1932

Abstract

Traditional decision theory assumes that people respond to the exact features of the options available to them, but observed behavior seems much less precise. This review considers ways of introducing imprecision into models of economic decision making and stresses the usefulness of analogies with the way that imprecise perceptual judgments are modeled in psychophysics—the branch of experimental psychology concerned with the quantitative relationship between objective features of an observer's environment and elicited reports about their subjective appearance. It reviews key ideas from psychophysics, provides examples of the kinds of data that motivate them, and proposes lessons for economic modeling. Applications include stochastic choice, choice under risk, decoy effects in marketing, global game models of strategic interaction, and delayed adjustment of prices in response to monetary disturbances.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-economics-102819-040518
2020-08-02
2024-04-15
Loading full text...

Full text loading...

/deliver/fulltext/economics/12/1/annurev-economics-102819-040518.html?itemId=/content/journals/10.1146/annurev-economics-102819-040518&mimeType=html&fmt=ahah

Literature Cited

  1. Angeletos G-M, Huo Z 2019. Myopia and anchoring Work. Pap., Mass. Inst. Technol. Cambridge, MA: https://economics.mit.edu/files/14946
  2. Angeletos G-M, Werning I 2006. Crises and prices: information aggregation, multiplicity, and volatility. Am. Econ. Rev. 96:1720–36
    [Google Scholar]
  3. Anobile G, Cicchini GM, Burr DC 2012. Linear mapping of numbers onto space requires attention. Cognition 122:454–59
    [Google Scholar]
  4. Azeredo da Silveira R, Woodford M 2019. Noisy memory and over-reaction to news. AEA Pap. Proc. 109:557–61
    [Google Scholar]
  5. Beck JM, Ma WJ, Pitkow X, Latham PE, Pouget A 2012. Not noisy, just wrong: the role of suboptimal inference in behavioral variability. Neuron 74:30–39
    [Google Scholar]
  6. Beshears J, Choi JJ, Fuster A, Laibson D, Madrian BC 2013. What goes up must come down? Experimental evidence on intuitive forecasting. Am. Econ. Rev. 103:570–74
    [Google Scholar]
  7. Bordalo P, Gennaioli N, Ma Y, Shleifer A 2018. Over-reaction in macroeconomic expectations NBER Work. Pap. 24932
  8. Cantlon JF, Brannon EM 2006. Shared system for ordering small and large numbers in monkeys and humans. Psychol. Sci. 17:401–6
    [Google Scholar]
  9. Caplin A 2012. Choice sets as percepts. Neuroscience of Preference and Choice R Dolan, T Sharot 295–304 New York: Academic
    [Google Scholar]
  10. Caplin A, Dean M 2015. Revealed preference, rational inattention, and costly information acquisition. Am. Econ. Rev. 105:2183–203
    [Google Scholar]
  11. Coibion O, Gorodnichenko Y 2015. Information rigidity and the expectations formation process: a simple framework and new facts. Am. Econ. Rev. 105:2644–78
    [Google Scholar]
  12. Commons ML, Woodford M, Trudeau EJ 1991. How each reinforcer contributes to value: “Noise” must reduce reinforcer value hyperbolically. Signal Detection: Mechanisms, Models and Applications ML Commons, JA Nevin, MC Davison 139–68 Hillsdale, NJ: Lawrence Erlbaum Assoc.
    [Google Scholar]
  13. Cordes S, Gelman R, Gallistel CR, Whalen J 2001. Variability signatures distinguish verbal from non-verbal counting for both large and small numbers. Psychon. Bull. Rev. 8:698–707
    [Google Scholar]
  14. Creelman CD 2015. Signal detection theory, history of. International Encyclopedia of the Social & Behavioral Sciencesed. JD Wright952–56 Amsterdam: Elsevier Press. 2nd ed.
