1932

Abstract

We discuss models of updating that depart from Bayes’ rule even when it is well-defined. After reviewing Bayes’ rule and its foundations, we begin our analysis with models of non-Bayesian behavior arising from a bias, a pull toward suboptimal behavior due to a heuristic or a mistake. Next, we explore deviations caused by individuals questioning the prior probabilities they initially used. We then consider non-Bayesian behavior resulting from the optimal response to constraints on perception, cognition, or memory, as well as models based on motivated beliefs or distance minimization. Finally, we briefly discuss models of updating after zero probability events.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-economics-100223-050352
2024-08-22
2024-12-13
Loading full text...

Full text loading...

/deliver/fulltext/economics/16/1/annurev-economics-100223-050352.html?itemId=/content/journals/10.1146/annurev-economics-100223-050352&mimeType=html&fmt=ahah

Literature Cited

  1. Alchourrón CE, Gärdenfors P, Makinson D. 1985.. On the logic of theory change: partial meet contraction and revision functions. . J. Symb. Logic 50:(2):51030
    [Crossref] [Google Scholar]
  2. Augenblick N, Lazarus E, Thaler M. 2023.. Overinference from weak signals and underinference from strong signals. Work. Pap. , Univ. Calif., Berkeley:
    [Google Scholar]
  3. Azeredo da Silveira R, Sung Y, Woodford M. 2020.. Optimally imprecise memory and biased forecasts. NBER Work. Pap. 28075
    [Google Scholar]
  4. Azeredo da Silveira R, Woodford M. 2019.. Noisy memory and over-reaction to news. . AEA Pap. Proc. 109::55761
    [Crossref] [Google Scholar]
  5. Ba C. 2023.. Robust misspecified models and paradigm shift. Work. Pap. , Univ. Pa., Philadelphia:
    [Google Scholar]
  6. Ba C, Bohren JA, Imas A. 2023.. Over-and underreaction to information. Work. Pap. , Univ. Pa., Philadelphia:
    [Google Scholar]
  7. Barberis N. 2018.. Psychology-based models of asset prices and trading volume. . In Handbook of Behavioral Economics: Applications and Foundations, Vol. 1, ed. BD Bernheim, S DellaVigna, D Laibson , pp. 79175. Amsterdam:: Elsevier
    [Google Scholar]
  8. Barberis N, Shleifer A, Vishny R. 1998.. A model of investor sentiment. . J. Financ. Econ. 49:(3):30743
    [Crossref] [Google Scholar]
  9. Bénabou R. 2013.. Groupthink: collective delusions in organizations and markets. . Rev. Econ. Stud. 80:(2):42962
    [Crossref] [Google Scholar]
  10. Bénabou R, Tirole J. 2002.. Self-confidence and personal motivation. . Q. J. Econ. 117:(3):871915
    [Crossref] [Google Scholar]
  11. Benjamin DJ. 2019.. Errors in probabilistic reasoning and judgment biases. . In Handbook of Behavioral Economics: Applications and Foundations, Vol. 2, ed. BD Bernheim, S DellaVigna, D Laibson , pp. 69186. Amsterdam:: Elsevier
    [Google Scholar]
  12. Benjamin DJ, Bodoh-Creed A, Rabin M. 2019.. Base-rate neglect: foundations and implications. Work. Pap. , Univ. Calif., Berkeley:
    [Google Scholar]
  13. Benjamin DJ, Rabin M, Raymond C. 2016.. A model of nonbelief in the law of large numbers. . J. Eur. Econ. Assoc. 14:(2):51544
    [Crossref] [Google Scholar]
  14. Berk RH. 1966.. Limiting behavior of posterior distributions when the model is incorrect. . Ann. Math. Stat. 37:(1):5158
    [Crossref] [Google Scholar]
  15. Bhui R, Gershman SJ. 2018.. Decision by sampling implements efficient coding of psychoeconomic functions. . Psychol. Rev. 125:(6):9851001
    [Crossref] [Google Scholar]
  16. Bianchi F, Ilut CL, Saijo H. 2024.. Diagnostic business cycles. . Rev. Econ. Stud. 91:(1):12962
    [Crossref] [Google Scholar]
