Mus. [Google Scholar]
  89. Medail F, Diadema K. 2009. Glacial refugia influence plant diversity patterns in the Mediterranean Basin. J. Biogeogr. 36:1333–45 [Google Scholar]
  90. Mertz-Kraus R, Brachert TC, Jochum KP, Stoll B. 2009. LA-ICP-MS analyses on coral growth increments reveal heavy winter rain in the Eastern Mediterranean at 9 Ma. Palaeogeogr. Palaeoclimatol. Palaeoecol. 273:25–40 [Google Scholar]
  91. Meulenkamp JE, Sissingh W. 2003. Tertiary palaeogeography and tectonostratigraphic evolution of the Northern and Southern Peri-Tethys platforms and the intermediate domains of the African-Eurasian convergent plate boundary zone. Palaeogeogr. Palaeoclimatol. Palaeoecol. 196:209–28 [Google Scholar]
  92. Millar C. 2012. Geological, climatic, and vegetation history of California. The Jepson Manual: Vascular Plants of California B Baldwin, DH Goldman, DJ Keil, R Patterson, TJ Rosatti 49–68 Berkeley: Univ. Calif. Press [Google Scholar]
  93. Molina-Venegas R, Aparicio A, Pina FJ, Valdés B, Arroyo J. 2013. Disentangling environmental correlates of vascular plant biodiversity in a Mediterranean hotspot. Ecol. Evol. 3:3879–94 [Google Scholar]
  94. Mucina L, Wardell-Johnson GW. 2011. Landscape age and soil fertility, climatic stability, and fire regime predictability: beyond the OCBIL framework. Plant Soil 341:1–23 [Google Scholar]
  95. Murillo J, Ruiz E, Landrum LR, Stuessy TF, Barfuss MH. 2012. Phylogenetic relationships in Myrceugenia (Myrtaceae) based on plastid and nuclear DNA sequences. Mol. Phylogenetics Evol. 62:764–76 [Google Scholar]
  96. Ojeda F. 1998. Biogeography of seeder and resprouter Erica species in the Cape Floristic Region—Where are the resprouters. Biol. J. Linn. Soc. 63:331–47 [Google Scholar]
  97. Onstein RE, Carter RJ, Xing Y, Richardson JE, Linder HP. 2015. Do Mediterranean-type ecosystems have a common history?—Insights from the Buckthorn family (Rhamnaceae). Evolution 69:756–71 [Google Scholar]
  98. Onstein RE, Linder HP. 2016. Beyond climate: Convergence in fast evolving sclerophylls in Cape and Australian Rhamnaceae predates the mediterranean climate. J. Ecol. 104:665–77 [Google Scholar]
  99. Palamarev E. 1989. Paleobotanical evidences of the Tertiary history and origin of the Mediterranean sclerophyll dendroflora. Plant Syst. Evol. 162:93–107 [Google Scholar]
  100. Pausas JG, Keeley JE. 2009. A burning story: The role of fire in the history of life. BioScience 59:593–601 [Google Scholar]
  101. Pausas JG, Keeley JE. 2014. Evolutionary ecology of resprouting and seeding in fire-prone ecosystems. New Phytol 204:55–65 [Google Scholar]
  102. Postigo-Mijarra JM, Barrón E, Gómez-Manzaneque F, Morla C. 2009. Floristic changes in the Iberian Peninsula and Balearic Islands (south-west Europe) during the Cenozoic. J. Biogeogr. 36:2025–43 [Google Scholar]
  103. Postigo-Mijarra JM, Morla C, Barrón E, Morales-Molino C, García S. 2010. Patterns of extinction and persistence of Arctotertiary flora in Iberia during the Quaternary. Rev. Palaeobot. Palynol 162:416–26 [Google Scholar]
  104. Pross J, Contreras L, Bijl PK, Greenwood D, Bohaty R. et al. 2012. Persistent near-tropical warmth on the Antarctic continent during the early Eocene epoch. Nature 488:73–77 [Google Scholar]
  105. Pye MG, Gadek PA, Edwards KJ. 2003. Divergence, diversity and species of the Australasian Callitris (Cupressaceae) and allied genera: evidence from ITS sequence data. Aust. Syst. Bot. 16:505–14 [Google Scholar]
  106. Renner SS, Strijk JS, Strasberg D, Thébaud C. 2010. Biogeography of the Monimiaceae (Laurales): a role for East Gondwana and long distance dispersal, but not West Gondwana. J. Biogeogr. 37:1227–38 [Google Scholar]
  107. Ricklefs RE. 2006. Evolutionary diversification and the origin of the diversity-environment relationship. Ecology 87:S3–13 [Google Scholar]
  108. Rodríguez-Sánchez F, Arroyo J. 2011. Cenozoic climate changes and the demise of Tethyan laurel forests: lessons for the future from an integrative reconstruction of the past. Climate Change, Ecology and Systematics TR Hodkinson, MB Jones, S Waldren, JAN Parnell 281–303 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  109. Rodríguez-Sánchez F, Pérez-Barrales R, Ojeda F, Vargas P, Arroyo J. 2008. The Strait of Gibraltar as a melting pot for plant biodiversity. Quat. Sci. Rev 27:2100–17 [Google Scholar]
  110. Rommerskirchen F, Condon T, Mollenhauer G, Dupont L, Schefuss E. 2011. Miocene to Pliocene development of surface and subsurface temperatures in the Benguela Current system. Paleoceanography 26:PA3216 [Google Scholar]
  111. Rosenbaum G, Lister GS, Duboz C. 2002. Reconstruction of the tectonic evolution of the western Mediterranean since the Oligocene. J. Virtual Explor 8:107–30 [Google Scholar]