    [Google Scholar]
  15. Dayan P, Abbott LF 2001. Theoretical Neuroscience Cambridge, MA: MIT Press
  16. Dehaene S 2003. The neural basis of the Weber-Fechner law: a logarithmic mental number line. Trends Cogn. Sci. 7:145–47
    [Google Scholar]
  17. Dehaene S 2011. The Number Sense Oxford, UK: Oxford Univ. Press. Rev. updat. ed.
  18. Drugowitsch J, Wyart V, Devauchelle A-D, Koechlin E 2016. Computational precision of mental inference as critical source of human choice suboptimality. Neuron 92:1398–411
    [Google Scholar]
  19. Fechner GT 1966 (1860). Elements of Psychophysics New York: Holt, Rinehart & Winston
  20. Frydman C, Jin LJ 2019. Efficient coding and risky choice Work. Pap., Univ. South. Calif., Los Angeles
  21. Gabaix X, Laibson D 2017. Myopia and discounting NBER Work. Pap. 23254
  22. Ganguli D, Simoncelli EP 2016. Neural and perceptual signatures of efficient sensory coding. arXiv:1603.00058v1 [q-bio.NC]
    [Google Scholar]
  23. Garcia M, Grüschow M, Polania R, Woodford M, Ruff CC 2018. Predicting risk attitudes from the precision of mental number representation Poster presented at the 16th Annual Meeting of the Society for Neuroeconomics Philadelphia:
  24. Gerhardt H, Biele GP, Heekeren HR, Uhlig H 2016. Cognitive load increases risk aversion SFB 649 Discuss. Pap. 2016-011, Humboldt Univ. Berlin:
  25. Gescheider GA 1997. Psychophysics: The Fundamentals Mahwah, NJ: Lawrence Erlbaum Assoc. 3rd ed.
  26. Glimcher PW 2011. Foundations of Neuroeconomic Analysis Oxford, UK: Oxford Univ. Press
  27. Goryunov M, Rigos A 2019. Discontinuous and continuous stochastic choice and coordination in the lab Work. Pap., Lund Univ., Lund, Swed.
  28. Green DM, Swets JA 1966. Signal Detection Theory and Psychophysics New York: Wiley. Repr., 1988. Los Altos CA: Peninsula Publ.:
  29. Gul F, Pesendorfer W, Strzalecki T 2017. Coarse competitive equilibrium and extreme prices. Am. Econ. Rev. 107:109–37
    [Google Scholar]
  30. Heath TB, Chatterjee S 1995. Asymmetric decoy effects on lower-quality versus higher-quality brands: meta-analytic and experimental evidence. J. Consum. Res. 22:268–84
    [Google Scholar]
  31. Hébert B, Woodford M 2018. Information costs and sequential information sampling NBER Work. Pap. 25316
  32. Hellwig C, Mukherji A, Tsyvinski A 2006. Self-fulfilling currency crises: the role of interest rates. Am. Econ. Rev. 96:1769–87
    [Google Scholar]
  33. Hollingworth HL 1909. The Inaccuracy of Movement New York: Sci. Press
  34. Hollingworth HL 1910. The central tendency of judgment. J. Philos. Psychol. Sci. Methods 7:461–69
    [Google Scholar]
  35. Howes A, Warren PA, Farmer G, El-Deredy W, Lewis RL 2016. Why contextual preference reversals maximize expected value. Psychol. Rev. 123:368–91
    [Google Scholar]
  36. Huber J, Payne JW, Puto C 1982. Adding asymmetrically dominated alternatives: violations of regularity and the similarity hypothesis. J. Consum. Res. 9:90–98
    [Google Scholar]
  37. Izard V, Dehaene S 2008. Calibrating the mental number line. Cognition 106:1221–47
    [Google Scholar]
  38. Kahneman D, Tversky A 1979. Prospect theory: an analysis of decision under risk. Econometrica 47:263–91
    [Google Scholar]
  39. Kaufman EL, Lord MW, Reese TW, Volkmann J 1949. The discrimination of visual number. Am. J. Psychol. 62:498–525
    [Google Scholar]
  40. Khaw MW, Li Z, Woodford M 2019. Cognitive imprecision and small-stakes risk aversion NBER Work. Pap. 24978
  41. Kingdom FAA, Prins N 2010. Psychophysics: A Practical Introduction New York: Academic
  42. Kramer P, De Bono MG, Zorzi M 2011. Numerosity estimation in visual stimuli in the absence of luminance-based cues. PLOS ONE 6:e17378
    [Google Scholar]
  43. Krueger LE 1984. Perceived numerosity: a comparison of magnitude production, magnitude estimation, and discrimination judgments. Percept. Psychophys. 35:536–42
    [Google Scholar]