  17. Blume L, Brandenburger A, Dekel E. 1991.. Lexicographic probabilities and choice under uncertainty. . Econometrica 59:(1):6179
    [Crossref] [Google Scholar]
  18. Bordalo P, Coffman K, Gennaioli N, Schwerter F, Shleifer A. 2021a.. Memory and representativeness. . Psychol. Rev. 128:(1):7185
    [Crossref] [Google Scholar]
  19. Bordalo P, Coffman K, Gennaioli N, Shleifer A. 2016.. Stereotypes. . Q. J. Econ. 131:(4):175394
    [Crossref] [Google Scholar]
  20. Bordalo P, Gennaioli N, Kwon SY, Shleifer A. 2021b.. Diagnostic bubbles. . J. Financ. Econ. 141:(3):106077
    [Crossref] [Google Scholar]
  21. Bordalo P, Gennaioli N, La Porta R, Shleifer A. 2024.. Belief overreaction and stock market puzzles. . J. Political Econ. In press
    [Google Scholar]
  22. Bordalo P, Gennaioli N, Ma Y, Shleifer A. 2020.. Overreaction in macroeconomic expectations. . Am. Econ. Rev. 110:(9):274882
    [Crossref] [Google Scholar]
  23. Bordalo P, Gennaioli N, Porta RL, Shleifer A. 2019.. Diagnostic expectations and stock returns. . J. Finance 74:(6):283974
    [Crossref] [Google Scholar]
  24. Bordalo P, Gennaioli N, Shleifer A. 2018.. Diagnostic expectations and credit cycles. . J. Finance 73:(1):199227
    [Crossref] [Google Scholar]
  25. Bordalo P, Gennaioli N, Shleifer A. 2022.. Overreaction and diagnostic expectations in macroeconomics. . J. Econ. Perspect. 36:(3):22344
    [Crossref] [Google Scholar]
  26. Bouchaud JP, Krueger P, Landier A, Thesmar D. 2019.. Sticky expectations and the profitability anomaly. . J. Finance 74:(2):63974
    [Crossref] [Google Scholar]
  27. Bowers JS, Davis CJ. 2012.. Bayesian just-so stories in psychology and neuroscience. . Psychol. Bull. 138:(3):389414
    [Crossref] [Google Scholar]
  28. Brunnermeier MK, Parker JA. 2005.. Optimal expectations. . Am. Econ. Rev. 95:(4):1092118
    [Crossref] [Google Scholar]
  29. Caplin A, Leahy JV. 2019.. Wishful thinking. NBER Work. Pap. 25707
    [Google Scholar]
  30. Chapman J, Dean M, Ortoleva P, Snowberg E, Camerer C. 2023.. Econographics. . J. Political Econ. Microecon. 1:(1):11561
    [Crossref] [Google Scholar]
  31. Charness G, Dave C. 2017.. Confirmation bias with motivated beliefs. . Games Econ. Behav. 104::123
    [Crossref] [Google Scholar]
  32. Coibion O, Gorodnichenko Y. 2012.. What can survey forecasts tell us about information rigidities?. J. Political Econ. 120:(1):11659
    [Crossref] [Google Scholar]
  33. Daniel K, Hirshleifer D, Subrahmanyam A. 1998.. Investor psychology and security market under- and overreactions. . J. Finance 53:(6):183985
    [Crossref] [Google Scholar]
  34. de Clippel G, Zhang X. 2022.. Non-Bayesian persuasion. . J. Political Econ. 130:(10):2594642
    [Crossref] [Google Scholar]
  35. DeGroot M. 1974.. Reaching a consensus. . J. Am. Stat. Assoc. 69:(345):11821
    [Crossref] [Google Scholar]
  36. Diaconis P, Zabell S. 1986.. Some alternatives to Bayes's rule. . In Proceedings of the Second University of California, Irvine, Conference on Political Economy, pp. 2538. Greenwich, CT:: JAI Press
    [Google Scholar]
  37. Dominiak A, Kovach M, Tserenjigmid G. 2021.. Inertial updating with general information. Work. Pap. , Univ. Calif., Santa Cruz:
    [Google Scholar]
  38. Dominiak A, Kovach M, Tserenjigmid G. 2023.. Inertial updating. Work. Pap. , Univ. Calif., Santa Cruz:
    [Google Scholar]
  39. Dominiak A, Lee D. 2023.. Testing rational hypotheses in signaling games. . Eur. Econ. Rev. 160::104610
    [Crossref] [Google Scholar]
  40. Doya K. 2007.. Bayesian Brain: Probabilistic Approaches to Neural Coding. Cambridge, MA:: MIT Press
    [Google Scholar]
  41. Edwards W. 1968.. Conservatism in human information processing. . In Formal Representation of Human Judgment, ed. B Kleinmuntz , pp. 1752. New York:: Wiley