  112. Sauquet H, Ho SY, Gandolfo MA, Jordan GJ, Wilf P. et al. 2012. Testing the impact of calibration on molecular divergence times using a fossil-rich group: the case of Nothofagus (Fagales). Syst. Biol. 61:289–313 [Google Scholar]
  113. Sauquet H, Weston PH, Anderson CL, Barker NP, Cantrill DJ. et al. 2009. Contrasted patterns of hyperdiversification in Mediterranean hotspots. PNAS. 106221–25
  114. Scher HD, Martin EE. 2006. Timing and climatic consequences of the opening of Drake Pass. Nature 312:428–30 [Google Scholar]
  115. Schnitzler J, Barraclough TG, Boatwright JS, Goldblatt P, Manning JC. et al. 2011. Causes of plant diversification in the Cape biodiversity hotspot of South Africa. Syst. Biol.. 60343–57
  116. Scholtz A. 1985. Palynology of the Upper Cretaceous lacustrine sediments of the Arnot Pipe, Banke, Namaqualand. Ann. S. Afr. Mus 95:1–109 [Google Scholar]
  117. Simon MF, Grether R, de Queiroz LP, Skema C, Pennington RT, Hughes CE. 2009. Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. PNAS 106:20359–64 [Google Scholar]
  118. Suc J-P. 1984. Origin and evolution of the Mediterranean vegetation and climate of Europe. Nature 307:429–32 [Google Scholar]
  119. Taylor F, Hill RS. 1996. A phylogenetic analysis of the Eucryphiaceae. Aust. Syst. Bot. 9:735–48 [Google Scholar]
  120. Thompson JD. 2005. Plant Evolution in the Mediterranean Oxford, UK: Oxford Univ. Press [Google Scholar]
  121. Tinker J, de Wit M, Brown R. 2008. Linking source and sink: evaluating the balance between onshore erosion and offshore sediment accumulation since Gondwana break-up, South Africa. Tectonophysics 455:94–103 [Google Scholar]
  122. Valente LM, Manning J, Goldbatt P, Vargas P. 2012. Did pollination shifts drive diversification in southern African Gladiolus? Evaluating the model of pollinator-driven speciation. Am. Nat 180:83–98 [Google Scholar]
  123. Valente LM, Reeves G, Schnitzler J, Mason IP, Fay M. et al. 2010a. Diversification of the African genus Protea (Proteaceae) in the Cape biodiversity hotspot and beyond: equal rates in different biomes. Evolution 64:745–60 [Google Scholar]
  124. Valente LM, Savolainen V, Vargas P. 2010b. Unparalleled rates of species diversification in Europe. Proc. R. Soc. B 277:1489–96 [Google Scholar]
  125. Valente LM, Vargas P. 2013. Contrasting evolutionary hypotheses between two mediterranean-climate floristic hotspots: the Cape of southern Africa and the Mediterranean Basin. J. Biogeogr. 40:2032–46 [Google Scholar]
  126. Vargas P. 2003. Molecular evidence for multiple diversification patterns of alpine plants in Mediterranean Europe. Taxon 52:463–76 [Google Scholar]
  127. Vargas P, Carrió E, Guzmán B, Amat E, Güemes J. 2009. A geographical pattern of Antirrhinum speciation since the Pliocene based on plastid and nuclear DNA polymorphism. J. Biogeogr 36:1297–312 [Google Scholar]
  128. Vargas P, Valente LM, Blanco-Pastor JL, Liberal I, Guzmán B. et al. 2014. Testing the biogeographical congruence of palaeofloras using molecular phylogenetics: snapdragons and the Madrean-Tethyan flora. J. Biogeogr 41:932–43 [Google Scholar]
  129. Verboom GA, Archibald JK, Bakker FT, Bellstedt DU, Conrad F. et al. 2009. Origin and diversification of the Greater Cape flora: ancient species repository, hot-bed of recent radiation, or both?. Mol. Phylogenetics Evol. 51:44–53 [Google Scholar]
  130. Verboom GA, Bergh NG, Haiden SA, Hoffmann V, Britton MN. 2015. Topography as a driver of diversification in the Cape Floristic Region of South Africa. New Phytol 207:368–76 [Google Scholar]
  131. Verdú M, Dávila P, García-Fayos P, Flores-Hernández N, Valiente-Banuet A. 2003. ‘Convergent’ traits of mediterranean woody plants belong to pre-mediterranean lineages. Biol. J. Linn. Soc. 78:415–27 [Google Scholar]
  132. Verdú M, Pausas JG. 2013. Syndrome-driven diversification in a Mediterranean ecosystem. Evolution 67:1756–66 [Google Scholar]
  133. Villagrán C. 1995. Quaternary history of the Mediterranean vegetation of Chile. Ecology and Biogeography of Mediterranean Ecosystems in Chile, California, and Australia MTK Arroyo, PH Zedler, Fox MD 3–20 New York: Springer-Verlag [Google Scholar]
  134. Wiens JJ, Donoghue MJ. 2004. Historical biogeography, ecology and species richness. Trends Ecol. Evol. 19:639–44 [Google Scholar]
  135. Wing SL. 1987. Eocene and Oligocene floras and vegetation of the Rocky Mountains. Ann. Mo. Bot. Gard. 74:748–84 [Google Scholar]
  136. Wright IJ, Westoby M. 2003. Nutrient concentration, resorption and lifespan: leaf traits of Australian sclerophyll species. Funct. Ecol. 17:10–19 [Google Scholar]
  137. Zachos JC, Dickens GR, Zeebe RE. 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:279–83 [Google Scholar]

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error