  44. Laming D 1997. The Measurement of Sensation Oxford, UK: Oxford Univ. Press
  45. Laming D 2011. Human Judgment: The Eye of the Beholder Andover, UK: Cengage Learn.
  46. Landier A, Ma Y, Thesmar D 2019. Biases in expectations: experimental evidence Work. Pap., HEC, Paris
  47. Laughlin SB 1981. A simple coding procedure enhances a neuron's information capacity. Z. Naturforschung 36:910–12
    [Google Scholar]
  48. Lettvin JY, Maturana HR, McCulloch WS, Pitts WH 1959. What the frog's eye tells the frog's brain. Proc. Inst. Radio Eng. 47:1940–51
    [Google Scholar]
  49. Luce RD 1956. Semiorders and a theory of utility discrimination. Econometrica 24:178–91
    [Google Scholar]
  50. Mackowiak B, Wiederholt M 2009. Optimal sticky prices under rational inattention. Am. Econ. Rev. 99:769–803
    [Google Scholar]
  51. McFadden D 1981. Econometric models of probabilistic choice. Structural Analysis of Discrete Data with Economic Applicationsed. C Manski, D McFadden198–272 Cambridge, MA: MIT Press
    [Google Scholar]
  52. Morris SE, Shin HS 1998. Unique equilibrium in a model of self-fulfilling currency attacks. Am. Econ. Rev. 88:587–97
    [Google Scholar]
  53. Morris SE, Shin HS 2003. Global games: theory and applications. Advances in Economics and Econometrics: Proceedings of the Eighth World Congress of the Econometric Societyed. M Dewatripont, L Hansen, S Turnovsky56–114 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  54. Morris SE, Shin HS 2006. Inertia of forward-looking expectations. Am. Econ. Rev. 96:152–57
    [Google Scholar]
  55. Morris SE, Yang M 2019. Coordination and continuous stochastic choice Work. Pap., Mass. Inst. Technol. Cambridge, MA:
  56. Mosteller F, Nogee P 1951. An experimental measurement of utility. J. Political Econ. 59:371–404
    [Google Scholar]