    [Google Scholar]
  42. Eliaz K, Spiegler R. 2020.. A model of competing narratives. . Am. Econ. Rev. 110:(12):3786816
    [Crossref] [Google Scholar]
  43. Enke B, Graeber T. 2023.. Cognitive uncertainty. . Q. J. Econ. 138:(4):202167
    [Crossref] [Google Scholar]
  44. Epstein LG. 2006.. An axiomatic model of non-Bayesian updating. . Rev. Econ. Stud. 73:(2):41336
    [Crossref] [Google Scholar]
  45. Epstein LG, Noor J, Sandroni A. 2008.. Non-Bayesian updating: a theoretical framework. . Theor. Econ. 3:(2):193229
    [Google Scholar]
  46. Epstein LG, Noor J, Sandroni A. 2010.. Non-Bayesian Learning. . B.E. J. Theor. Econ. 10:(1):3
    [Google Scholar]
  47. Ernst MO, Banks MS. 2002.. Humans integrate visual and haptic information in a statistically optimal fashion. . Nature 415:(6870):42933
    [Crossref] [Google Scholar]
  48. Esponda I, Pouzo D. 2016.. Berk–Nash equilibrium: a framework for modeling agents with misspecified models. . Econometrica 84:(3):1093130
    [Crossref] [Google Scholar]
  49. Fischhoff B, Beyth-Marom R. 1983.. Hypothesis evaluation from a Bayesian perspective. . Psychol. Rev. 90:(3):23960
    [Crossref] [Google Scholar]
  50. Foster DP, Young HP. 2003.. Learning, hypothesis testing, and Nash equilibrium. . Games Econ. Behav. 45:(1):7396
    [Crossref] [Google Scholar]
  51. Frick M, Iijima R, Ishii Y. 2023.. Belief convergence under misspecified learning: a martingale approach. . Rev. Econ. Stud. 90:(2):781814
    [Crossref] [Google Scholar]
  52. Friston K. 2009.. The free-energy principle: a rough guide to the brain?. Trends Cogn. Sci. 13:(7):293301
    [Crossref] [Google Scholar]
  53. Friston K. 2012.. The history of the future of the Bayesian brain. . NeuroImage 62:(2):123033
    [Crossref] [Google Scholar]
  54. Friston KJ, Stephan KE. 2007.. Free-energy and the brain. . Synthese 159::41758
    [Crossref] [Google Scholar]
  55. Fryer RG, Harms P, Jackson MO. 2019.. Updating beliefs when evidence is open to interpretation: implications for bias and polarization. . J. Eur. Econ. Assoc. 17:(5):1470501
    [Crossref] [Google Scholar]
  56. Fryer RG, Jackson MO. 2008.. A categorical model of cognition and biased decision making. . B.E. J. Theor. Econ. 8:(1). https://doi.org/10.2202/1935-1704.1357
    [Crossref] [Google Scholar]
  57. Fuster A, Laibson D, Mendel B. 2010.. Natural expectations and macroeconomic fluctuations. . J. Econ. Perspect. 24:(4):6784
    [Crossref] [Google Scholar]
  58. Gabaix X. 2014.. A sparsity-based model of bounded rationality. . Q. J. Econ. 129:(4):1661710
    [Crossref] [Google Scholar]
  59. Gabaix X. 2019.. Behavioral inattention. . In Handbook of Behavioral Economics: Applications and Foundations, Vol. 2, ed. BD Bernheim, S DellaVigna, D Laibson , pp. 261343. Amsterdam:: Elsevier
    [Google Scholar]
  60. Gabaix X, Laibson D. 2022.. Myopia and discounting. Work. Pap. , Harvard Univ., Cambridge, MA:
    [Google Scholar]
  61. Gagnon-Bartsch T, Bushong B. 2022.. Learning with misattribution of reference dependence. . J. Econ. Theory 203::105473
    [Crossref] [Google Scholar]
  62. Gagnon-Bartsch T, Rabin M, Schwartzstein J. 2021.. Channeled attention and stable errors. Work. Pap. , Harvard Univ., Cambridge, MA:
    [Google Scholar]
  63. Galperti S. 2019.. Persuasion: the art of changing worldviews. . Am. Econ. Rev. 109:(3):9961031
    [Crossref] [Google Scholar]
  64. Gennaioli N, Shleifer A. 2010.. What comes to mind. . Q. J. Econ. 125:(4):1399433
    [Crossref] [Google Scholar]
  65. Gennaioli N, Shleifer A. 2018.. A Crisis of Beliefs: Investor Psychology and Financial Fragility. Princeton, NJ:: Princeton Univ. Press
    [Google Scholar]
  66. Ghirardato P. 2002.. Revisiting Savage in a conditional world. . Econ. Theory 20::8392
    [Crossref] [Google Scholar]
  67. Gilboa I, Marinacci M. 2013.. Ambiguity and the Bayesian paradigm. . In Advances in Economics and Econometrics: Tenth World Congress, Vol. 1, ed. D Acemoglu, M Arellano, E Dekel , pp. 179242. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  68. Glaeser EL, Nathanson CG. 2017.. An extrapolative model of house price dynamics. . J. Financ. Econ. 126:(1):14770
    [Crossref] [Google Scholar]
  69. Gottlieb D. 2010.. Will you never learn? Self deception and biases in information processing. Work. Pap. , Princeton Univ., Princeton, NJ:
    [Google Scholar]
  70. Grether DM. 1980.. Bayes rule as a descriptive model: the representativeness heuristic. . Q. J. Econ. 95:(3):53757
    [Crossref] [Google Scholar]
  71. Grether DM. 1992.. Testing Bayes rule and the representativeness heuristic: some experimental evidence. . J. Econ. Behav. Organ. 17:(1):3157
    [Crossref] [Google Scholar]
  72. Griffin D, Tversky A. 1992.. The weighing of evidence and the determinants of confidence. . Cogn. Psychol. 24:(3):41135
    [Crossref] [Google Scholar]
  73. Griffiths TL, Kemp C, Tenenbaum JB. 2008.. Bayesian models of cognition. . In The Cambridge Handbook of Computational Cognitive Modeling, ed. R Sun , pp. 80138. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  74. Griffiths TL, Tenenbaum JB. 2006.. Optimal predictions in everyday cognition. . Psychol. Sci. 17:(9):76773
    [Crossref] [Google Scholar]
  75. Gul F, Pesendorfer W. 2001.. Temptation and self-control. . Econometrica 69:(6):140335
    [Crossref] [Google Scholar]
  76. Heidhues P, Kőszegi B, Strack P. 2018.. Unrealistic expectations and misguided learning. . Econometrica 86:(4):1159214
    [Crossref] [Google Scholar]
  77. Hellman ME, Cover TM. 1970.. Learning with finite memory. . Ann. Math. Stat. 41:(3):76582
    [Crossref] [Google Scholar]
  78. Hong H, Stein JC. 1999.. A unified theory of underreaction, momentum trading, and overreaction in asset markets. . J. Finance 54:(6):214384
    [Crossref] [Google Scholar]
  79. Hong H, Stein JC, Yu J. 2007.. Simple forecasts and paradigm shifts. . J. Finance 62:(3):120742
    [Crossref] [Google Scholar]
  80. Jakobsen A. 2021.. Coarse Bayesian updating. Work. Pap. , Northwest. Univ., Evanston, IL:
    [Google Scholar]
  81. Jaynes ET. 2003.. Probability Theory: The Logic of Science. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  82. Jones M, Love BC. 2011.. Bayesian fundamentalism or enlightenment? On the explanatory status and theoretical contributions of Bayesian models of cognition. . Behav. Brain Sci. 34:(4):16988
    [Crossref] [Google Scholar]
  83. Kaanders P, Sepulveda P, Folke T, Ortoleva P, De Martino B. 2022.. Humans actively sample evidence to support prior beliefs. . eLife 11::e71768
    [Crossref] [Google Scholar]
  84. Kahneman D, Frederick S. 2002.. Representativeness revisited: attribute substitution in intuitive judgment. . In Heuristics and Biases: The Psychology of Intuitive Judgment, ed. T Gilovich, D Griffin, D Kahneman , pp. 4981. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  85. Kahneman D, Tversky A. 1972.. Subjective probability: a judgment of representativeness. . Cogn. Psychol. 3:(3):43054
    [Crossref] [Google Scholar]
  86. Kahneman D, Tversky A. 1973.. On the psychology of prediction. . Psychol. Rev. 80:(4):23751
    [Crossref] [Google Scholar]
  87. Kahneman D, Tversky A. 1983.. Extensional versus intuitive reasoning: the conjunction fallacy in probability judgment. . Psychol. Rev. 91::293315