  57. Mullainathan S, Shafir E 2013. Scarcity: Why Having Too Little Means So Much New York: Henry Holt & Co.
  58. Natenzon P 2019. Random choice and learning. J. Political Econ. 127:419–57
    [Google Scholar]
  59. Netzer N 2009. Evolution of time preferences and attitudes toward risk. Am. Econ. Rev. 99:937–55
    [Google Scholar]
  60. Nieder A, Miller EK 2003. Coding of cognitive magnitude: compressed scaling of numerical information in the primate prefrontal cortex. Neuron 37:149–57
    [Google Scholar]
  61. Payzan-LeNestour E, Woodford M 2019. “Outlier blindness”: Efficient coding generates an inability to represent extreme values Work. Pap., Univ. N. S. W. Sydney, Aust.:
  62. Petzschner FH, Glasauer S, Stephan KE 2015. A Bayesian perspective on magnitude estimation. Trends Cogn. Sci. 19:285–93
    [Google Scholar]
  63. Polania R, Woodford M, Ruff CC 2019. Efficient coding of subjective value. Nat. Neurosci. 22:134–42
    [Google Scholar]
  64. Preston MG, Baratta P 1948. An experimental study of the auction-value of an uncertain outcome. Am. J. Psychol. 61:183–93
    [Google Scholar]
  65. Rabin M 2000. Risk aversion and expected-utility theory: a calibration theorem. Econometrica 68:1281–92
    [Google Scholar]
  66. Rayo L, Becker GS 2007. Evolutionary efficiency and happiness. J. Political Econ. 115:302–37
    [Google Scholar]
  67. Robson AJ 2001. The biological basis of economic behavior. J. Econ. Lit. 39:11–33
    [Google Scholar]
  68. Rubinstein A 1988. Similarity and decision making under risk (is there a utility theory resolution to the Allais paradox?). J. Econ. Theory 46:145–53
    [Google Scholar]
  69. Rustichini A, Conen KE, Cai X, Padoa-Schioppa C 2017. Optimal coding and neuronal adaptation in economic decisions. Nat. Commun. 8:1208
    [Google Scholar]
  70. Schwartz O, Hsu A, Dayan P 2007. Space and time in visual context. Nat. Rev. Neurosci. 8:522–35
    [Google Scholar]
  71. Simoncelli EP 2003. Vision and the statistics of the visual environment. Curr. Opin. Neurobiol. 13:144–49
    [Google Scholar]
  72. Sims CA 2003. Implications of rational inattention. J. Monet. Econ. 50:665–90
    [Google Scholar]
  73. Steiner J, Stewart C 2016. Perceiving prospects properly. Am. Econ. Rev. 106:1601–31
    [Google Scholar]
  74. Stocker AA, Simoncelli EP 2006. Noise characteristics and prior expectations in human visual speed perception. Nat. Neurosci. 9:578–85
    [Google Scholar]
  75. Summerfield C, Tsetsos K 2015. Do humans make good decisions?. Trends Cogn. Sci. 19:27–34
    [Google Scholar]
  76. Thurstone LL 1927. A law of comparative judgment. Psychol. Rev. 34:273–86
    [Google Scholar]
  77. Tirole J 2015. Cognitive games and cognitive traps Work. Pap., Toulouse Sch. Econ. Toulouse, Fr.: https://www.tse-fr.eu/sites/default/files/TSE/documents/doc/by/tirole/cognitive_games_210715.pdf
  78. Trueblood JS, Brown SD, Heathcote A, Busemeyer JR 2013. Not just for consumers: Context effects are fundamental to decision making. Psychol. Sci. 24:901–8
    [Google Scholar]
  79. Tversky A, Russo JE 1969. Substitutability and similarity in binary choices. J. Math. Psychol. 6:1–12
    [Google Scholar]
  80. Weber EU 2004. Perception matters: psychophysics for economists. The Psychology of Economic Decisions, Vol. 2: Reasons and Choices I Brocas, JD Carrillo 163–76 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  81. Wei X-X, Stocker AA 2015. A Bayesian observer model constrained by efficient coding can explain “anti-Bayesian” percepts. Nat. Neurosci. 18:1509–17
    [Google Scholar]
  82. Wei X-X, Stocker AA 2017. Lawful relation between perceptual bias and discriminability. PNAS 114:10244–49
    [Google Scholar]
  83. Whalen J, Gallistel CR, Gelman R 1999. Non-verbal counting in humans: the psychophysics of number representation. Psychol. Sci. 10:130–37
    [Google Scholar]
  84. Woodford M 2003. Imperfect common knowledge and the effects of monetary policy. Knowledge, Information, and Expectations in Modern Macroeconomicsed. P Aghion, R Frydman, J Stiglitz, M Woodford25–58 Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  85. Woodford M 2012. Prospect theory as efficient perceptual distortion. Am. Econ. Rev. 102:41–46
    [Google Scholar]
/content/journals/10.1146/annurev-economics-102819-040518
Loading
/content/journals/10.1146/annurev-economics-102819-040518
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error