    [Google Scholar]
  88. Khaw MW, Stevens L, Woodford M. 2017.. Discrete adjustment to a changing environment: experimental evidence. . J. Monet. Econ. 91::88103
    [Crossref] [Google Scholar]
  89. Knill DC, Pouget A. 2004.. The Bayesian brain: the role of uncertainty in neural coding and computation. . Trends Neurosci. 27:(12):71219
    [Crossref] [Google Scholar]
  90. Körding KP. 2014.. Bayesian statistics: relevant for the brain?. Curr. Opin. Neurobiol. 25::13033
    [Crossref] [Google Scholar]
  91. Körding KP, Wolpert DM. 2004.. Bayesian integration in sensorimotor learning. . Nature 427:(6971):24447
    [Crossref] [Google Scholar]
  92. Kovach M. 2021.. Conservative Updating. Work. Pap. , Virginia Tech, Blacksburg, VA:
    [Google Scholar]
  93. Kreps D. 1988.. Notes on the Theory of Choice. Boulder, CO:: Westview Press
    [Google Scholar]
  94. Kuhn TS. 1962.. The Structure of Scientific Revolutions. Chicago:: Univ. Chicago Press
    [Google Scholar]
  95. Kwisthout J, Wareham T, Van Rooij I. 2011.. Bayesian intractability is not an ailment that approximation can cure. . Cogn. Sci. 35:(5):77984
    [Crossref] [Google Scholar]
  96. Mankiw NG, Reis R. 2002.. Sticky information versus sticky prices: a proposal to replace the new Keynesian Phillips curve. . Q. J. Econ. 117:(4):1295328
    [Crossref] [Google Scholar]
  97. McGrayne SB. 2011.. The Theory That Would Not Die: How Bayes' Rule Cracked the Enigma Code, Hunted Down Russian Submarines & Emerged Triumphant from Two Centuries of Controversy. New Haven, CT:: Yale Univ. Press
    [Google Scholar]
  98. Möbius MM, Niederle M, Niehaus P, Rosenblat TS. 2022.. Managing self-confidence: theory and experimental evidence. . Manag. Sci. 68:(11):7793817
    [Crossref] [Google Scholar]
  99. Molavi P, Tahbaz-Salehi A, Jadbabaie A. 2018.. A theory of non-Bayesian social learning. . Econometrica 86:(2):44590
    [Crossref] [Google Scholar]
  100. Montiel Olea JL, Ortoleva P, Pai M, Prat A. 2022.. Competing models. . Q. J. Econ. 137:(4):241957
    [Crossref] [Google Scholar]
  101. Mullainathan S. 2002.. A memory-based model of bounded rationality. . Q. J. Econ. 117:(3):73574
    [Crossref] [Google Scholar]
  102. Mullainathan S, Schwartzstein J, Shleifer A. 2008.. Coarse thinking and persuasion. . Q. J. Econ. 123:(2):577619
    [Crossref] [Google Scholar]
  103. Myerson RB. 1986a.. Axiomatic foundations of Bayesian decision theory. Work. Pap. 671 , Cent. Math. Stud. Econ. Manag. Sci., Northwest. Univ., Evanston, IL:
    [Google Scholar]
  104. Myerson RB. 1986b.. Multistage games with communication. . Econometrica 54:(2):32358
    [Crossref] [Google Scholar]
  105. Noor J, Payró F. 2022.. An axiomatic approach to the law of small numbers. Work. Pap. , Boston Univ., Boston, MA:
    [Google Scholar]
  106. Oaksford M, Chater N. 2007.. Bayesian Rationality: The Probabilistic Approach to Human Reasoning. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  107. Ortoleva P. 2012.. Modeling the change of paradigm: non-Bayesian reactions to unexpected news. . Am. Econ. Rev. 102:(6):241036
    [Crossref] [Google Scholar]
  108. Ortoleva P, Snowberg E. 2015.. Overconfidence in political behavior. . Am. Econ. Rev. 105:(2):50435
    [Crossref] [Google Scholar]
  109. Perea A. 2009.. A model of minimal probabilistic belief revision. . Theory Decis. 67::163222
    [Crossref] [Google Scholar]
  110. Phillips LD, Edwards W. 1966.. Conservatism in a simple probability inference task. . J. Exp. Psychol. 72:(3):34654
    [Crossref] [Google Scholar]
  111. Phillips LD, Hays WL, Edwards W. 1966.. Conservatism in complex probabilistic inference. . IEEE Trans. Hum. Factors Electron. (1):718
    [Crossref] [Google Scholar]
  112. Pouget S, Sauvagnat J, Villeneuve S. 2017.. A mind is a terrible thing to change: confirmatory bias in financial markets. . Rev. Financ. Stud. 30:(6):2066109
    [Crossref] [Google Scholar]
  113. Rabin M. 2002.. Inference by believers in the law of small numbers. . Q. J. Econ. 117:(3):775816
    [Crossref] [Google Scholar]
  114. Rabin M. 2013.. Incorporating limited rationality into economics. . J. Econ. Lit. 51:(2):52843
    [Crossref] [Google Scholar]
  115. Rabin M, Schrag JL. 1999.. First impressions matter: a model of confirmatory bias. . Q. J. Econ. 114:(1):3782
    [Crossref] [Google Scholar]
  116. Rabin M, Vayanos D. 2010.. The gambler's and hot-hand fallacies: theory and applications. . Rev. Econ. Stud. 77:(2):73078
    [Crossref] [Google Scholar]
  117. Sanborn AN, Chater N. 2016.. Bayesian brains without probabilities. . Trends Cogn. Sci. 20:(12):88393
    [Crossref] [Google Scholar]
  118. Sanborn AN, Griffiths TL, Navarro DJ. 2010.. Rational approximations to rational models: alternative algorithms for category learning. . Psychol. Rev. 117:(4):114467
    [Crossref] [Google Scholar]
  119. Schwartzstein J. 2014.. Selective attention and learning. . J. Eur. Econ. Assoc. 12:(6):142352
    [Crossref] [Google Scholar]
  120. Sepulveda P, Usher M, Davies N, Benson AA, Ortoleva P, De Martino B. 2020.. Visual attention modulates the integration of goal-relevant evidence and not value. . eLife 9::e60705
    [Crossref] [Google Scholar]
  121. Sims C. 2003.. Implications of rational inattention. . J. Monet. Econ. 50:(3):66590
    [Crossref] [Google Scholar]
  122. Slovic P, Lichtenstein S. 1971.. Comparison of Bayesian and regression approaches to the study of information processing in judgment. . Organ. Behav. Hum. Perform. 6:(6):649744
    [Crossref] [Google Scholar]
  123. Spiegler R. 2016.. Bayesian networks and boundedly rational expectations. . Q. J. Econ. 131:(3):124390
    [Crossref] [Google Scholar]
  124. Tenenbaum JB, Griffiths TL. 2001.. The rational basis of representativeness. . In Proceedings of the 23rd Annual Conference of the Cognitive Science Society, ed. JD Moore, K Stenning , pp. 103641. Mahwah, NJ:: Lawrence Erlbaum
    [Google Scholar]
  125. Tenenbaum JB, Griffiths TL, Kemp C. 2006.. Theory-based Bayesian models of inductive learning and reasoning. . Trends Cogn. Sci. 10:(7):30918
    [Crossref] [Google Scholar]
  126. Tenenbaum JB, Kemp C, Griffiths TL, Goodman ND. 2011.. How to grow a mind: statistics, structure, and abstraction. . Science 331:(6022):127985
    [Crossref] [Google Scholar]
  127. Weinstein J. 2011.. Provisional probabilities and paradigm shifts. Work. Pap. , Northwest. Univ., Evanston, IL:
    [Google Scholar]
  128. Williams PM. 1980.. Bayesian conditionalisation and the principle of minimum information. . Br. J. Philos. Sci. 31:(2):13144
    [Crossref] [Google Scholar]
  129. Wilson A. 2014.. Bounded memory and biases in information processing. . Econometrica 82:(6):225794
    [Crossref] [Google Scholar]
  130. Woodford M. 2020.. Modeling imprecision in perception, valuation, and choice. . Annu. Rev. Econ. 12::579601
    [Crossref] [Google Scholar]
  131. Yariv L. 2005.. I'll see it when i believe it? A simple model of cognitive consistency. Work. Pap. , Univ. Calif., Los Angeles:
    [Google Scholar]
  132. Zhao C. 2018.. Representativeness and similarity. Work. Pap. , Univ. Hong Kong, Hong Kong:
    [Google Scholar]
  133. Zhao C. 2022.. Pseudo-Bayesian updating. . Theor. Econ. 17:(1):25389
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-economics-100223-050352
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error